首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An "apical endocytic complex" in the ileal lining cells of suckling rats is described. The complex consists of a continuous network of membrane-limited tubules which originate as invaginations of the apical plasma membrane at the base of the microvilli, some associated vesicles, and a giant vacuole. The lumenal surface of this tubular network of membranes and associated vesicles is covered with a regular repeating particulate structure. The repeating unit is an ~7.5-nm diameter particle which has a distinct subunit structure composed of possibly nine smaller particles each ~3 nm in diameter. The ~7.5-nm diameter particles are joined together with a center-to-center separation of ~15 nm to form long rows. These linear aggregates, when arranged laterally, give rise to several square and oblique two-dimensional lattice arrangements of the particles which cover the surface of the membrane. Whether a square or oblique lattice is generated depends on the center-to-center separation of the rows and on the relative displacement of the particles in adjacent rows. Four membrane faces are revealed by fracturing frozen membranes of the apical tubules and vesicles: two complementary inner membrane faces exposed by the fracturing process and the lumenal and cytoplasmic membrane surfaces revealed by etching. The outer membrane face reveals a distinct array of membrane particles. This array also sometimes can be seen on the outer (B) fracture face and is sometimes faintly visible on the inner (A) fracture face. Combined data from sectioned, negatively stained, and freeze-etched preparations indicate that this regular particulate structure is a specialization that is primarily localized in the outer half of the membrane mainly in the outer leaflet.  相似文献   

2.
Diffusion-enhanced fluorescence energy transfer was used to study the structure of photoreceptor membranes from bovine retinal rod outer segments. The fluorescent energy donor was Tb3+ chelated to dipicolinate and the acceptor was the 11-cis retinal chromophore of rhodopsin in vesicles made from disc membranes. The rapid-diffusion limit for energy transfer was attained in these experiments because of the long excited state lifetime of the terbium donor (~2 ms). Under these conditions, energy transfer is very sensitive to a, the distance of closest approach between the donor and acceptor (Thomas et al., 1978). Vesicles containing terbium dipicolinate in their inner aqueous space were prepared by sonicating disc membranes in the presence of this chelate and chromatographing this mixture on a gel filtration column. The sidedness of rhodopsin in these vesicles was the same as in native disc membranes. The transfer efficiency from terbium to retinal in this sample was 43%. For an R0 value of 46.7 Å and an average vesicle diameter of 650 Å, this corresponds to an a value of 22 Å from the inner aqueous space of the vesicle. The distance of closest approach from the external aqueous space, determined by adding terbium dipicolinate to a suspension of already formed vesicles, was found to be 28 Å. These values of a show that the retinal chromophore is far from both aqueous surfaces of the disc membrane. Hence, the transverse location of the retinal chromophore is near the center of the hydrophobic core of the disc membrane. These findings suggest that conformational changes induced by photoisomerization are transmitted through a distance of at least 20 Å within rhodopsin to trigger subsequent events in visual excitation.  相似文献   

3.
A highly purified chlorophyll a/b light-harvesting complex (chl a/b LHC; chl a/b ratio 1.2) was obtained from Triton-solubilized chloroplast membranes of pea and barley according to the method of Burke et al. (1978, Arch. Biochem. Biophys. 187: 252--263). Gel electrophoresis of the cation-precipitated chl a/b LHC from peas reveals the presence of four polypeptides in the 23- to 28-kdalton size range. Three of these peptides appear to be identical to those derived from re-electrophoresed CPII and CPII* bands. In freeze-fracture replicas, the cation-precipitated chl a/b LHC appears as a semicrystalline aggregate of membranous sheets containing closely spaced granules. Upon removal of the cations by dialysis, the aggregates break up into their constituent membranous sheets without changing their granular substructure. These membranous sheets can be resolubilized in 1.5% Triton X-100, and the chl a/b LHC particles then reconstituted into soybean lecithin liposomes. Freeze-fracture micrographs of the reconstituted chl a/b LHC vesicles suspended in a low salt medium reveal randomly dispersed approximately 80-A particles on both concave and convex fracture faces as well as some crystalline particle arrays, presumably resulting from incompletely solubilized fragments of the membranous sheets. Based on the approximately 80-A diameter of the particles, and on the assumption that one freeze- fracture particle represents the structural unit of one chl a/b LHC aggregate, a theoretical mol wt of approximately 200 kdalton has been calculated for the chl a/b LHC. Deep-etching and negative-staining techniques reveal that the chl a/b LHC particles are also exposed on the surface of the bilayer membranes. Addition of greater than or equal to 2 mM MgCl2 or greater than or equal to 60 mM NaCl to the reconstituted vesicles leads to their aggregation and, with divalent cations, to the formation of extensive membrane stacks. At the same time, the chl a/b LHC particles become clustered into the adhering membrane regions. Under these conditions the particles in adjacent membranes usually become precisely aligned. Evidence is presented to aupport the hypothesis that adhesion between the chl a/b LHC particles is mediated by hydrophobic interactions, and that the cations are needed to neutralize surface charges on the particles.  相似文献   

