首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work was aimed to investigate whether shoot Sr concentrations of plant species are related to respective Ca concentrations and to soil properties and to compare the Sr-Ca observed ratios (OR), defined as the quotient of the ratios Sr/Ca in shoots and in the soil solution or in the extractable form, among species and soils. Ten pasture plant species were grown in pots (1-L volume) filled with eight soils differing in the various physicochemical characteristics. Each pot received 50 mg Sr except those of the soil with the highest cation exchange capacity (C.E.C.) that received 100 mg Sr per pot. For each soil, shoot Sr concentrations of species were linearly and positively related with the respective Ca concentrations. C.E.C, organic matter content and Ca in the soil solution or in the extractable form were the only soil properties that were related, all negatively, with shoot Sr concentrations. The ratio of extractable Sr and Ca was positively and linearly related with the ratio of Sr and Ca. in the soil solution. OR was affected by both species and soils. Most of OR values of all species in all soils ranged between 0.8 and 1.5, except for the grass Agrostis capillaris which had the highest values for most of soils. This indicates that Agrostis capillaris compared to other species, takes up proportionally more Sr than Ca.  相似文献   

2.
Emmert FH 《Plant physiology》1972,50(3):332-335
The effects of time, rate of the water flow, and ambient pH on centripetal passage of radiophosphorus across intact bean roots to the xylem were studied. Isotope which completed passage and entered the xylem stream, as well as amounts delivered to the plant top, served to measure centripetal passage.  相似文献   

3.
Differential uptake and translocation of Ca and Sr in organisms have been reported, calling into question the use of Sr to track Ca cycling in the environment. We investigated the relationship between Ca/Sr ratios in soil extracts of various strengths (H2O, NH4Cl, and NH4EDTA) and seedlings of sugar maple (Acer saccharum Marsh.) grown from natural regeneration on 37 sites. Our objectives were to determine if Ca/Sr ratios in soil extracts are correlated with those in sugar maple tissues, and what soil extractant best duplicate plant tissue Ca/Sr ratios. Leaves had higher Ca/Sr ratios than stems and the extractants did not produce equal Ca/Sr ratios: H2O had the lowest Ca/Sr, and NH4EDTA the highest. The relationships between soil extract Ca/Sr ratios and leaf and stem Ca/Sr ratios were significant and linear, but the slopes differed among extractants. The lowest slope (0.45) was observed for the water extract/leaves and the highest (2.15) for the NH4EDTA extract/stem with discrimination factors ranging from 0.22 with NH4EDTA to 1.59 for water. Leaf extracts were more strongly correlated with soil Ca/Sr than stem extracts (R 2 of 0.57–0.7 vs. R 2 of 0.45–0.6, respectively). These findings support the use of Ca/Sr ratios in plants to track their source of soil Ca, but they highlight the need to calibrate the relationships for the plant tissue and soil extractant used.  相似文献   

4.
Otolith elemental (Sr:Ca, Ba:Ca, Mn:Ca, Mg:Ca and Rb:Ca) and isotopic (87Sr:86Sr) profiles from several annual cohorts of juvenile Atlantic salmon Salmo salar were related to the physico‐chemical characteristics (chemical signatures, flow rate, temperature and conductivity) of their natal rivers over an annual hydrological cycle. Only Sr:Ca, Ba:Ca and 87Sr:86Sr in otoliths were determined by their respective ratios in the ambient water. Sr:Ca ratios in stream waters fluctuated strongly on a seasonal basis, but these fluctuations, mainly driven by water flow regimes, were not recorded in the otoliths. Otolith Sr:Ca ratios remained constant during freshwater residency at a given site and were exclusively related to water Sr:Ca ratios during low flow periods. While interannual differences in otolith elemental composition among rivers were observed, this variability was minor compared to geographic variability and did not limit classification of juveniles to their natal stream. Success in discriminating fish from different sites was greatest using Sr isotopes as it remained relatively constant across years at a given location.  相似文献   

