首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast Zip1 protein is a component of the central region of the synaptonemal complex (SC). Zip1 is predicted to form an alpha-helical coiled coil, flanked by globular domains at the NH(2) and COOH termini. Immunogold labeling with domain-specific anti-Zip1 antibodies demonstrates that the NH(2)-terminal domain of Zip1 is located in the middle of the central region of the SC, whereas the COOH-terminal domain is embedded in the lateral elements of the complex. Previous studies have shown that overproduction of Zip1 results in the assembly of two types of aggregates, polycomplexes and networks, that are unassociated with chromatin. Our epitope mapping data indicate that the organization of Zip1 within polycomplexes is similar to that of the SC, whereas the organization of Zip1 within networks is fundamentally different. Zip1 protein purified from bacteria assembles into dimers in vitro, and electron microscopic analysis demonstrates that the two monomers within a dimer are arranged in parallel and in register. Together, these results suggest that two Zip1 dimers, lying head-to-head, span the width of the SC.  相似文献   

2.
The synaptonemal complex (SC) is a widely conserved structure that mediates the intimate alignment of homologous chromosomes during meiotic prophase and is required for proper homolog segregation at meiosis I. However, fundamental details of SC architecture and assembly remain poorly understood. The coiled-coil protein, Zip1, is the only component whose arrangement within the mature SC of budding yeast has been extensively characterized. It has been proposed that the Small Ubiquitin-like MOdifier, SUMO, plays a role in SC assembly by linking chromosome axes with Zip1''s C termini. The role of SUMO in SC structure has not been directly tested, however, because cells lacking SUMO are inviable. Here, we provide direct evidence for SUMO''s function in SC assembly. A meiotic smt3 reduction-of-function strain displays reduced sporulation, abnormal levels of crossover recombination, and diminished SC assembly. SC structures are nearly absent when induced at later meiotic time points in the smt3 reduction-of-function background. Using Structured Illumination Microscopy we furthermore determine the position of SUMO within budding yeast SC structure. In contrast to previous models that positioned SUMO near Zip1''s C termini, we demonstrate that SUMO lies at the midline of SC central region proximal to Zip1''s N termini, within a subdomain called the “central element”. The recently identified SUMOylated SC component, Ecm11, also localizes to the SC central element. Finally, we show that SUMO, Ecm11, and even unSUMOylatable Ecm11 exhibit Zip1-like ongoing incorporation into previously established SCs during meiotic prophase and that the relative abundance of SUMO and Ecm11 correlates with Zip1''s abundance within SCs of varying Zip1 content. We discuss a model in which central element proteins are core building blocks that stabilize the architecture of SC near Zip1''s N termini, and where SUMOylation may occur subsequent to the incorporation of components like Ecm11 into an SC precursor structure.  相似文献   

3.
The synaptonemal complex (SC) links two meiotic prophase chromosomal events: homolog pairing and crossover recombination. SC formation involves the multimeric assembly of coiled-coil proteins (Zip1 in budding yeast) at the interface of aligned homologous chromosomes. However, SC assembly is indifferent to homology and thus is normally regulated such that it occurs only subsequent to homology recognition. Assembled SC structurally interfaces with and influences the level and distribution of interhomolog crossover recombination events. Despite its involvement in dynamic chromosome behaviors such as homolog pairing and recombination, the extent to which SC, once installed, acts as an irreversible tether or maintains the capacity to remodel is not clear. Experiments presented here reveal insight into the dynamics of the full-length SC in budding yeast meiotic cells. We demonstrate that Zip1 continually incorporates into previously assembled synaptonemal complex during meiotic prophase. Moreover, post-synapsis Zip1 incorporation is sufficient to rescue the sporulation defect triggered by SCs built with a mutant version of Zip1, Zip1-4LA. Post-synapsis Zip1 incorporation occurs initially with a non-uniform spatial distribution, predominantly associated with Zip3, a component of the synapsis initiation complex that is presumed to mark a subset of crossover sites. A non-uniform dynamic architecture of the SC is observed independently of (i) synapsis initiation components, (ii) the Pch2 and Pph3 proteins that have been linked to Zip1 regulation, and (iii) the presence of a homolog. Finally, the rate of SC assembly and SC central region size increase in proportion to Zip1 copy number; this and other observations suggest that Zip1 does not exit the SC structure to the same extent that it enters. Our observations suggest that, after full-length assembly, SC central region exhibits little global turnover but maintains differential assembly dynamics at sites whose distribution is patterned by a recombination landscape.  相似文献   