4.
SDS-purified porcine kidney (Na+ + K+)-ATPase was studied by thin-section and freeze-etch electron microscopy. Freeze-fracturing of resealed membrane fragments shows no difference in the distribution of intramembranous particles of approx. 9.0 nm in diameter between convex and concave fracture faces. However, two types of convex face are found: FA, which shows a rather smooth background with many intramembranous particles, and FB, which shows a textured background with very few or no intramembranous particles. Etching the fractured samples further reveals that FA faces are covered with many intramembranous particles, while the etched external faces (EA) are either irregularly granulated or reveal many particles half the size of intramembranous particles. FB faces are covered with distinct pits of 9 nm or larger. The etched external surfaces (EB) are covered with many particles of intramembranous particle size. These results suggest that there are two vesicle orientations in our resealed purified membrane preparation: right-side-out, as in vivo, and inside-out. The majority of the protein mass is distributed only on one side of the membranes. Right-side-out resealed membrane vesicles after fracturing and etching show particulated FA convex fracture faces and irregularly granulated or smooth etched EA surfaces, indicating that the FA face is the protoplasmic fracture face and that the majority of the protein mass of the (Na+ + K+)-ATPase is located on the cytoplasmic half of the membrane.  相似文献   

5.
Freeze-fractured membranes of ghost red cells obtained from sheep blood contain randomly distributed particles which are 80–100 Å in diameter. After treatment of the ghosts with 0.1 M phosphate buffer, pH 7.0, the particles form clusters. Sonication of the ghost membranes with clustered particles leads to the formation of a few vesicles which are formed from membrane areas which were either largely particle free or contained clusters of particles. These two kinds of vesicles were separated by centrifugation on a sucrose density gradient. Glycoprotein analysis of the vesicles showed that vesicles without particles contain less glycoprotein than vesicles with particles. In agreement with ref. 1 (Tillack, T. W., Scott R. E. and Marchesi, V. T. (1972) J. Exp. Med. 135, 1209–1220), these results suggest that some of the particles exposed in freeze-etched membranes consist of glycoprotein.  相似文献   

6.
Summary— Post-ER membranous structures are clearly observed in pancreases fixed with aldehydes and subsequently with reduced osmium. Close to the transitional rough ER, clusters of vesicles of ≈ 56 nm diameter are consistently present. In some cells, tortuous tubules appear enmeshed by the ≈ 56 nm vesicles and by irregular, vesicular formations. In freeze-fracture replicas, the membranes of the bulges and tubules that protrude from the transitional rough ER differ from those of the donor compartment. These protrusions are herein designated as the budding chamber of the transitional rough ER. Quantitative and qualitative observations performed previously and in the present study show that the P and E freeze-fracture faces of the outermost Golgi cisternal membrane possess patterns of texture that are unique among membranes. The P-face exhibits a very high density of intramembranous particles of dimensions among the smallest yet described; E-faces show rugosities and an unusually high density of intramembranous particles of normal size. The membranes of the budding chamber, the putative transport vesicles of ≈ 56 nm diameter, the sinuous tubules and the vesicles of irregular size and shape exhibit P and E fracture faces with textures indistinguishable from those of the corresponding P and E faces of the outermost Golgi cisterna.  相似文献   

