首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The protease from Aspergillus tamarii Kita UCP1279 extraction by aqueous two-phase PEG-Citrate (ATPS) systems, using a factorial design 24, was investigated. Then, the variables studied were polyethylene glycol (PEG) molar mass (MPEG), concentrations of PEG (CPEG) and citrate (CCIT), and pH. The responses analyzed were the partition coefficient (K), activity yield (Y) and purification factor (PF). The thermodynamic parameters of the ATPS partition were estimated as a function of temperature. ATPS was able to pre-purify the protease (PF = 1.6) and obtained 84% activity yield. The thermodynamic parameters ΔG°m (?10.89?kJ mol?1), ΔHm (?5.0?kJ?mol?1) and partition ΔSm (19.74?J mol?1 K?1) showed that the preferential migration of almost all protein contaminants of the crude extract to the salt-rich phase, while the preferred protease was the PEG rich phase. The extracted enzyme presents optimum temperature and pH at range of 40–50?°C and 9.0–11.0, respectively. Moreover, the enzyme was identified as serine protease based on inhibition profile. ATPS showed the satisfactory performance as the first step for Aspergillus tamarii Kita UCP1279 protease pre-purification.  相似文献   

2.
Aqueous biphasic systems (ABSs) are an interesting alternative for separating industrial enzymes due to easy scale-up and low operational cost. The proteases of Pseudomonas sp. M211 were purified through ABS platforms formed by polyethylene glycol (PEG) and citrate buffer salt. Two experimental designs 23 + 4 were performed to evaluate the following parameters: molar mass of PEG (MPEG), concentration of PEG (CPEG), concentration of citrate buffer (CCit), and pH. The partition coefficient (K), activity yield (Y), and purification factor (PF) were the responses analyzed. The best purification performance was obtained with the system composed of MPEG = 10,000 g/mol, CPEG = 22 wt%, CCit = 12 wt%, pH = 8.0; the responses obtained were K = 4.9, Y = 84.5%, PF = 15.1, and tie-line length = 52.74%. The purified proteases of Pseudomonas sp. (PPP) were used to obtain hydrolysates of Lupinus mutabilis (Peruvian lupin cultivar) seed protein in comparison with the commercial protease Alcalase® 2.4L. A strong correlation between hydrolysis degree and radical scavenging activity was observed, and the highest antioxidant activity was obtained with Alcalase® (1.40 and 3.47 μmol Trolox equivalent/mg protein, for 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and oxygen radical absorbance capacity, respectively) compared with PPP (0.55 and 1.03 μmol Trolox/mg protein). Nevertheless, the IC50 values were lower than those often observed for antioxidant hydrolysates from plant proteins. PEG/citrate buffer system is valuable to purify Pseudomonas proteases from the fermented broth, and the purified protease could be promising to produce antioxidant protein hydrolysates.  相似文献   

3.
The partition and purification of α-amylase from a culture supernatant of Aspergillus oryzae CBS 819.72 was made in aqueous two-phase system (ATPS). According to bibliography and preliminary studies, the factors polyethylene glycol (PEG) molecular weight (MPEG) and concentration (CPEG), buffer type (BU) and concentration (CBU), temperature (T), salt nature (SALT) and concentration (CSALT), bioligand (BL) and concentration (CBL) and pH were investigated using a Plackett–Burman design to identify the factors affecting separation. Taking into consideration a simultaneous increase in enzyme recovery (RY) and purification factor (PF), the best performance of the system was obtained at 4 °C and pH 6 using PEG 8000 g/mol, citrate buffer, KCl and sucrose. Experimental Box–Behnken design together with the Response Surface Methodology (RSM) have been used to find optimum CPEG, CCitrate and CSALT. Quadratic models were predicted for PF and RY in the top phase and a better compromise between these two parameters can be found by superimposing the contour plots of PF and RY for 8% citrate. A region in the experimental space can be defined where the purification factor is always higher than 3 with yields exceeding 65%.  相似文献   