5.
Summary Divalent cations are microinjected intoChironomus salivary gland cells while the cell-to-cell passage of fluorescein (330 dalton) and electrical coupling are monitored. Injections of Ca and Mg that substantially depolarize the cells produce block or marked slowing fluorescein passage, accompanied by electrical uncoupling. Injections of Ca, Mg or Sr that cause little depolarization, and presumably smaller elevation of divalent cation concentration in the cytoplasm, produce block or marked slowing of fluorescein passage with little or no detectable electrical uncoupling. This partial uncoupling may reflect total closure of a fraction of the channels in junctional membrane or partial closure of all channels.  相似文献   

6.
Strontium (Sr) and calcium (Ca) concentrations were studied in different plant species grown in five soil treatments. For either shoots or roots, a positive linear relationship was found between Sr and Ca concentrations in different plant species grown in the same soil treatment. Strontium and calcium concentrations of different species were related to the soil selectivity coefficient for Sr and Ca, defined as the ratio of CH3COONH4-extractable Sr and Ca to the ratio of Sr and Ca in the soil solution. For the species used in all soils, transfer factors (TF) for Sr, defined as the ratios of the Sr amount per g of dry plant material and the Sr amount per g of dry soil, were negatively correlated with extractable Ca of the soil. Transfer factors for Sr varied greatly among species or between roots and shoots. This variation of transfer factor was reduced when transfer factor values were divided by the shoot or root Ca concentration of each species. The proposed index TF for Sr per Ca concentration could be used to compare various soils according to their ability to supply plants with Sr when different plant species are grown in these soils.  相似文献   

7.
Summary Deposition of non-metabolic strontium was studied in tops of bean plants using Sr-89 as a tracer. Test solutions contained 2, 4 dinitrophenol as a metabolic inhibitor. Roots were severed from the plants to allow direct access of solutions into the plant top.The stem contained an efficient trapping mechanism for strontium, and removed the bulk of ion from the ascending stream soon after it entered the stem. Strontium buildup in the hypocotyl base adhered to the Freundlich gas equation. The process was to some degree reversible. These findings suggest that strontium binding involved electrostatic adsorption to charged sites along the route of upward movement. The significance of electrostatic retention on acropetal movement of strontium was discussed.Work performed under U.S. Atomic Energy Commission Contract AT(30-1)2117. Contribution number19 of the Storrs Agricultural Experiment Station, Storrs, Connecticut, U.S.A.  相似文献   

8.
Influence of the spatial layout of vegetation on the stability of slopes   总被引:4,自引:0,他引:4  

Background and aims

Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient stress on cation uptake in an experimental plant-mineral system.

Methods

Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to 9 months. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations.

Results

Cation nutrient stress had little impact on carbon allocation after 9 months of plant growth and K was the limiting nutrient for biomass production. Measurement of Ca/Sr and K/Rb ratios allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment.

Conclusions

Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca since Ca was not limiting plant growth. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.  相似文献   

9.
The Ca2+-sensitive ATPase activity of rabbit skeletal myofibrils disappeared completely after treatment with a solution containing CDTA, a strong divalent cation chelator, at a low ionic strength. A gel electrophoretic study revealed that all troponin C and about half of myosin light chain 2 were removed from the myofibrils by the CDTA treatment. The CDTA-treated myofibrils, when reconstituted with skeletal troponin C, showed almost exactly the same Ca2+- or Sr2+-sensitive ATPase activity as that of intact myofibrils. The CDTA-treated myofibrils reconstituted with porcine cardiac troponin C showed the same Ca2+- or Sr2+-sensitivity of the ATPase as that of porcine cardiac myofibrils; Sr2+-sensitivity relative to Ca2+-sensitivity was about ten times higher than, and the maximal slope of the activation curve was about half that of skeletal myofibrils. These findings indicate that these characteristic features of divalent cation regulation in the contraction of skeletal and cardiac muscles are determined solely by the species of troponin C. Bovine brain calmodulin hardly activated the ATPase activity of the CDTA-treated myofibrils even in the presence of Ca2+. Excess calmodulin, however, was found to give Ca2+- or Sr2+-sensitivity to the ATPase activity of the CDTA-treated myofibrils. Frog skeletal parvalbumins 1 and 2, even in excess, did not affect the ATPase activity of the CDTA-treated myofibrils.  相似文献   