4.
We have characterized Zip4 (a.k.a. Spo22), a meiosis-specific protein essential for chromosome synapsis in budding yeast. In the absence of Zip4, the synaptonemal complex protein Zip1 fails to polymerize along chromosomes. Zip2 and Zip3 are previously characterized components of the synapsis initiation complex. Zip4 forms a functional unit with Zip2 that is distinct from Zip3. Zip2 and Zip4 are mutually dependent for their chromosomal localization; in polycomplexes, the pattern of Zip2/Zip4 localization is distinct from that of Zip3. Crossing-over is decreased in the zip4 mutant (as in zip1, zip2, and zip3); the remaining crossovers are largely dependent on a parallel pathway utilizing Mms4. zip4 displays a novel phenotype: negative crossover interference, meaning that crossovers tend to cluster. This clustering depends on Zip1. Our results suggest an interaction between crossover pathways such that a protein (Zip1) acting in one pathway influences the distribution of crossovers promoted by a parallel (Mms4-dependent) pathway.  相似文献   

5.
The synaptonemal complex (SC) is a tripartite protein structure consisting of two parallel axial elements (AEs) and a central region. During meiosis, the SC connects paired homologous chromosomes, promoting interhomologue (IH) recombination. Here, we report that, like the CE component Zip1, Saccharomyces cerevisiae axial-element structural protein, Red1, can bind small ubiquitin-like modifier (SUMO) polymeric chains. The Red1–SUMO chain interaction is dispensable for the initiation of meiotic DNA recombination, but it is essential for Tel1- and Mec1-dependent Hop1 phosphorylation, which ensures IH recombination by preventing the inter-sister chromatid DNA repair pathway. Our results also indicate that Red1 and Zip1 may directly sandwich the SUMO chains to mediate SC assembly. We suggest that Red1 and SUMO chains function together to couple homologous recombination and Mec1–Tel1 kinase activation with chromosome synapsis during yeast meiosis.  相似文献   

6.
Schmekel K 《Chromosoma》2000,109(1-2):110-116
Several gene products involved in meiotic chromosome pairing and recombination in yeast have been identified in recent years. Two nuclear structures play key roles in the meiotic processes: the synaptonemal complex (SC), which is essential for the pairing of the chromosomes, and the recombination nodules (RNs), which mark the sites of recombination. Good morphological representation of the yeast SC and RNs is needed in order to show structural changes caused by specific mutations in protein-coding genes and for fine localization of proteins using immunoelectron microscopy (immuno-EM). This paper presents a newly developed preparation method for EM and immuno-EM that allows analysis of fine structural details and localization of proteins in the SC and RNs in yeast. Structural components of the SC are clearly seen and appear strikingly similar to those in the SC in other organisms. Antibodies against the SC protein Zip1, a transverse filament protein, label the central region of the SC strongly and specifically as expected. The improved method will be an important tool in high-resolution determination of the location of proteins in the meiotic yeast nucleus. Received: 9 March 1999; in revised form: 1 September 1999 / Accepted: 22 September 1999  相似文献   

7.
During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation.  相似文献   

8.
In most organisms the synaptonemal complex (SC) connects paired homologs along their entire length during much of meiotic prophase. To better understand the structure of the SC, we aim to identify its components and to determine how each of these components contributes to SC function. Here, we report the identification of a novel SC component in Drosophila melanogaster female oocytes, which we have named Corolla. Using structured illumination microscopy, we demonstrate that Corolla is a component of the central region of the SC. Consistent with its localization, we show by yeast two-hybrid analysis that Corolla strongly interacts with Cona, a central element protein, demonstrating the first direct interaction between two inner-synaptonemal complex proteins in Drosophila. These observations help provide a more complete model of SC structure and function in Drosophila females.  相似文献   

9.
A Role for SUMO in meiotic chromosome synapsis   总被引:1,自引:0,他引:1  
During meiotic prophase, homologous chromosomes engage in a complex series of interactions that ensure their proper segregation at meiosis I. A central player in these interactions is the synaptonemal complex (SC), a proteinaceous structure elaborated along the lengths of paired homologs. In mutants that fail to make SC, crossing over is decreased, and chromosomes frequently fail to recombine; consequently, many meiotic products are inviable because of aneuploidy. Here, we have investigated the role of the small ubiquitin-like protein modifier (SUMO) in SC formation during meiosis in budding yeast. We show that SUMO localizes specifically to synapsed regions of meiotic chromosomes and that this localization depends on Zip1, a major building block of the SC. A non-null allele of the UBC9 gene, which encodes the SUMO-conjugating enzyme, impairs Zip1 polymerization along chromosomes. The Ubc9 protein localizes to meiotic chromosomes, coincident with SUMO staining. In the zip1 mutant, SUMO localizes to discrete foci on chromosomes. These foci coincide with axial associations, where proteins involved in synapsis initiation are located. Our data suggest a model in which SUMO modification of chromosomal proteins promotes polymerization of Zip1 along chromosomes. The ubc9 mutant phenotype provides the first evidence for a cause-and-effect relationship between sumoylation and synapsis.  相似文献   