4.
Abstract

Aqueous two-phase systems have been studied for almost a century to separate biomolecules in harmless conditions. Proteases produced by Aspergillus tamarii URM 4634 were extracted in polyethylene glycol (PEG)/phosphate aqueous two-phase system under discontinuous and continuous (perforated rotative discs column) process. On the discontinuous process, it was evaluated the effect of operational conditions (PEG molar mass and its concentration, phosphate concentration and pH) over the partition coefficient, activity yield and purification factor. Protease partitioned to PEG-phase with partition coefficients up to 55.73. The best process parameters were 17.5% of PEG, with molar mass 8000?g·mol?1, 15% of phosphate salt at pH 6, with 113.15% of activity yield and purification factor of 2.62. Under continuous extraction, hold up data showed that 57.1% of the discontinuous phase was available for protein extraction. Further, separation achieved 90.0% of efficiency. The yields surpassed 100% in almost all runs, and the best purification factor was 1.84, with both flows of 2?mL·min?1. Thus, the best operational conditions reached an activity yield of 95.3% and 90.0% of separation efficiency. Hence, aqueous two-phase system PEG/phosphate extraction is an efficient process for separation of proteases produced by Aspergillus tamarii URM 4634, under continuous extraction likewise under discontinuous process.  相似文献   

5.
A novel fungal strain, Aspergillus ficuum Gim 3.6, was evaluated for its tannase-producing capability in a wheat bran-based solid-state fermentation. Thin-layer chromatography (TLC) analysis revealed that the strain was able to degrade tannic acid to gallic acid and pyrogallol during the fermentation process. Quantitation of enzyme activity demonstrated that this strain was capable of producing a relatively high yield of extracellular tannase. Single-factor optimization of process parameters resulted in high yield of tannase after 60 hr of incubation at a pH of 5.0 at 30°C, 1 mL of inoculum size, and 1:1 solid–liquid ratio in the presence of 2.0% (w/v) tannic acid as inducer. The potential of aqueous two-phase extraction (ATPE) for the purification of tannase was investigated. Influence of various parameters such as phase-forming salt, molecular weight of polyethylene glycol (PEG), pH, and stability ratio on tannase partition and purification was studied. In all the systems, the target enzyme was observed to preferentially partition to the PEG-rich top phase, and the best result of purification (2.74-fold) with an enzyme activity recovery of 77.17% was obtained in the system containing 17% (w/w) sodium citrate and 18.18% (w/w) PEG1000, at pH 7.0.  相似文献   

6.
Tannase production by Aspergillus niger Aa-20 was studied in submerged (SmF) and solid-state (SSF) fermentation systems with different tannic acid and glucose concentrations. Tannase activity and productivity were at least 2.5 times higher in SSF than in SmF. Addition of high tannic acid concentrations increased total tannase activity in SSF, while in SmF it was decreased. In SmF, total tannase activity increased from 0.57 to 1.03 IU/mL, when the initial glucose concentration increased from 6.25 to 25 g/L, but a strong catabolite repression of tannase synthesis was observed in SmF when an initial glucose concentration of 50 g/L was used. In SSF, maximal values of total tannase activity decreased from 7.79 to 2.51 IU when the initial glucose concentration was increased from 6.25 to 200 g/L. Kinetic results on tannase production indicate that low tannase activity titers in SmF could be associated to an enzyme degradation process which is not present in SSF. Tannase titers produced by A. niger Aa-20 are fermentation system-dependent, favoring SSF over SmF. Journal of Industrial Microbiology & Biotechnology (2001) 26, 296–302. Received 07 July 2000/ Accepted in revised form 15 February 2001  相似文献   

7.
Carboxymethyl cellulase (CMCase) hydrolyses cellulose into glucose and is useful in various industrial applications. Conventional CMCase purification methods are rather complicated and time-consuming; thus, a cost-effective strategy for CMCase recovery is on demand. Polyethylene-glycol (PEG)/sodium citrate aqueous biphasic system (ABS) was adopted in this study to investigate the effectiveness of the ABS in the recovery of extracellular Bacillus subtilis CMCase from fermentation broth. Comprehensive optimization steps were executed that took into consideration the ABS variables of PEG molecular weight, tie-line length (TLL), volume ratio (VR), crude loading, pH and the addition of sodium chloride (NaCl). A CMCase recovery yield (YB) of 88.82% ± 0.69, a purification fold (PF) of 4.8 and a partition coefficient (K) of 0.44 ± 0.03 were achieved from the bottom phase of the PEG 6000/citrate ABS with TLL of 42.16% (w/w), VR of 0.29, 1% of (w/w) NaCl, pH 7.0, and 20% (w/w) crude loading. CMCase was mainly segregated to the salt-rich bottom phase because of the hydrophilicity of the enzyme surface. The highly effective recovery technique was further confirmed by SDS-PAGE analysis. Overall, the present study suggests that the ABS is a potential purification strategy for extracellular CMCase.  相似文献   

