首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimpled phosphatic microspherules, contradictorily associated with conodonts, are widely distributed in strata ranging in age from the Cambrian to Carboniferous. These microspherules have attracted much attention from palaeobiologists and were suggested to be ‘conodont pearls’, ‘conodont otoliths’ or ‘fish otoliths’ due to their similar chemical composition and co‐occurrence with conodonts or fish teeth. However, these hypotheses are still highly controversial. Here, we report ‘checks’, ‘rhythmic growth patterns’ and ‘sub‐diurnal increments’ from growth annuli of the Late Devonian phosphatic microspherules from South China, on the basis of quantitative microstructure analysis. The annulus width of phosphatic microspherules becomes narrower with increasing radius. These microstructural characteristics of growth annuli are most typical indicators of modern animal otoliths. In addition, a maximum value of about 90 annuli is encountered from all the specimens. We propose that these microspherules are essentially phosphatic otoliths, which might have been secreted by a specific kind of marine organisms with very short lifespans (less than 90 days). Furthermore, the sudden enrichment of phosphatic microspherules in the late Frasnian may represent a biological response of short‐lived animals to ecological crisis such as ocean eutrophication.  相似文献   

2.
Unusual phosphatic casts of the ammonites Mortoniceras (Subschloenbachia) sp. and Stoliczkaia sp. from the upper Albian condensed phosphorite bed at Annopol, Poland, are discussed in terms of their taphonomic history. These specimens are interpreted as ‘secondary’ external casts of ammonite replicas preserved originally as attachment scars on oyster shells. The following genetic history is suggested for this previously undocumented mode of ammonite preservation: (1) settling of shells of dead ammonites on the seafloor; (2) colonization of these shells by oysters and formation of ammonite replicas on left valves of oysters; (3) dissolution of ammonite shells; (4) reworking and fragmentation of oyster shells; (5) casting of ammonite replicas by phosphatic material; and (6) separation of ammonite casts from oyster shells, either through mechanical disintegration or dissolution of the latter. The specimens studied were formed after dissolution of the ammonite conchs, not prior to this event as in the case of typical ammonite steinkerns (internal moulds). Therefore, they are here referred to as ‘pseudo‐steinkerns’. The time interval between loss of the original ammonite shells and the formation of oyster‐mediated pseudo‐steinkerns may be very extensive. Therefore, the pseudo‐steinkerns may potentially mislead in biostratigraphic dating of condensed phosphorite deposits.  相似文献   

3.
Fossilized ring‐like structures with enigmatic function and taxonomic affiliation were recovered for the first time from the Upper Ordovician of the Carnic Alps and the Silurian of Bohemia. These rings, already mentioned as minor constituents in previous conodont studies (e.g. Webers 1966, p. 1; Bischoff 1973, p. 147), were reported from the Palaeozoic of several regions in Europe and North America. Originally considered as inwardly accreted adhering discs of a benthic hyolithelminth worm with a phosphatic tubular projection, they were later reinterpreted in relation to a putative crinoid epibiont or even as possible scyphozoans. Despite a long debate, neither the function of the enigmatic Palaeozoic rings nor their taxonomic affiliation has been fully clarified. The studied material, extracted by a standard technique in use for conodonts, consists of 235 elements from 16 stratigraphic levels in the Plöcken Formation (Carnic Alps, Cellon Section; Amorphognathus ordovicicus Biozone, Hirnantian, Ordovician) and in the Kopanina Formation (Bohemia, Mu?lovka Quarry; Polygnathoides siluricus Biozone, Ludfordian, Silurian). To explore whether ring size and shape changed over time, we employed a novel combination of geometric morphometric approaches for outlines with no ‘homologous’ landmarks and showed that only size appreciably varied with an increase of ca. 20%. The emerging data from this study are consistent with the interpretation of the rings as an adhering structure of a benthic organism living on a relatively uniform hard substrate.  相似文献   

4.
doi:10.1111/j.1741‐2358.2009.00300.x
Colonisation of soft lining materials by micro‐organisms Objective: This study evaluated the in vitro adherence of pathogenic micro‐organisms, Candida albicans, Staphylococcus aureus and Pseudomonas aeruginosa, to soft lining materials and their inhibitory effect on these micro‐organisms. Materials and Methods: To measure adherence, specimens of Molloplast B and Ufi Gel P were inoculated [107 colony‐forming units per millimetre (cfu/ml)] with TSB media containing the micro‐organisms. To determine the number of micro‐organisms in the 10?2–10?5 dilutions, 25 μl of the suspension were transferred to plates of selective media. Colony counts of each specimen were quantified (cfu/ml). The surface roughness was measured with a perfilometer to assess the relationship between the adherence of micro‐organisms and surface roughness of each material. For the inhibition test, specimens of materials were placed in agar plates inoculated individually with the micro‐organisms. After 48 h, the inhibition zones around the specimens were measured. Results: None of the materials exhibited inhibition zones. The number of cfu/ml of S. aureus and P. aeruginosa were significantly greater than C. albicans for both materials. The Ufi Gel P exhibited greater adherence of C. albicans than Molloplast B. No correlation was observed between the adherence of micro‐organisms and surface roughness. Conclusion: The surface roughness of the materials is not the only factor governing micro‐organism adherence.  相似文献   