10.
Recombination and synapsis of homologous chromosomes are hallmarks of meiosis in many organisms. Meiotic recombination is initiated by Spo11-induced DNA double-strand breaks (DSBs), whereas chromosome synapsis is mediated by a tripartite structure named the synaptonemal complex (SC). Previously, we proposed that budding yeast SC is assembled via noncovalent interactions between the axial SC protein Red1, SUMO chains or conjugates, and the central SC protein Zip1. Incomplete synapsis and unrepaired DNA are monitored by Mec1/Tel1-dependent checkpoint responses that prevent exit from the pachytene stage. Here, our results distinguished three distinct modes of Mec1/Tec1 activation during early meiosis that led to phosphorylation of three targets, histone H2A at S129 (γH2A), Hop1, and Zip1, which are involved, respectively, in DNA replication, the interhomolog recombination and chromosome synapsis checkpoint, and destabilization of homology-independent centromere pairing. γH2A phosphorylation is Red1 independent and occurs prior to Spo11-induced DSBs. DSB- and Red1-dependent Hop1 phosphorylation is activated via interaction of the Red1-SUMO chain/conjugate ensemble with the Ddc1-Rad17-Mec3 (9-1-1) checkpoint complex and the Mre11-Rad50-Xrs2 complex. During SC assembly, Zip1 outcompetes 9-1-1 from the Red1-SUMO chain ensemble to attenuate Hop1 phosphorylation. In contrast, chromosome synapsis cannot attenuate DSB-dependent and Red1-independent Zip1 phosphorylation. These results reveal how DNA replication, DSB repair, and chromosome synapsis are differentially monitored by the meiotic checkpoint network.  相似文献   

11.
Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in the formation of MutSγ-MutLγ crossovers, but whether the assembled SC structure per se is required for MutSγ-MutLγ-dependent crossover recombination events is unknown. Here we describe an interspecies complementation experiment that reveals that the mature SC is dispensable for the formation of Mlh3-dependent crossovers in budding yeast. Zip1 forms a major structural component of the budding yeast SC, and is also required for MutSγ and MutLγ-dependent crossover formation. Kluyveromyces lactis ZIP1 expressed in place of Saccharomyces cerevisiae ZIP1 in S. cerevisiae cells fails to support SC assembly (synapsis) but promotes wild-type crossover levels in those nuclei that progress to form spores. While stable, full-length SC does not assemble in S. cerevisiae cells expressing K. lactis ZIP1, aggregates of K. lactis Zip1 displayed by S. cerevisiae meiotic nuclei are decorated with SC-associated proteins, and K. lactis Zip1 promotes the SUMOylation of the SC central element protein Ecm11, suggesting that K. lactis Zip1 functionally interfaces with components of the S. cerevisiae synapsis machinery. Moreover, K. lactis Zip1-mediated crossovers rely on S. cerevisiae synapsis initiation proteins Zip3, Zip4, Spo16, as well as the Mlh3 protein, as do the crossovers mediated by S. cerevisiae Zip1. Surprisingly, however, K. lactis Zip1-mediated crossovers are largely Msh4/Msh5 (MutSγ)-independent. This separation-of-function version of Zip1 thus reveals that neither assembled SC nor MutSγ is required for Mlh3-dependent crossover formation per se in budding yeast. Our data suggest that features of S. cerevisiae Zip1 or of the assembled SC in S. cerevisiae normally constrain MutLγ to preferentially promote resolution of MutSγ-associated recombination intermediates.  相似文献   