7.
FREEZE-CLEAVAGE is a new technique for studying the ultra-structure· of biological membranes, which fractures cell membranes in half, exposing two intramembranous fracture faces1–3: the outer fracture face (OFF) and the inner fracture face (IFF). These fracture faces are partially covered with 70 Å globular particles which are thought to be unique structural components of cell membranes, formed by the association of membrane glycoproteins and lipids4. The 70 Å particles are dynamic structures and rapidly increase in density in the membranes of lymphocytes following exposure to mitogenic plant proteins (Scott and Marchesi, unpublished work).  相似文献   

8.
Negative staining of purified spinach dicyclohexylcarbodiimide (DCCD) sensitive ATPase revealed a population of 110 Å subunits attached by stalks to short string-like aggregates. The interpretation of these data is that 110 Å CF1 are attached by stalks to an aggregate of CF0.The CF1-CF0 complex was incorporated into phospholipid vesicles; freezefracture analysis of this preparation revealed a homogeneous population of particles spanning the lipid bilayer; these averaged 96 Å in diameter. The DCCD binding proteolipid (apparent molecular weight 7500), an integral component of CF0, was isolated from membranes by butanol extraction and was incorporated rated into phospholipid vesicles. Freeze-fracture analysis of the DCCD-binding proteolipid/vesicle preparation revealed a population of particles averaging 83 Å in diameter suggesting that the DCCD-binding proteolipid self-associates in lipid to form a stable complex. This complex may be required for proton transport across chloroplast membranes in vivo. The size difference between CF0 and DCCD-proteolipid freeze-fracture particles may be related to differences in polypeptide composition of the two complexes.  相似文献   

9.
An isolated light-harvesting pigment-protein complex contains polypeptides which bind chlorophyll a and b. The individual complexes can be purified from detergent-solubilized membranes. The isolated light-harvesting complex, when dialyzed to remove detergents, was examined by freeze-fracture electron microscopy. The material consisted of planar sheets of 80-Å subunits which interacted via an edge-to-edge contact. Addition of cations caused the planar light-harvesting complex sheets to become tightly appressed in multilamellar stacks, with distinct subunits still visible within each lamellar sheet. A transition of particle organization from random to crystalline occurred in parallel with the cation-induced lamellar association. Treatment of the dialyzed light-harvesting complex subunits with low levels of the proteolytic enzyme trypsin removed a 2000 molecular weight segment of the major polypeptide of the light-harvesting complex and blocked all subsequent cation-induced changes in structural organization of the isolated light-harvesting complex lamellar sheets.To gain further evidence for mechanisms of cation effects upon the organization of the light-harvesting complex in native membranes, the light-harvesting complex was incorporated into uncharged (phosphatidylcholine) lipid vesicles. The protein complexes spanned the lipid bilayer and were arranged in either a random pattern or in hexagonal crystalline lattices. Addition of either monovalent or divalent cations to ‘low-salt’ (20 mM monovalent cation) vesicles containing light-harvesting complex caused extensive regions of membrane appression to appear. It is concluded that this cation-induced membrane appression is mediated by surface-exposed segments of the light-harvesting complex since (a) phosphatidylcholine vesicles themselves did not undergo cation-induced aggregation, and (b) mild trypsin digestion of the surface-exposed regions of the light-harvesting complex blocked cation-induced lamellar appression. The particles in the appressed vesicle membranes tended to form long, linear arrays of particles, with occasional mixed quasi-crystalline arrays with an angular displacement near 72°. Surface-mediated interactions among light-harvesting complex subunits of different membranes are, therefore, related to changes in structural organization and interaction of the particles within the lipid phase of the membrane.Numerous previous studies have implicated the involvement of the light-harvesting complex in mediating grana stocking in intact chloroplast membranes. The data presented herein provide a simulation of the membrane appression phenomena using a single class of chloroplast-derived membrane subunits. The data demonstrate that specific surface-localized regions of the light-harvesting complex are involved in membrane-membrane interactions.  相似文献   

