首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The N-myc gene is expressed specifically in the early developmental stages of numerous cell lineages. To assay for sequences that could potentially regulate N-myc expression, we transfected constructs that contained murine N-myc genomic sequences linked to a reporter gene and genomic clones that contained the complete human or murine N-myc genes into cell lines that either express or do not express the endogenous N-myc gene. Following either transient or stable transfection, the introduced N-myc sequences were expressed regardless of the expression status of the endogenous gene. In contrast, when the clones containing the complete human N-myc gene were introduced into the germline of transgenic mice, expression in some transgenic lines paralleled the tissue- and stage-specific expression of the endogenous murine gene. These findings demonstrate differences in the regulation of N-myc genes in recipient cells following in vitro versus in vivo introduction, suggesting that early developmental events may play a role in the regulation of N-myc expression.  相似文献   

2.
Transgenic mice which specifically express the human insulin gene in the pancreatic beta cells have been obtained. Expression is demonstrated by the presence in the serum of human insulin (determined by a radioimmunoassay for the human C-peptide), the level of which increases upon glucose stimulus, and by the presence of human insulin mRNA in pancreas, but not in the other tissues tested. This result indicates that nucleotide sequences necessary for tissue-specific expression are within the transferred gene and/or in its vicinity. It also suggests that the regulatory molecules are quite similar if not identical in human and mouse.  相似文献   

3.
4.
The goal of this study was to engineer gastrin-producing G cells of the gastric antrum to produce insulin. A pGas-Ins chimeric gene in which the gastrin promoter drives expression of the human insulin gene was constructed and was validated by transient transfection of GH4 and AGS cells. RT-PCR analysis and sequencing revealed three forms of differentially spliced insulin mRNA in GH4 cells transiently transfected by pGas-Ins. Gas-Ins transgenic mice were generated utilizing this chimeric gene. Northern blot analysis, in situ hybridization, and immunohistochemistry demonstrated expression of the human insulin gene specifically in antral G cells. Northern blot analysis demonstrated that the shortest of the insulin mRNA three forms is predominantly expressed in stomach tissue. RT-PCR analysis also showed expression of the transgene in colon, pancreas, and brain tissues that was undetectable by northern analysis. We conclude that gastrin promoter can be used for targeting expression of human insulin to antral G cells and that antral G cells can express human insulin. Further refining of the chimeric gene design is required to enhance expression.  相似文献   

5.
6.
7.
8.
Angiotensinogen is the precursor of the potent vasoactive peptide angiotensin II, and is therefore an important determinant of blood pressure and electrolyte homeostasis. In order to map the tissue-specific and inducible enhancer elements governing angiotensinogen gene expression in transgenic mice, we constructed minigenes containing either 0.75 kb or 4 kb or 5' flanking DNA from the BALB/c angiotensinogen gene. Sequences necessary and sufficient to mediate induction by glucocorticoids, oestrogen and bacterial endotoxin were contained on the minigene bearing 0.75 kb of DNA upstream of the capsite. This construct was also able to confer tissue specificity in the majority of organs producing angiotensinogen. In the testis and salivary gland, differences between the donor (BALB/c) and recipient (Swiss) strains were responsible for the apparently aberrant expression of the minigene constructs. The genetic lesion responsible for these expression polymorphisms has been characterized using recombinant inbred mice. An EcoRI restriction fragment length polymorphism which co-segregates with the angiotensinogen expression phenotypes into many inbred mouse strains is also described.  相似文献   