10.
C2 domains regulate numerous eukaryotic signaling proteins by docking to target membranes upon binding Ca(2+). Effective activation of the C2 domain by intracellular Ca(2+) signals requires high Ca(2+) selectivity to exclude the prevalent physiological metal ions K(+), Na(+), and Mg(2+). The cooperative binding of two Ca(2+) ions to the C2 domain of cytosolic phospholipase A(2) (cPLA(2)-alpha) induces docking to phosphatidylcholine (PC) membranes. The ionic charge and size selectivities of this C2 domain were probed with representative mono-, di-, and trivalent spherical metal cations. Physiological concentrations of monovalent cations and Mg(2+) failed to bind to the domain and to induce docking to PC membranes. Superphysiological concentrations of Mg(2+) did bind but still failed to induce membrane docking. In contrast, Ca(2+), Sr(2+), and Ba(2+) bound to the domain in the low micromolar range, induced electrophoretic mobility shifts in native polyacrylamide gels, stabilized the domain against thermal denaturation, and induced docking to PC membranes. In the absence of membranes, the degree of apparent positive cooperativity in binding of Ca(2+), Sr(2+), and Ba(2+) decreased with increasing cation size, suggesting that the C2 domain binds two Ca(2+) or Sr(2+) ions, but only one Ba(2+) ion. These stoichiometries were correlated with the abilities of the ions to drive membrane docking, such that micromolar concentrations of Ca(2+) and Sr(2+) triggered docking while even millimolar concentrations of Ba(2+) yielded poor docking efficiency. The simplest explanation is that two bound divalent cations are required for stable membrane association. The physiological Ca(2+) ion triggered membrane docking at 20-fold lower concentrations than Sr(2+), due to both the higher Ca(2+) affinity of the free domain and the higher affinity of the Ca(2+)-loaded domain for membranes. Kinetic studies indicated that Ca(2+) ions bound to the free domain are retained at least 5-fold longer than Sr(2+) ions. Moreover, the Ca(2+)-loaded domain remained bound to membranes 2-fold longer than the Sr(2+)-loaded domain. For both Ca(2+) and Sr(2+), the two bound metal ions dissociate from the protein-membrane complex in two kinetically resolvable steps. Finally, representative trivalent lanthanide ions bound to the domain with high affinity and positive cooperativity, and induced docking to PC membranes. Overall, the results demonstrate that both cation charge and size constraints contribute to the high Ca(2+) selectivity of the C2 domain and suggest that formation of a cPLA(2)-alpha C2 domain-membrane complex requires two bound multivalent metal ions. These features are proposed to stem from the unique structural features of the metal ion-binding site in the C2 domain.  相似文献   

11.
Powdered and pelletized wollastonite (CaSiO3) was applied to an 11.8 ha forested watershed at the Hubbard Brook Experimental Forest (HBEF) in northern New Hampshire, U.S.A. during October of 1999. The dissolution of wollastonite was studied using watershed solute mass balances, and a 87Sr/86Sr isotopic tracer. The wollastonite (87Sr/86Sr = 0.70554) that was deposited directly into the stream channel began to dissolve immediately, resulting in marked increases in stream water Ca concentrations and decreases in the 87Sr/86Sr ratios from pre-application values of 0.872 mg/L and 0.72032 to values of 2.6 mg/L and 0.71818 respectively. After one calendar year, 401 kg of the initial 631 kg of wollastonite applied to the stream channel was exported as stream dissolved load, and 230 kg remained within the stream channel as residual CaSiO3 and/or adsorbed on streambed exchange sites. Using previously established values for streambed Ca exchange capacity at the HBEF, the dissolution rate for wollastonite was found to be consistent with dissolution rates measured in laboratory experiments. Initially, Ca was released from the mineral lattice faster than Si, resulting in the development of a Ca-depleted leached layer on mineral grains. The degree of preferential Ca release decreased with time and reached stoichiometric proportions after 6 months. Using Sr as a proxy for Ca, the Ca from wollastonite dissolution can be accurately tracked as it is transported through the aquatic and terrestrial ecosystems of this watershed.  相似文献   