10.
Sperm of the prawn Sicyonia ingentis were studied cytochemically and ultrastructurally. Striking cytological differences were noted between these natantian sperm and previously studied reptantian sperm. In general, the S. ingentis sperm are composed of a spherical main body that is partially encompassed by a morphologically diverse cap region, from which extends a single appendage or spike. The main body houses an uncondensed, Feulgen-positive nuclear region that is partially surrounded by a cytoplasmic band. A single layer of small, 600 Å, vesicles lines the periphery of the cytoplasmic band. Large membranous vesicles extend from the inner surface of the cytoplasmic band into the nuclear region. The nucleus is separated from the cap or acrosomal complex by a dense plate and a highly organized crystalline lattice, which is composed of geometric squares that are approximately 350 Å in dimension. The cap region also contains convoluted membrane pouches; a central granular core; spherical bodies; an electron-dense, saucer-shaped plate; and a large anterior granule. The convoluted membrane pouches and anterior granule are periodic acid-Schiff (PAS) positive. The anterior granule also demonstrates RNAase-stable red fluorescence with acridine orange staining. A spiralled spike, approximately 6 μm long, extends from the anterior end of the cap. The cap and spike are bound by a double membrane, which results from the fusion of the plasma membrane and the convoluted pouch membrane. The sperm's acrosome is thought to be composed of the two PAS-positive cap components and the spike.  相似文献   

11.
MEMBRANE FUSION IN A MODEL SYSTEM : Mucocyst Secretion in Tetrahymena   总被引:50,自引:36,他引:14       下载免费PDF全文
The freeze-fracture, freeze-etch technique can be employed to reveal new details of the process of fusion of two unit membranes For this study, mucocyst discharge in Tetrahymena pyriformis provides a model system with certain general implications The undischarged mature mucocyst is a saclike, membrane-bound, secretory vesicle containing crystalline material The organelle tip finds its way toward a special site, a rosette of 150 Å diameter particles within the plasma membrane. To match this site, the mucocyst membrane forms an annulus of 110 Å diameter particles, above whose inner edge the rosette particles sit. Discharge of some mucocysts is triggered by fixation. As discharge proceeds, the organelle becomes spherical and its content changes from crystalline to amorphous. The cytoplasm between the two matching membrane sites is squeezed away and the membranes fuse Steps in membrane reorganization can be reconstructed from changes in rosette appearance in the fracture faces. First, a depression in the rosette—the fusion pocket—forms. The rosette particles spread at the lip as the pocket deepens and enlarges from 60 to 200 nm. The annulus particles then become visible at the lip, indicating completed fusion of the A fracture faces of mucocyst and plasma membranes The remaining B faces of the two membranes have opposite polarities When the content of the mucocyst is released, the edges of these faces join so that the unit membrane runs uninterruptedly around the lip and into the pocket.  相似文献   