5.
Abstract: Ediacaran structures known as ‘pizza discs’ or Ivesheadia have long been considered enigmatic. They are amongst the oldest known members of the Ediacara biota, apparently restricted to the Avalonian successions of Newfoundland and the UK, c. 579–560 Ma. Here, we suggest that these impressions are taphomorphs, resulting from the post‐mortem decay of the frondose Ediacaran biota. Ediacaran fossils range from well‐preserved, high‐fidelity variants to almost completely effaced specimens. The effaced specimens are inferred to have undergone modification of their original morphology by post‐mortem microbial decay on the sea floor, combined with sediment trapping and binding. In this style of preservation, morphological details within the organism became variously subdued as a function of the extent of organic decay prior to casting by overlying sediments. Decay and effacement were progressive in nature, producing a continuum of grades of preservation on Ediacaran bedding planes. Fossils preserved by such ‘effaced preservation’ are those that have suffered these processes to the extent that only their gross form can be determined. We suggest that the lack of detailed morphology in effaced specimens renders such fossils unsuitable for use as type material, as it is possible that several taxa may, upon degradation and burial, generate similar morphological taphomorphs. We here reinterpret the genus Ivesheadia as a taphomorph resulting from extensive post‐mortem decay of frondose organisms. Blackbrookia, Pseudovendia and Shepshedia from beds of comparable age in England are likewise regarded as taphomorphs broadly related to Charnia or Charniodiscus spp. To reflect the suggestion that such impressions are likely to be taphomorphs, and not taxonomically discrete, we propose the term ivesheadiomorphs to incorporate all such effaced taphonomic expressions of Ediacaran macrofossil taxa in Avalonian assemblages. Our recognition of effaced preservation has significant implications for Ediacaran taxonomy, and consequently for measures of Ediacaran diversity and disparity. It is implied that Avalonian assemblages preserve both organisms that were alive and organisms that were already dead at the time of burial. As such, the fossil assemblages cannot be taken to represent census populations of living organisms, as in prior interpretations.  相似文献   

6.
Abstract: The palaeoloricate ‘polyplacophorans’ are an extinct paraphyletic group of basal chiton‐like organisms known primarily from their fossilized valves. Their phylogenetic placement remains contentious, but they are likely to include both stem‐group Polyplacophora and stem‐group Aplacophora. Candidates for the latter position include ‘Helminthochitonthraivensis from the Ordovician of Scotland, which we redescribe here through a combined optical and micro‐CT (XMT) restudy of the type material. The 11 specimens in the type series are all articulated, presenting partial or complete valve series as well as mouldic preservation of the girdle armature; they demonstrate a vermiform body plan. The valves are typically palaeoloricate in aspect, but differ in detail from all existing palaeoloricate genera; we hence erect Phthipodochiton gen. nov. to contain the species. The most notable feature of the fossils is the spicular girdle; this is impersistently preserved, but demonstrably wraps entirely around the ventral surface of the animal, implying that a ‘true’ (i.e. polyplacophoran like) foot was absent, although we do not exclude the possibility of a narrow solenogastre‐like median pedal groove having been present. Phthipodochiton thraivensis presents an apparent mosaic of aplacophoran and polyplacophoran features and as such will inform our understanding of the relationship between these groups of extant molluscs. An inference may also be drawn that at least some other palaeoloricates possessed an ‘armoured aplacophoran’ body plan, in contrast to the ‘limpet‐like’ body plan of extant Polyplacophora.  相似文献   