12.
Synaptonemal complexes (SCs) are evolutionary conserved, meiosis-specific structures that play a central role in synapsis of homologous chromosomes, chiasmata distribution, and chromosome segregation. However, it is still for the most part unclear how SCs do assemble during meiotic prophase. Major components of mammalian SCs are the meiosis-specific proteins SCP1, 2, and 3. To investigate the role of SCP1 in SC assembly, we expressed SCP1 in a heterologous system, i.e., in COS-7 cells that normally do not express SC proteins. Notably, under these experimental conditions SCP1 is able to form structures that closely resemble SCs (i.e., polycomplexes). Moreover, we show that mutations that modify the length of the central alpha-helical domain of SCP1 influence the width of polycomplexes. Finally, we demonstrate that deletions of the nonhelical N- or C-termini both affect polycomplex assembly, although in a different manner. We conclude that SCP1 is a primary determinant of SC assembly that plays a key role in synapsis of homologous chromosomes.  相似文献   

13.
The synaptonemal complex (SC) is a proteinaceous structure that mediates homolog engagement and genetic recombination during meiosis. In budding yeast, Zip-Mer-Msh (ZMM) proteins promote crossover (CO) formation and initiate SC formation. During SC elongation, the SUMOylated SC component Ecm11 and the Ecm11-interacting protein Gmc2 facilitate the polymerization of Zip1, an SC central region component. Through physical recombination, cytological, and genetic analyses, we found that ecm11 and gmc2 mutants exhibit chromosome-specific defects in meiotic recombination. CO frequencies on a short chromosome (chromosome III) were reduced, whereas CO and non-crossover frequencies on a long chromosome (chromosome VII) were elevated. Further, in ecm11 and gmc2 mutants, more double-strand breaks (DSBs) were formed on a long chromosome during late prophase I, implying that the Ecm11–Gmc2 (EG) complex is involved in the homeostatic regulation of DSB formation. The EG complex may participate in joint molecule (JM) processing and/or double-Holliday junction resolution for ZMM-dependent CO-designated recombination. Absence of the EG complex ameliorated the JM-processing defect in zmm mutants, suggesting a role for the EG complex in suppressing ZMM-independent recombination. Our results suggest that the SC central region functions as a compartment for sequestering recombination-associated proteins to regulate meiosis specificity during recombination.  相似文献   

14.
The budding yeast MSH4 gene encodes a MutS homolog produced specifically in meiotic cells. Msh4 is not required for meiotic mismatch repair or gene conversion, but it is required for wild-type levels of crossing over. Here, we show that a msh4 null mutation substantially decreases crossover interference. With respect to the defect in interference and the level of crossing over, msh4 is similar to the zip1 mutant, which lacks a structural component of the synaptonemal complex (SC). Furthermore, epistasis tests indicate that msh4 and zip1 affect the same subset of meiotic crossovers. In the msh4 mutant, SC formation is delayed compared to wild type, and full synapsis is achieved in only about half of all nuclei. The simultaneous defects in synapsis and interference observed in msh4 (and also zip1 and ndj1/tam1) suggest a role for the SC in mediating interference. The Msh4 protein localizes to discrete foci on meiotic chromosomes and colocalizes with Zip2, a protein involved in the initiation of chromosome synapsis. Both Zip2 and Zip1 are required for the normal localization of Msh4 to chromosomes, raising the possibility that the zip1 and zip2 defects in crossing over are indirect, resulting from the failure to localize Msh4 properly.  相似文献   

15.
Interhomolog crossovers promote proper chromosome segregation during meiosis and are formed by the regulated repair of programmed double-strand breaks. This regulation requires components of the synaptonemal complex (SC), a proteinaceous structure formed between homologous chromosomes. In yeast, SC formation requires the “ZMM” genes, which encode a functionally diverse set of proteins, including the transverse filament protein, Zip1. In wild-type meiosis, Zmm proteins promote the biased resolution of recombination intermediates into crossovers that are distributed throughout the genome by interference. In contrast, noncrossovers are formed primarily through synthesis-dependent strand annealing mediated by the Sgs1 helicase. This work identifies a conserved region on the C terminus of Zip1 (called Zip1 4S), whose phosphorylation is required for the ZMM pathway of crossover formation. Zip1 4S phosphorylation is promoted both by double-strand breaks (DSBs) and the meiosis-specific kinase, MEK1/MRE4, demonstrating a role for MEK1 in the regulation of interhomolog crossover formation, as well as interhomolog bias. Failure to phosphorylate Zip1 4S results in meiotic prophase arrest, specifically in the absence of SGS1. This gain of function meiotic arrest phenotype is suppressed by spo11Δ, suggesting that it is due to unrepaired breaks triggering the meiotic recombination checkpoint. Epistasis experiments combining deletions of individual ZMM genes with sgs1-md zip1-4A indicate that Zip1 4S phosphorylation functions prior to the other ZMMs. These results suggest that phosphorylation of Zip1 at DSBs commits those breaks to repair via the ZMM pathway and provides a mechanism by which the crossover/noncrossover decision can be dynamically regulated during yeast meiosis.  相似文献   