9.
Angiotensinogen (AGT) is mainly expressed in glial cells in close proximity to renin-expressing neurons in the brain. We previously reported that glial-specific overexpression of ANG II results in mild hypertension. Here, we tested the hypothesis that glial-derived AGT plays an important role in blood pressure regulation in hypertensive mice carrying human renin (hREN) and human AGT transgenes under the control of their own endogenous promoters. To perform a glial-specific deletion of AGT, we used an AGT transgene containing loxP sites (hAGT(flox)), so the gene can be permanently ablated in the presence of cre-recombinase expression, driven by the glial fibrillary acidic protein (GFAP) promoter. Triple transgenic mice (RAC) containing a: 1) systemically expressed hREN transgene, 2) systemically expressed hAGT(flox) transgene, and 3) GFAP-cre-recombinase were generated and compared with double transgenic mice (RA) lacking cre-recombinase. Liver and kidney hAGT mRNA levels were unaltered in RAC and RA mice, as was the level of hAGT in the systemic circulation, consistent with the absence of cre-recombinase expression in those tissues. Whereas hAGT mRNA was present in the brain of RA mice (lacking cre-recombinase), it was absent from the brain of RAC mice expressing cre-recombinase, confirming brain-specific elimination of AGT. Immunohistochemistry revealed a loss of AGT immunostaining glial cells throughout the brain in RAC mice. Arterial pressure measured by radiotelemetry was significantly lower in RAC than RA mice and unchanged from nontransgenic control mice. These data suggest that there is a major contribution of glial-AGT to the hypertensive state in mice carrying systemically expressed hREN and hAGT genes and confirm the importance of a glial source of ANG II substrate in the brain.  相似文献   

10.
Expression of the chicken transferrin gene in transgenic mice   总被引:15,自引:0,他引:15  
The chicken transferrin gene was microinjected into the male pronucleus of fertilized mouse eggs, and the eggs were then implanted into foster mothers. Approximately 15%-30% of the offspring from the injected eggs carried chicken DNA sequences; restriction mapping indicated that multiple copies of the chicken gene had integrated into the genome in a tandem arrangement in most of the mice. Six of the seven mice studied expressed the chicken gene, and in five mice there was a 5 to 10 fold preferential expression of chicken transferrin mRNA in liver compared to that in other tissues. Chicken transferrin was secreted into the serum of five of the mice, where it reached steady state concentrations up to 67 micrograms/ml. Offspring from transgenic parents also expressed the chicken gene; in some cases the expression in offspring was very similar to the parent, but in one line expression in offspring had increased 2 to 4 fold.  相似文献   

11.
Owing to the episodic and unpredictable nature of the sickling crisis, many aspects of the disease sickle cell anemia have resisted in vivo analysis. The lack of an animal model has hindered the pathophysiological investigation of this disease, as well as deterred the development of pharmacological therapies. The transgenic mouse system offers a new means for creating animals that make a specified mutant gene product, and we have used this system to create a series of mice that contain the human beta s-globin gene. These animals express this gene in the appropriate tissues and at the same point in development as the adult mouse globin genes are expressed. We have crossed the human beta s-containing transgenic mice with a beta-thalassemic mouse line and examined the hemoglobins produced by these mice. Their red cells contain 10% mouse alpha/human beta s hybrid hemoglobin, which partially corrects the thalassemic phenotype of the homozygous beta-thalassemic animals. Though the red cells do not sickle, other properties of the human beta s gene in these mice indicate the potential for the eventual development of a transgenic animal model for sickle cell anemia.  相似文献   

12.
13.
To study the molecular basis of tissue-specific expression of the GLUT4/muscle-fat facilitative glucose transporter gene, we generated lines of transgenic mice carrying 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene fused to a chloramphenicol acetyltransferase (CAT) reporter gene (hGLUT4[2.4]-CAT). This reporter gene construct was specifically expressed in tissues that normally express GLUT4 mRNA, which include both brown and white adipose tissues as well as cardiac, skeletal, and smooth muscle. In contrast, CAT reporter activity was not detected in brain or liver, two tissues that do not express the GLUT4 gene. In addition, the relative levels of CAT mRNA driven by the human GLUT4 promoter in various tissues of these transgenic animals mirrored those of the endogenous mouse GLUT4 mRNA. Since previous studies have observed alterations in GLUT4 mRNA levels induced by fasting and refeeding (Sivitz, W. I., DeSautel, S. L., Kayano, T., Bell, G. I., and Pessin, J. E. (1989) Nature 340, 72-74), the regulated expression the hGLUT4[2.4]-CAT transgene was also assessed in these animals. Fasting was observed to decrease CAT activity in white adipose tissue which was super-induced upon refeeding. These alterations in CAT expression occurred in parallel to the changes in endogenous mouse GLUT4 mRNA levels. Although CAT expression in skeletal muscle and brown adipose tissue was unaffected, the endogenous mouse GLUT4 mRNA was also refractory to the effects of fasting/refeeding in these tissues. These data demonstrate that 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene contain all the necessary sequence elements to confer tissue-specific expression and at least some of the sequence elements controlling the hormonal/metabolic regulation of this gene.  相似文献   