8.
Tannins, present in various foods, feeds and forages, have anti-nutritional activity; however, presence of tannase in microorganisms inhabiting rumen and gastrointestinal tract of animals results in detoxification of these tannins. The present investigation was carried out to study the degradation profile of tannins by Enterococcus faecalis and to purify tannase. E. faecalis was observed to degrade tannic acid (1.0% in minimal media) to gallic acid, pyrogallol and resorcinol. Tannase from E. faecalis was purified up to 18.7 folds, with a recovery of 41.7%, using ammonium sulphate precipitation, followed by DEAE-cellulose and Sephadex G-150. The 45 kDa protein had an optimum activity at 40 °C and pH 6.0 at substrate concentration of 0.25 mM methyl gallate.  相似文献   

9.
Summary Tannase was produced by modified solid-state fermentation (MSSF) of tannin rich substrates by a co-culture of the two filamentous fungi, Rhizopus oryzae and Aspergillus foetidus. The enzyme thus produced was then partially purified by solvent precipitation and DEAE-Sephadex column chromatography. A study on the effects of temperature and pH was made on the activity of tannase so purified. The optimum values of incubation time, reaction temperature and pH for tannase activity were 5 min, 40 °C and 5.0 respectively. The half-life period thermal stability and kinetic constants (K m 0.21 mM, V max 4.9×10−2 M min-1 at 40 °C) of this tannase were determined and the effects of different metal ions, surfactants, chelators, denaturants and inhibitors on the enzyme activity were also studied.  相似文献   

10.
Tannase (tannin acyl hydrolase) is an industrially important enzyme produced by a large number of fungi, which hydrolyzes the ester and depside bonds of gallotannins and gallic acid esters. In the present work, a tannase from Aspergillus oryzae has been cloned and expressed in Pichia pastoris. The catalytic activity of the recombinant enzyme was assayed. A secretory form of enzyme was made with the aid of Saccharomyces cerevisiae alpha-factor, and a simple procedure purification protocol yielded tannase in pure form. The productivity of secreted tannase achieved 7000 IU/L by fed-batch culture. Recombinant tannase had a molecular mass of 90 kDa, which consisted of two kinds of subunits linked by a disulfide bond(s). Our study is the first report on the heterologous expression of tannase suggesting that the P. pastoris system represents an attractive means of generating large quantities of tannase for both research and industrial purpose.  相似文献   

11.
An extracellular tannase (tannin acyl hydrolase) was isolated from Paecilomyces variotii and purified from cell-free culture filtrate using ammonium sulfate precipitation followed by ion exchange and gel filtration chromatography. Fractional precipitation of the culture filtrate with ammonium sulfate yielded 78.7% with 13.6-folds purification, and diethylaminoethyl–cellulose column chromatography and gel filtration showed 19.4-folds and 30.5-folds purifications, respectively. Molecular mass of tannase was found 149.8 kDa through native polyacrylamide gel electrophoresis (PAGE) analysis. Sodium dodecyl sulphate–PAGE revealed that the purified tannase was a monomeric enzyme with a molecular mass of 45 kDa. Temperature of 30 to 50°C and pH of 5.0 to 7.0 were optimum for tannase activity and stability. Tannase immobilized on alginate beads could hydrolyze tannic acid even after extensive reuse and retained about 85% of the initial activity. Thin layer chromatography, high performance liquid chromatography, and 1H-nuclear magnetic resonance spectral analysis confirmed that gallic acid was formed as a byproduct during hydrolysis of tannic acid.  相似文献   

12.
Aspergillopepsin I, an acid protease, was purified using an aqueous two-phase system that comprised various combinations of polyethylene glycol (PEG), NaH2PO4 and NaCl. Partition of the enzyme depended upon the molecular mass of the PEG and the presence of NaCl. With PEG 1500, 4000 and 6000, the partition coefficients were increased by 1,500-, 1,800- and 560-fold compared to values without NaCl. The presence of NaCl (8.75%, w/w) increased purification by 3.8, 9.5 and 2.8 times into these respective PEGs. The optimal aqueous two-phase system for acid protease purification was developed using response surface methodology. This system contained 17.3% of PEG 4000 (w/w), 15% NaH2PO4 (w/w) and 8.75% NaCl (w/w) and provided the best partition coefficient (Ke > 1,100) and yield over 99% in the same phase. The optimal ATPS purification factor of acid protease was over 5.  相似文献   