16.
In Drosophila melanogaster oocytes, the C(3)G protein comprises the transverse filaments (TFs) of the synaptonemal complex (SC). Like other TF proteins, such as Zip1p in yeast and SCP1 in mammals, C(3)G is composed of a central coiled-coil-rich domain flanked by N- and C-terminal globular domains. Here, we analyze in-frame deletions within the N- and C-terminal regions of C(3)G in Drosophila oocytes. As is the case for Zip1p, a C-terminal deletion of C(3)G fails to attach to the lateral elements of the SC. Instead, this C-terminal deletion protein forms a large cylindrical polycomplex structure. EM analysis of this structure reveals a polycomplex of concentric rings alternating dark and light bands. However, unlike both yeast and mammals, all three proteins deleted for N-terminal regions completely abolished both SC and polycomplex formation. Both the N- and C-terminal deletions significantly reduce or abolish meiotic recombination similarly to c(3)G null homozygotes. To explain these data, we propose that in Drosophila the N terminus, but not the C-terminal globular domain, of C(3)G is critical for the formation of antiparallel pairs of C(3)G homodimers that span the central region and thus for assembly of complete TFs, while the C terminus is required to affix these homodimers to the lateral elements.  相似文献   

17.
Fung JC  Rockmill B  Odell M  Roeder GS 《Cell》2004,116(6):795-802
Meiotic crossovers (COs) are nonrandomly distributed along chromosomes such that two COs seldom occur close together, a phenomenon known as CO interference. We have used genetic and cytological methods to investigate interference mechanisms in budding yeast. Assembly of the synaptonemal complex (SC) initiates at a few sites along each chromosome, triggered by a complex of proteins (including Zip2 and Zip3) called the synapsis initiation complex (SIC). We found that SICs, like COs, display interference, supporting the hypothesis that COs occur at synapsis initiation sites. Unexpectedly, we found that SICs show interference in mutants in which CO interference is abolished; one explanation is that these same mutations eliminate the subset of COs that normally occur at SICs. Since SICs are assembled in advance of SC and they are properly positioned even in the absence of SC formation, these data clearly demonstrate an aspect of interference that is independent of synapsis.  相似文献   

18.
The Yeast Red1 Protein Localizes to the Cores of Meiotic Chromosomes   总被引:26,自引:2,他引:24       下载免费PDF全文
Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosisspecific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.  相似文献   

19.
Multiple synaptonemal complexes (polycomplexes) (PC) are similar in structure to synaptonemal complexes (SC) and are also highly conserved through evolution. They have been described in over 70 organisms throughout all life forms. The appearance of PCs are restricted to meiotic and germ-line derived tissues and are most commonly present after SC formation. However, in a number of animals and plants, both extra- and intranuclear PCs are present during premeiotic and pre-pachytene stages. The structure and biochemical composition of PCs is similar to SCs that the basic unit is tripartite, consisting of two lateral elements and a central region (in which transverse elements are located), and the dimensions of such structures are equivalent. Stacking of SC subunits, while still maintaining equivalent SC dimensions, creates a problem since the lateral elements (LE) would then be twice as thick in the PC as compared to the SC. Recently, it has been shown that the LE of the SC is actually multistranded, thus the LE of each subunit of the PC is half as thick as its counterpart in the SC.  相似文献   

20.
Bhuiyan H  Dahlfors G  Schmekel K 《Genetics》2003,163(2):539-544
The synaptonemal complex (SC) keeps the synapsed homologous chromosomes together during pachytene in meiotic prophase I. Structures that resemble stacks of SCs, polycomplexes, are sometimes found before or after pachytene. We have investigated ndt80 mutants of yeast, which arrest in pachytene. SCs appear normal in spread chromosome preparations, but are only occasionally found in intact nuclei examined in the electron microscope. Instead, large polycomplexes occur in almost every ndt80 mutant nucleus. Immunoelectron microscopy using DNA antibodies show strong preferential labeling to the lateral element parts of the polycomplexes. In situ hybridization using chromosome-specific probes confirms that the chromosomes in ndt80 mutants are paired and attached to the SCs. Our results suggest that polycomplexes can be involved in binding of chromosomes and possibly also in synapsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号