12.
The photosynthetic green bacterium Chlorobium limicola 6230 has been examined by freeze-fracture electron microscopy to investigate the size, form, distribution and supramolecular architecture of its chlorosomes (chlorobium vesicles) as well as the chlorosome attachment sites on the cytoplasmic membrane. The oblong chlorosomes that underlie the cytoplasmic membrane show a considerable variation in size from about 40 × 70 nm to 100 × 260 nm and exhibit no particular orientation. The chlorosome core, which appears to be hydrophobic in nature, contains between 10 and 30 rod-shaped elements (approx. 10 nm in diameter) surrounded by an unetchable matrix. The rod elements are closely packed and extend the full length of the chlorosome. Separating the chlorosome core from the cytoplasm is a approx. 3 nm thick lipid-like envelope layer, which exhibits no substructure. A 5–6 nm thick, crystalline baseplate connects the chlorosome to the cytoplasmic membrane. The ridges of the baseplate lattice make an angle of between 40° and 60° with the longitudinal axis of the chlorosome and have a repeating distance of approx. 6 nm. In addition, each ridge exhibits a granular substructure with a periodicity of approx. 3.3 nm. The cytoplasmic membrane regions adjacent to the baseplates are enriched in large (greater than 9 nm) intramembrane particles, most of which belong to approx. 10 nm and approx. 12.5 nm particle size categories. Each chlorosome attachment site contains between 20 and 30 very large (greater than 12.0 nm diameter) intramembrane particles.The following interpretive model of a chlorosome is discussed in terms of biophysical, biochemical and structural information reported by others: it is proposed that the bacteriochlorophyll c (BChl c; chlorobium chlorophyll) is located in the rod elements of the core and that it is complexed with specific proteins. The cytoplasm-associated envelope layer is depicted as consisting of a monolayer of galactosyl diacylglycerol molecules. BChl a-protein complexes in a planar lattice configuration most likely make up the crystalline baseplate. The greater than 12-nm particles in the chlorosome attachment sites of the cytoplasmic membrane, finally, may correspond to complexes containing a reaction center and non-crystalline light-harvesting BChl a. The crystalline nature of the baseplate is consistent with the notion that it serves two functions: besides transferring excitation energy to the reaction centers it could also function as a distributor of this energy amongst the reaction centers.  相似文献   

13.
The ultrastructure of the thylakoid membranes of Chlamydomonas reinhardtii was investigated using cell cultures grown under light intensities of 200 and 4000 lx, respectively. A significant difference in the size distribution of the exoplasmic fracture face (EF) particles appears upon Mg2+ treatment of broken cell preparations from the two light growth conditions. Particles larger than 150 Å are seen at 4000 lx only. However neither the absorption spectra of chlorophyll at 77 °K, nor the chlorophyll a/chlorophyll b ratios differ in the two cell batches. In addition, the polypeptide composition of the thylakoid membranes and the Mg2+ effect (spillover) on the photochemical rate of Photosystem II are the same in both conditions. We conclude that the partition coefficient between the two fracture faces of light-harvesting complex-containing particles is variable. It depends on Mg2+ ion concentration in the incubating medium of the membranes and on the light growth conditions of the cell cultures. Our results suggest that 60- to 80-Å protoplasmic fracture face (PF) particles containing the light-harvesting complexes can aggregate either in larger PF particles (100–120 Å) or in EF particles larger than 120 Å which also contain the Photosystem II centers. That some light-harvesting complexes are located on the PF faces is confirmed by the analysis of the BF4 mutant of C. reinhardtii lacking in chlorophyll-protein complex II. The PF faces of the BF4 thylakoids display a reduced number of particles as compared to that in the wild type.  相似文献   

14.
Bilayers of human erythrocyte apoprotein-lipid complexes were made by dipping a mica plate through monolayers of the complex formed at the air-water interface. Stearic acid and erythrocyte lipid alone served as controls. Freeze-fracture images of the complex at high lipid surface pressures (30 dynes/cm) showed particles (average diameter, 109 Å ± 18 Å) similar to those of erythrocyte ghosts (average diameter, 102 Å ± 19 Å). Control surfaces were smooth. We conclude that part or all of the protein molecule penetrated into the lipid bilayer and that erythrocyte apoprotein-lipid complexes yield fracture faces similar to the native erythrocyte membrane.  相似文献   