14.
本研究应用脂质体介导转染技术将人内皮型一氧化氮合酶 (eNOS)基因转入绒癌细胞系JAR细胞 ,获得转染阳性细胞。用RT PCR和Westernblot技术从基因及蛋白水平对表达产物进行鉴定 ,结果显示 :有较高水平的mRNA转录和特异目的蛋白表达 ;通过免疫细胞化学方法证实 ,转染eNOS基因的阳性JAR细胞与对照组相比 ,有外源eNOS蛋白高表达 ;但是一氧化氮合酶 (NOS)活性及其催化产物NO并没有直接升高 ;使用A2 3187处理则能增加NOS的活性 ,说明在转染的JAR细胞中 ,NOS没有被直接激活  相似文献   

15.
《Insect Biochemistry》1989,19(7):679-686
The evolutionary conservation of the heat shock response suggests that plasmids containing promoters from Drosophila heat shock protein (hsp) genes will be useful in the development of gene transfer procedures for cell lines representing a variety of insect species. Conditions for induction of endogenous hsp genes and for expression of the chloramphenicol acetyltransferase (CAT) gene regulated by the Drosophila hsp 70 promoter were examined in Aedes albopictus (mosquito) cells. Five hsps, ranging in size from 27,000 to 90,000 D, were induced in A. albopictus cells during incubation at 41°C in medium containing [35S]methionine. Relative synthesis of these proteins at 37 and 41°C indicated that Aedes hsp 66 is homologous to Drosophila hsp 70. Detection of CAT activity in transfected mosquito cells was enhanced 10-fold under heat shock conditions (6 h, 41°C) based on maximal expression of hsp 66, relative to conditions defined for expression of hsp 70 in Drosophila cells. Analysis of the endogenous heat shock response may be essential to the optimal use of plasmids containing the Drosophila hsp 70 promoter with other insect cell types.  相似文献   

16.
Two new beta-lactoglobulin (BLG)/human serum albumin (HSA) hybrid gene vectors were constructed and tested for expression in COS-7 cells and in transgenic mice. The HSA sequences were inserted between the second and sixth BLG exons. Transient transfection experiments with these vectors as well as a series of additional vectors with either the BLG 5'- or 3'- intragenic sequences revealed that sequences within BLG exon 1/intron 1/exon 2 abrogated BLG- directed HSA expression in vitro, regardless of the presence of HSA introns or the origin of the 3' polyadenylation signal. In contrast, the same BLG expression cassette enabled the efficient expression of HSA cDNA or minigene in the mammary gland of transgenic mice with subsequent secretion of the corresponding protein into the milk of 56 and 82%, respectively of the mouse strains at levels up to 0.3 mg/ml. Previous attempts to express HSA cDNA inserted into exon 1 of the BLG gene had failed [Shani,M., Barash,I., Nathan,M., Ricca,G., Searfoss,G.H., Dekel,I., Faerman,A., Givol,D. and Hurwitz,D.R. (1992) Transgenic Res. 1, 195- 208]. The new BLG expression cassette conferred more stringent tissue specific expression than previously described BLG/HSA constructs [Barash,I, Faerman,A., Ratovitsky,T, Puzis,R., Nathan,M., Hurwitz,D.R. and Shani, M. (1994) Transgenic Res. 3, 141-151]. However, it was not able to insulate the transgenes from the surrounding host DNA sequences and did not result in copy number dependent expression in transgenics. Together, the in vitro and in vivo results suggest both positive and negative regulatory elements within the BLG intragenic sequences evaluated. The new BLG construct represents an extremely valuable vector for the efficient expression of cDNAs in the mammary gland of transgenic animals.  相似文献   