13.
In the present study Lenzites elegans, Schizophyllum commune, Ganoderma applanatum and Pycnoporus sanguineus (wood-degrading fungi) were assayed for their tannase producing potential in culture media containing plant residues or/and tannic acid as carbon source. Aspergillus niger was used as positive control for tannase production. We also carried out the isolation, purification and characterization of the enzyme from the fungi selected as the major productor. The highest fungal growth was observed in A. niger and L. elegans in the media containing tannic acid + glucose + plant residues (Fabiana densa). A. niger and L. elegans reached the highest extracellular tannase production in a medium containing tannic acid + F. densa and in a medium supplemented with glucose + tannic acid + F. densa. The produced enzyme by L. elegans was purified by DEAE-Sepharose. Km value was 5.5 mM and relative molecular mass was about 163,000. Tannase was stable at a pH range 3.0–6.0 and its optimum pH was 5.5. The enzyme showed an optimum temperature of 60°C and was stable between 40 and 60°C. This paper is the first communication of tannase production by wood-degrading fungi. Fermentation technology to produce tannase using plant residues and xylophagous fungi could be very important in order to take advantage of plant industrial waste.  相似文献   

14.
The topical application of all-trans retinoic acid (ATRA) is an effective treatment for several skin disorders, including photo-aging. Unfortunately, ATRA is susceptible to light, heat, and oxidizing agents. Thus, this study aimed to investigate the ability of polymeric micelles prepared from polyethylene glycol conjugated phosphatidylethanolamine (PEG-PE) to stabilize ATRA under various storage conditions. ATRA entrapped in polymeric micelles with various PEG and PE structures was prepared. The critical micelle concentrations were 97–243 μM, depending on the structures of the PEG and PE molecules. All of the micelles had particle diameters of 6–20 nm and neutral charges. The highest entrapment efficiency (82.7%) of the tested micelles was exhibited by ATRA in PEG with a molecular weight of 750 Da conjugated to dipalmitoyl phosphatidylethanolamine (PEG750-DPPE) micelles. The PEG750-DPPE micelle could significantly retard ATRA oxidation compared to ATRA in 75% methanol/HBS solution. Up to 87% of ATRA remained in the PEG750-DPPE micelle solution after storage in ambient air for 28 days. This result suggests that PEG750-DPPE micelle can improve ATRA stability. Therefore, ATRA in PEG750-DPPE micelle is an interesting alternative structure for the development of cosmeceutical formulations.  相似文献   

15.
The optimization of tannase production by Lactobacillus plantarum CIR1 was carried out following the Taguchi methodology. The orthogonal array employed was L18 (21 × 35) considering six important factors (pH and temperature, also phosphate, nitrogen, magnesium, and carbon sources) for tannase biosynthesis. The experimental results obtained from 18 trials were processed using the software Statistical version 7.1 using the character higher the better. Optimal culture conditions were pH, 6; temperature, 40 °C; tannic acid, 15.0 g/L; KH2PO4, 1.5 g/L; NH4Cl, 7.0 g/L; and MgSO4, 1.5 g/L which were obtained and further validated resulting in an enhance tannase yield of 2.52-fold compared with unoptimized conditions. Tannase production was further carried out in a 1-L gas-lift bioreactor where two nitrogen flows (0.5 and 1.0 vvm) were used to provide anaerobic conditions. Taguchi methodology allowed obtaining the optimal culture conditions for the production of tannase by L. plantarum CIR1. At the gas-lift bioreactor the tannase productivity yields increase 5.17 and 8.08-fold for the flow rates of 0.5 and 1.0 vvm, respectively. Lactobacillus plantarum CIR1 has the capability to produce tannase at laboratory-scale. This is the first report for bacterial tannase production using a gas-lift bioreactor.  相似文献   