15.
Membrane structure of caveolae and isolated caveolin-rich vesicles   总被引:1,自引:1,他引:0  
 Caveolae are specialized invaginated domains of the plasma membrane. Using freeze-fracture electron microscopy, the shape of caveolae and the distribution of intramembrane particles (integral membrane proteins) were analyzed. The caveolar membrane is highly curved and forms flask-like invaginations with a diameter of 80–120 nm with an open porus of 30–50 nm in diameter. The fracture faces of caveolar membranes are nearly free of intramembrane particles. Protein particles in a circular arrangement surrounding the caveolar opening were found on plasma membrane fracture faces. For isolation of caveolin-enriched membrane vesicles, the method of Triton X-100 solubilization, as well as a detergent-free isolation method, was used. The caveolin-rich vesicles had an average size of between 100 and 200 nm. No striated coat could be detected on the surface of isolated caveolin-rich vesicles. Areas of clustered intramembrane particles were found frequently on membrane fracture faces of caveolin-rich vesicles. The shape of these membrane protein clusters is often ring-like with a diameter of 30–50 nm. Membrane openings were found to be present in the caveolin-rich membrane vesicles, mostly localized in the areas of the clustered membrane proteins. Immunogold labeling of caveolin showed that the protein is a component within the membrane protein clusters and is not randomly distributed on the membrane of caveolin-rich vesicles. Accepted: 16 September 1998  相似文献   

16.
Three unusual highly ordered configurations of yolk protein in yolk precursor bodies are described. These differ from the crystalline structure of the main body of mature yolk platelets. One of these is an aggregation of paired membranes with a spacing of about 100 Å between the members of a pair. The paired membranes of such an aggregation may be straight, parallel, and very close together; they may appear as a tight whorl; or they may display an intermediate random arrangement with varying distances between pairs. Another configuration is a tubule with a diameter of about 450 Å, whose wall appears in cross section to consist of particles measuring 50 × 100 Å. A third configuration is a crystalline array of rows of angular-shaped particles with a spacing of about 160 Å. It is suggested that these may represent intermediates in the transition of vitellogenin to lipovitellin and phosvitin.  相似文献   

17.
A method was developed for the reassembly of membranous vesicle from the sodium dcoxycholate-dissociated outer membrane components of Escherichia coli. The removal of the detergent by dialysis and the presence of Mg2+ were essential for the reassembly.Membrane protein alone did not form any membranous structure. Closed membranous vesicles similar to the native outer membrane were reassembled only when protein was mixed with both lipopolysaccharide and phospholipid in deoxycholate solution and subsequently dialyzed. The membrane showed a distinct trilaminar structure with a center-to-center distance between two dark lines of 53 Å, which is a characteristic of the native outer membrane. This characteristic trilaminar structure was shown to be due to the presence of lipopolysaccharide. Phospholipd was required for the vesicularization of membrane. Lipopolysaccharide and/or phospholipid formed a membranous structure in the absence of protein, while the morphology of their negatively stained sample was quite different from that of the native outer membrane unless the outer membrane protein was added to the reassembly mixture.The protein from the cytoplasmic membrane was unable to reform membranous vesicle with lipopolysaccharide and phospholipid, indicating that the reassembly system discriminated outer membrane proteins from cytoplasmic membrane proteins.  相似文献   

18.
By using freeze-fracture electron microscopy, chromatophores and spheroplast-derived membrane vesicles from photosynthetically grown Rhodopseudomonas sphaeroides were compared with cytoplasmic membrane and intracellular vesicles of whole cells. In whole cells, the extracellular fracture faces of both cytoplasmic membrane and vesicles contained particles of 11-nm diameter at a density of about 5 particles per 10(4) nm2. The protoplasmic fracture faces contained particles of 11 to 12-nm diameter at a density of 14.6 particles per 10(4) nm2 on the cytoplasmic membrane and a density of 31.3 particles per 10(4) nm2 on the vesicle membranes. The spheroplast-derived membrane fraction consisted of large vesicles of irregular shape and varied size, often enclosing other vesicles. Sixty-six percent of the spheroplast-derived vesicles were oriented in the opposite way from the intracellular vesicle membranes of whole cells. Eighty percent of the total vesicle surface area that was exposed to the external medium (unenclosed vesicles) showed this opposite orientation. The chromatophore fractions contained spherical vesicles of uniform size approximately equal to the size of the vesicles in whole cells. The majority (79%) of the chromatophores purified on sucrose gradients were oriented in the same way as vesicles in whole cells, whereas after agarose filtration almost all (97%) were oriented in this way. Thus, on the basis of morphological criteria, most spheroplast-derived vesicles were oriented oppositely from most chromatophores.  相似文献   