12.
Membrane currents associated with voltage clamp of the giant muscle fibers of a barnacle, Balanus nubilus, were analyzed in terms of currents of the Ca and K channels. Although the activation of the K channel occurs more slowly than that of the Ca channel, both currents show a significant temporal overlap. The currents carried by Ca++, Sr++, or Ba++ through the Ca channel were compared under the conditions at which this overlap was the least. When only one divalent cation is present in the solution, Ba++ carries more current than Ca++ or Sr++ and the sequence of the current is Ba > Sr ≈ Ca. When the external solution contains a relatively high concentration of Co++, which is a blocking agent for the Ca channel, inversion of the sequence occurs, to Ca > Sr > Ba. This is due to the fact that the blocking effect differs depending on which ion carries current through the Ca channel. The Ba current is most sensitive and the Ca current is least affected. Ba suppresses the current of the K channel, independently of its current-carrying function through the Ca channel.  相似文献   

13.
Gut passage times in Gammarus pulex (Crustacea, Amphipoda) were calculated by counting and measuring voided faecal pellets. Following feeding on elm leaves conditioned in a stream, or summer fine detritus from the same source, calculated gut passage times were usually short, about 2 h or less at 15 °C. Using harder oak and beech leaves, not previously conditioned in the stream, apparent gut passage times were much longer, 8–48 h, but since intermittent feeding occurred these figures are not comparable to the others.In connection with summer feeding of the animal in the stream, the microbiological status of the fine detritus there was studied. It contained fungal hyphae, which were mostly empty, viable fungal spores of terrestrial derivation, and bacteria, all largely carried on fragments of vascular plant tissues. In experiments, such fungal spores (of Aureobasidium pullulans and of Mucor sp.), incorporated into fine detritus, were not digested by the animal. The bacterium Bacillus cereus was present in the fine detritus and when the latter was consumed it survived passage through the gut of the animal. Using B. cereus as a proportion marker it was concluded that other unicellular bacteria in the fine detritus were not digested either. In other experiments, not immediately related to the summer season, nutrient extraction by the animal from hyphae of the fungus Nectria lugdunensis was examined; it probably occurs through sub-microscopic pores connecting the cells. This mode of extraction may apply when the animal consumes vascular plant tissues.  相似文献   

14.
Watershed 1 (W1) at the Hubbard Brook Experimental Forest in New Hampshire, with chronically low pH and acid neutralizing capacity (ANC) in surface water, was experimentally treated with calcium silicate (CaSiO3; wollastonite) in October 1999 to assess the role of calcium (Ca) supply in the structure and function of base-poor forest ecosystems. Wollastonite addition significantly increased the concentrations and fluxes of Ca, dissolved silica (Si), and ANC and decreased the concentrations and fluxes of inorganic monomeric Al (Ali) and hydrogen ion (H+) in both soil solution and stream water in all sub-watersheds of W1. Mass balances indicate that 54% of the added Ca remained undissolved or was retained by vegetation during the first 6 years after treatment. Of the remaining added Ca, 44% was retained on O horizon cation exchange sites. The Ca:Si ratio in the dissolution products was greater than 2.0, more than twice the molar ratio in the applied wollastonite. This suggests that Ca was preferentially leached from the applied wollastonite and/or Si was immobilized by secondary mineral formation. Approximately 2% of the added Ca and 7% of the added Si were exported from W1 in streamwater in the first 6 years after treatment. Watershed-scale Ca amendment with wollastonite appears to be an effective approach to mitigating effects of acidic deposition. Not only does it appear to alleviate acidification stress to forest vegetation, but it also provides for the long-term supply of ANC to acid-impacted rivers and lakes downstream.  相似文献   