16.
Alcohol/salt-based aqueous two-phase systems (ATPSs) were used to recover lipase derived from Burkholderia pseudomallei (B. pseudomallei). Nine biphasic systems, comprised of an alcohol-based top phase (ethanol, 2-propanol and 1-propanol) and a salt-based bottom phase (ammonium sulfate, potassium phosphate and sodium citrate), were evaluated for their effectiveness in lipase recovery. The stability of lipase in each of the solutions was tested, and phase diagrams were constructed for each system. The optimum partition efficiency for the purification of lipase was obtained in an ATPS of 16% (w/w) 2-propanol and 16% (w/w) phosphate in the presence of 4.5% (w/v) NaCl. The purified lipase had a purification factor of 13.5 and a yield of 99%.  相似文献   

17.
Tannase from Penicillium variable IARI 2031 was purified by a two-step purification strategy comprising of ultra-filtration using 100 kDa molecular weight cutoff and gel-filtration using Sephadex G-200. A purification fold of 135 with 91% yield of tannase was obtained. The enzyme has temperature and pH optima of 50 degrees C and 5 degrees C, respectively. However, the functional temperature range is from 25 to 80 degrees C and functional pH range is from 3.0 to 8.0. This tannase could successfully be immobilized on Amberlite IR where it retains about 85% of the initial catalytic activity even after ninth cycle of its use. Based on the Michaelis-Menten constant (Km) of tannase, tannic acid is the best substrate with Km of 32 mM and Vmax of 1.11 micromol ml(-1)min(-1). Tannase is inhibited by phenyl methyl sulphonyl fluoride (PMSF) and N-ethylmaleimide retaining only 28.1% and 19% residual activity indicating that this enzyme belongs to the class of serine hydrolases. Tannase in both crude and crude lyophilized forms is stable for one year retaining more than 60% residual activity.  相似文献   

18.
Aspergillus niger with mycelium-bound tannase activity was employed to investigate the synthesis of propyl gallate from gallic acid and 1-propanol in organic solvents. The effects of various organic solvents (log P: −1.0 to 6.6) on the enzymatic reactions showed that benzene (log P: 2.0) was the most suitable solvent. The water content and protonation state of mycelium-bound enzyme both had significant effects on the activity of tannase. The maximum molar conversion (65%) was achieved with 7.3% (v/v) 1-propanol and 5.56 mM gallic acid at stirring speeds of 200 rev/min, 40 °C in presence of anhydrous sodium sulfate and PEG-10,000. Enzyme specificity for the alcohol portion (C1–C8) of the ester showed that the optimum synthesis was observed with alcohols ranging from C3 to C5.  相似文献   

19.
Abstract

Production of tannase was performed in packed bed reactor filled with an inert support polyurethane foam (PUF) using Bacillus gottheilii M2S2. The influence of process parameters such as fermentation time (24–72?h), tannic acid concentration (0.5–2.5% w/v), inoculum size (7–12% v/v), and aeration rate (0–0.2?L/min) on tannase production with PUF were analyzed using one variable at a time (OVAT) approach. The outcome of OVAT was optimized by central composite design. Based on the statistical investigation, the proposed mathematical model recommends 1% (w/v) of tannic acid, 10% (v/v) of inoculum size and 0.13?L/min of aeration rate for maximum production (76.57?±?1.25?U/L). The crude enzyme was purified using ammonium sulfate salt precipitation method followed by dialysis. The biochemical properties of partially purified tannase were analyzed and found the optimum pH (4.0), temperature (40?°C) for activity, and Km (1.077?mM) and Vmax (1.11?µM/min) with methyl gallate as a substrate. Based on the SDS-PAGE analysis, tannase exhibited two bands with molecular weights of 57.5 and 42.3?kDa. Briefly, the partially purified tannase showed 4.2 fold increase (63?±?1.60?U/L) in comparison to the submerged fermentation and the production of tannase was validated by using NMR spectrometer.  相似文献   

20.
Optimization of tannase production by Aureobasidium pullulans DBS66   总被引:1,自引:0,他引:1  
Tannase production by Aureobasidium pullulans DBS66 was optimized. The organism produced maximum tannase in the presence of 1% tannic acid after 36 h. Maximum gallic acid accumulation was observed within 36 h and tannic acid in the fermented broth was completely degraded after 42 h of growth. Glucose had a stimulatory effect on tannase synthesis at 0.1% (w/v) concentration. The organism showed maximum tannase production with (NH4)2HPO4 as nitrogen source. Shaking speed of 120 rpm and 50-ml broth volume have been found to be suitable for maximum tannase production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号