17.
Expression and regulation of the rabbit uteroglobin gene in transgenic mice   总被引:1,自引:0,他引:1  
The rabbit uteroglobin (UG) gene, with varying lengths of 5' flanking sequence, was introduced into the mouse genome to investigate the DNA sequences required for tissue-specific expression and regulation by steroid hormones. The pattern of expression and steroid hormone regulation of the transgene was compared to the expression and regulation of the endogenous mouse UG-like gene. In the rabbit, UG is induced in the uterus by progesterone and is expressed constitutively in the lungs, where it is weakly regulated by glucocorticoids. Genomic DNA fragments containing the complete UG-coding sequence with 4.0 (UG4.0), 3.0 (UG3.0), 2.3 (UG2.3), or 0.6 (UG0.6) kilobases of 5' flanking sequence were used to establish lines of transgenic mice. Expression of UG mRNA was observed in the lungs of UG4.0 (2/4 lines), UG3.0 (4/4 lines), UG2.3 (1/2 lines), and UG0.6 (4/4 lines) mice. Uterine expression was observed in UG3.0 (3/4 lines), UG2.3 (1/2 lines), and UG0.6 (2/4 lines). In the lungs of UG3.0 and UG2.3 mice, RNA expression was stimulated by treatment with dexamethasone. In the one line of UG3.0 mice examined, UG was regulated by ovarian steroids in the uterus. The endogenous mouse UG-like gene showed the major site of expression to be in the lung. Unlike the transgene, the endogenous gene was more strongly stimulated by glucocorticoids. Thus, we conclude that the cis elements needed for pulmonary expression of UG are contained within the UG2.3 fragment used to generate transgenic mice, but that other elements are required for full glucocorticoid regulation. Also, the transgene did not show the full uterine expression observed in the rabbit, but regulation by the ovarian steroids was observed.  相似文献   

18.
19.
We have characterized the expression of the human zeta (zeta) gene, which encodes an embryonic alpha-like globin, in transgenic mice. We find that a 777 base pair fragment spanning erythroid specific hypersensitive site II (HSII) from the distal 5. region of the human beta globin gene cluster potentiates expression of the zeta globin gene. In the absence of the HSII fragment, no zeta expression is observed. Expression of the human zeta gene in mice parallels expression of a murine embryonic alpha-like globin gene (x). Thus, expression of the human zeta gene in mice requires linkage to an erythroid-specific enhancer sequence, but the presence of the enhancer does not affect the developmental regulation of the transgene. Our results indicate that the factors involved in switching from embryonic to adult alpha globin gene expression during development are evolutionarily conserved, and suggest that the transgenic mouse is an in vivo system in which the requirements for the developmental switch in alpha globin gene expression can be analyzed in detail.  相似文献   

20.
Previously isolated lysosomal alpha-glucosidase cDNA clones were ligated to full-length constructs for expression in vitro and in mammalian cells. One of these constructs (pSHAG1) did not code for functional enzyme, due to an arginine residue instead of a tryptophan residue at amino acid position 402. The mutation does not affect the rate of enzyme synthesis, but interferes with post-translational modification and intracellular transport of the acid alpha-glucosidase precursor. Using immunocytochemistry it is demonstrated that the mutant precursor traverses the endoplasmic reticulum and the Golgi complex, but does not reach the lysosomes. Pulse-chase experiments suggest premature degradation. The Trp-402-containing enzyme (encoded by construct pSHAG2) is processed properly, and has catalytic activity. A fraction of the enzyme is localized at the plasma membrane. It is hypothesized that membrane association of the acid alpha-glucosidase precursor, as demonstrated by Triton X-114 phase separation, is responsible for transport to this location. Transiently expressed acid alpha-glucosidase also enters the secretory pathway, since a catalytically active precursor is found in the culture medium. This precursor has the appropriate characteristics for use in enzyme replacement therapy. Efficient uptake via the mannose 6-phosphate receptor results in degradation of lysosomal glycogen in cultured fibroblasts and muscle cells from patients with glycogenosis type II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号