15.
Two soybean varieties that differentially absorb and translocate iron were used to compare root-sap citrate with stem-exudate citrate as they are involved in the uptake of Fe and Ca. The status of Fe and PO4 in the prenutrient solution determined the citrate concentration in the root sap and the citrate translocated in the stem exudate. There was a parallel between the iron and the citrate translocated in the stem exudate, but this relationship did not appear to exist for the citrate and Fe concentrations in the root sap. Iron stress (deficiency) promoted the accumulation of citrate in the root-sap, but there was not a concomitant increase of citrate in the stem exudate. In iron-deficient soybeans, phosphate stress also promoted the accumulation of citrate in the root sap, and here, stem-exudate citrate and root-sap citrate more nearly followed the same trends. The citrate pool in the root appears to result from a deficiency of iron and may not be directly involved in the absorption and translocation of iron from the growth medium. Increasing amounts of phosphate in the prenutrient decreased both the citrate and Fe in the root sap and stem exudate. The factors controlling the uptake of Fe are rather specific and are not related to the uptake of radioactive Ca 45 in soybeans regardless of soybean variety, degree of iron stress, or citrate concentration in the root.  相似文献   

16.
Absorption and translocation of Cd in bush beans (Phaseolus vulgaris)   总被引:4,自引:0,他引:4  
A series of experiments was conducted to examine some factors affecting the absorption and translocation of Cd in young bean plants ( Phaseolus vulgaris L. cv. Bulgarian). Absorption of Cd by roots was reduced in the presence of other cations of increasing valency or ionic radii. Reduced absorption was also found in the presence of EDTA. Concentration of Cd in exudates from excised stems increased with increased passage of Cd solutions and approached the concentration in the external medium (4.5 μ M Cd). This was apparently associated with saturation of adsorption sites in the stems. The stem behaved as a cation exchange column resulting in a chromatographic distribution of Cd towards the top of the plant. These experiments indicate that Cd existed in the xylem fluid as a free or weakly complexed cation. Additional experiments showed that the total amount of Cd absorbed by bean plants was elevated by inducing higher transpiration rates. The effect of water flux on Cd transport indicated apoplastic flow to the stele.  相似文献   

17.
Calcium/strontium and 87Sr/86Sr ratios in foliage can be used to determine the relative importance of different soil sources of Ca to vegetation, if the discrimination of Ca/Sr by the plant between nutrient sources and foliage is known. We compared these tracers in the foliage of sugar maple (Acer saccharum) to the exchange fraction and acid leaches of soil horizons at six study sites in the White Mountains of New Hampshire, USA. In a previous study, sugar maple was shown to discriminate for Ca compared to Sr in foliage formation by a factor of 1.14 ± 0.12. After accounting for the predicted 14% shift in Ca/Sr, foliar Ca/Sr and 87Sr/86Sr ratios closely match the values in the Oie horizon at each study site across a 3.6-fold variation in foliar Ca/Sr ratios. Newly weathered cations, for which the Ca/Sr and 87Sr/86Sr ratios are estimated from acid leaches of soils, can be ruled out as a major Ca source to current foliage. Within sites, the 87Sr/86Sr ratio of the soil exchange pool in the Oa horizon and in the 0–10 cm and 10–20 cm increments of the mineral soil are similar to the Oie horizon and sugar maple foliar values, suggesting a common source of Sr in all of the actively cycling pools, but providing no help in distinguishing among them as sources to foliage. The Ca/Sr ratio in the soil exchange pool, however, decreases significantly with depth, and based on this variation, the exchange pool below the forest floor can be excluded as a major Ca source to the current sugar maple foliage. This study confirms that internal recycling of Ca between litter, organic soil horizons and vegetation dominate annual uptake of Ca in northern hardwood ecosystems. Refinement of our understanding of Ca and Sr uptake and allocation in trees allows improvement in the use of Ca/Sr and 87Sr/86Sr ratios to trace Ca sources to plants.  相似文献   