19.
Zusammenfassung An isolierten Erythrozytenmembranen in Aqua dest. lassen sich bei der Gefrierätzung neben den vom Bruch herrührenden Spaltflächen der Membran auch die durch Freiätzen zur Darstellung gelangenden Oberflächen der Membran erkennen. Beide Membranoberflächen sind anders strukturiert als die Membranspaltflächen. Beim Aneinanderliegen von Membranen wechselt der Bruch zwischen beiden Membranen, so daß diese Stellen unregelmäßig gefeldert sind.Unter Einwirkung von konzentrierter Harnstofflösung treten strukturelle Veränderungen an den isolierten Membranen auf. Es kommt zur Vesikelbildung, wobei die Abschnürung nach innen eine Umkehr der Membranorientierung zur Folge hat. Die Asymmetrie der Membran bleibt dabei erhalten. Ein zweiter Effekt ist eine Lageveränderung (Aggregation) der Partikel im Inneren der Membran. Nach einer vorhergehenden Glutaraldehydfixierung unterbleibt sowohl die Vesikelbildung als auch die Partikelaggregation. Es wird angenommen, daß es sich bei den Effekten der Harnstoffeinwirkung um eine Beeinflussung der Strukturproteine der Membran handelt.
The cleaving of membranes during freeze-etching demonstrated on erythrocyte ghosts and alterations of the membrane structure by treatment with urea
Summary Isolated erythrocyte membranes in aqua dest. have been investigated by freeze-etching. There are different membrane faces: fracture faces produced by freeze fracturing and surfaces which are only revealed after etching. The feature of the membrane surfaces is quite different from that of the fracture faces. In contiguous membranes an irregular pattern is produced during fracturing, because the fracture plane alternate between the two membranes.After treatment with a strong urea solution the isolated membranes have an alterated appearance. Vesicles are produced by pinching off of invaginations. Thereby occurs a reversal of the membrane orientation. The membrane asymmetry is preserved. An additional effect is the aggregation of the particles in the interior of the membrane. A previous fixation with glutaraldehyde prevents the formation of vesicles and the aggregation of particles. It is supposed that the treatment with urea affects the structural proteins of the membrane.


Herrn Prof. Dr. F. Bolck möchten wir für die Förderung dieser Arbeit danken, für ihre Unterstützung bei den Experimenten danken wir Herrn Dipl.-Biol. W. Richter, Frau I.Herrmann, Frau H.Guttmacher, Frl. R.Kusch, Frau K.Martin und Herrn S.Wammetsberger.  相似文献   

20.
The peripheral membrane protein fraction released by washing Acholeplasma laidlawii membranes with low-ionic strength buffers contained about 50 % of the total membrane-bound ribonuclease and deoxyribonuclease activities. The ATPase, NADH oxidase and p-nitrophenylphosphatase activities remained bound to the membrane even when EDTA was added to the wash fluids, and thus appear to belong to the integral membrane protein group.Serving as a marker for peripheral membrane proteins, the membrane-bound ribonuclease activity was solubilized by bile salts much more effectively than the integral membrane-bound enzymes. On the other hand, the solubilized ribonuclease showed a much lower capacity to reaggregate with other solubilized membrane components to membranous structures. Yet, most of the ribonuclease molecules which were bound to the reaggregated membranes could not be released by low-ionic strength buffer. The reaggregated membranes differed from the native membranes in the absence of particles on their fracture faces obtained by freeze cleaving, and by their much higher labeling by the [125I]lactoperoxidase iodination system. These results suggest that most of the proteins are exposed on the reaggregated membrane surfaces, with very little, if any, protein embedded in its lipid bilayer core.Enzyme disposition in the A. laidlawii membrane was studied by comparing the activity of isolated membranes with that of membranes of intact cells after treatment with pronase or with an antiserum to membranes. The data indicate the asymmetrical disposition of these activities, the ATPase and NADH oxidase being localized on the inner membrane surface, while the nucleases are exposed on the external membrane surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号