18.
To analyze the functional consequences of coassembly of transient receptor potential 1 (Trp1) and Trp3 channel proteins, we characterized membrane conductances and divalent cation entry derived by separate overexpression and by coexpression of both Trp isoforms. Trp1 expression generated a 1-oleoyl-2-acetyl-sn-glycerol (OAG)-activated conductance that was detectable only in Ca(2+)-free extracellular solution. Trp3 expression gave rise to an OAG-activated conductance that was suppressed but clearly detectable at physiological Ca(2+) concentrations. Coexpression of both species resulted in a constitutively active, OAG-sensitive conductance, which exhibited distinctive cation selectivity and high sensitivity to inhibition by intracellular Ca(2+). Trp1-expressing cells displayed only modest carbachol-induced Ca(2+) entry and lacked OAG-induced Sr(2+) entry, whereas Trp3-expressing cells responded to both agents with a substantial divalent cation entry. Coexpression of Trp1 plus Trp3 suppressed carbachol-induced Ca(2+) entry compared with Trp3 expression and abolished OAG-induced Sr(2+) entry signals. We concluded that coassembly of Trp1 and Trp3 resulted in the formation of oligomeric Trp channels that are subject to regulation by phospholipase C and Ca(2+). The distinguished Ca(2+) sensitivity of these Trp1/Trp3 hetero-oligomers appeared to limit Trp-mediated Ca(2+) signals and may be of importance for negative feedback control of Trp function in mammalian cells.  相似文献   

19.
Fast Ca2+ uptake into K+-depolarized cultured bovine adrenal chromaffin cells has been isotopically measured in a time scale of 1-10 s. Depolarized cells retained as much as 80-fold 45Ca2+ taken up by resting cells; Ca2+ was not taken up by fibroblasts or endothelial-like cells. Because Ca2+ entry was inhibited by inorganic (La3+, Co2+, Mg2+) and organic (nifedipine) Ca2+ channel antagonists and enhanced by the Ca2+ channel activator Bay-K-8644, it seems clear that Ca2+ gains access to the chromaffin cell cytosol mainly through specific voltage-dependent Ca2+ channels. Ca2+ uptake evoked by 59 mM K+ was linear during the first 5 s of stimulation and continued to rise at a much slower rate up to 60 s. The rate of Ca2+ entry became steeper as the external [Ca2+] increased; initial rates of Ca2+ uptake varied from 0.06 fmol/cells . s at 0.125 mM Ca2+ to 2.85 fmol/cell . s at 7.5 mM Ca2+. The early 90Sr2+ uptake was linear but faster than Ca2+ uptake and later on was also saturated; 133Ba2+ was taken up still at a much faster rate and was linear for the entire depolarization period (2-60 s). Increased [K+] gradually depolarized chromaffin cells; Ca2+ and Sr2+ uptakes were not apparent below 30 mM K+ but were linear for 30 to 60 mM K+. In contrast, substantial Ba2+ uptake was seen even in K+-free solutions; and in 5.9 mM K+, Ba2+ uptake was as high as Ca2+ uptake obtained in 60 mM K+. Five to ten-second pulses of 45Ca2+, 90Sr2+, or 133Ba2+ given at different times after pre-depolarization of chromaffin cells served to analyze the kinetics of inactivation of the rates of entry of each divalent cation. Inactivation of Ca2+ uptake was faster than Sr2+, and Ba2+ uptake inactivated very little. Neither voltage changes nor Ca2+ ions passing through the channels seems to cause their inactivation; however, experiments aimed to manipulate the levels of internal Ca2+ using the cell-permeable chelator Quin-2 or the ionophore A23187 strongly suggest that intracellular Ca2+ levels determine the rates of inactivation of these channels.  相似文献   

20.
Influx of calcium, strontium, and barium in presynaptic nerve endings   总被引:12,自引:2,他引:10       下载免费PDF全文
Depolarization-induced (potassium-stimulated) influx of 45Ca, 85Sr, and 133Ba was measured in synaptosomes prepared from rat brain. There are two phases of divalent cation entry, "fast" and "slow;" each phase is mediated by channels with distinctive characteristics. The fast channels inactivate (within 1 s) and are blocked by low concentrations (less than 1 micro M) of La. The slow channels do not inactivate (within 10 s), and are blocked by high concentrations (greater than 50 micro M) of La. Divalent cation influx through both channels saturates with increasing concentrations of permeant divalent cation; in addition, each permeant divalent cation species competitively blocks the influx of other permeant species. These results are consistent with the presence of "binding sites" for divalent cations in the fast and slow channels. The Ca:Sr:Ba permeability ratio, determined by measuring the influx of all three species in triple-label experiments, was 6:3:2 for the fast channel and 6:3:1 for the slow channel. A simple model for ion selectivity, based on the presence of a binding site in the channel, could account well for slow and, to some extent, for fast, channel selectivity data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号