7.
Biofilms as complex microbial communities attached to surfaces pose several challenges in different sectors, ranging from food and healthcare to desalination and power generation. The biofilm mode of growth allows microorganisms to survive in hostile environments and biofilm cells exhibit distinct physiology and behaviour in comparison with their planktonic counterparts. They are ubiquitous, resilient and difficult to eradicate due to their resistant phenotype. Several chemical‐based cleaning and disinfection regimens are conventionally used against biofilm‐dwelling micro‐organisms in vitro. Although such approaches are generally considered to be effective, they may contribute to the dissemination of antimicrobial resistance and environmental pollution. Consequently, advanced green technologies for biofilm control are constantly emerging. Disinfection using nonthermal plasmas (NTPs) is one of the novel strategies having a great potential for control of biofilms of a broad spectrum of micro‐organisms. This review discusses several aspects related to the inactivation of biofilm‐associated bacteria and fungi by different types of NTPs under in vitro conditions. A brief introduction summarizes prevailing methods in biofilm inactivation, followed by introduction to gas discharge plasmas, active plasma species and their inactivating mechanism. Subsequently, significance and aspects of NTP inactivation of biofilm‐associated bacteria, especially those of medical importance, including opportunistic pathogens, oral pathogenic bacteria, foodborne pathogens and implant bacteria, are discussed. The remainder of the review discusses majorly about the synergistic effect of NTPs and their activity against biofilm‐associated fungi, especially Candida species.  相似文献   

8.
Synchrotron radiation X‐ray tomographic microscopy (SRXTM) was used to virtually dissect and peel the shields off of the microscopic, bivalved phosphatocopine crustaceans in the Cambrian ‘Orsten’ type of preservation of Sweden. Doing so opened up for an array of concealed internal structures to be observed in a fully enclosed specimen of Hesslandona ventrospinata and a semi‐enclosed specimen of Hesslandona angustata. For comparison, also a head‐larva stage specimen of H. angustata, with shields in ‘butterfly position’, was analysed. The X‐ray tomographic data sets revealed excellently preserved structures, such as labrum, sternum, antennae, mandibular and post‐mandibular limbs with their minute setae, all of which were more or less disguised by the enclosing shields. This, moreover, allowed assignment to growth stages of the specimens, which is impossible based solely on external morphology and size. Micro‐spherules observed inside the shields of the semi‐enclosed H. angustata specimen may represent remains of food particles, and the feeding biology of phosphatocopines is discussed in detail. Our analyses suggest that phosphatocopines were particle feeders. The SRXTM technique offers the ability to three‐dimensionally reconstruct the morphology in high resolution, construct virtual serial sections and study concealed structures. The resulting data allow for new structures to be revealed for previously known taxa and for new taxa to be identified, with the added benefit of not destroying the specimens in the process. Hence, we do not longer have to rely on serendipitous finds of broken and/or open phosphatocopine specimens to elucidate their diagnostic ventral morphology.  相似文献   

9.
New crystalline structures have been observed in argon ion‐milled conodont elements from a diverse suite of Ordovician taxa (‘Cordylodus robustus’, Drepanoistodus suberectus, Panderodus gracilis, Plectodina? sp., Aphelognathus sp., Periodon aculeatus), using transmission electron microscopy (TEM). Electron diffraction patterns of albid tissue reveal that the component crystals are extraordinarily large, in the order of hundred(s) of microns. These large albid crystals show typical cancellate porosity, although a distinctly lamellar structure has also been observed within a large albid crystal positioned between hyaline lamellar and cancellate albid tissues. There is a distinct absence of ‘interlamellar space’ within all hyaline tissues examined, which are characterized by a polycrystalline matrix of micron‐scale elongate crystals that are both strongly aligned and tightly bound within a broader lamellar structure. Optical opacity, caused by light scattering within large (≥ 0.5 µm) pores, is also a feature of both albid and polycrystalline lamellar crown tissues. Accordingly, conodont hard tissues are differentiated by crystal size and shape, as well as inter‐ and intracrystalline porosity. These new observations highlight the structural complexities of conodont histologies and the need for more comprehensive investigations particularly of transitional crown tissues, which are not well defined by terms typically used in the literature. Their histological structures are interpreted to be a product of in vivo crystallization and thus provide new insights into the relative porosity, permeability, and inherent integrity of the tissues as well as their growth relationships. Accordingly, these data not only have implications for earlier histological and palaeobiological interpretations of conodont hard tissues but are also fundamental in determining their chemical integrity, which is crucial for characterizing palaeoseawater composition and palaeoenvironmental change. The potential for conodont apatite to retain primary chemical information depends on crystal size and permeability, so the large albid crystal domains are consistent with parallel geochemical studies that suggest that cancellate albid crown is more resistant to diagenetic modification.  相似文献   

10.
Sodium fluoroacetate (1080) is a vertebrate poison commonly used for the control of vertebrate pests in Australia. Long‐term environmental persistence of 1080 from baiting operations has likely nontarget species and environmental impacts and is a matter of public concern. Defluorinating micro‐organisms have been detected in soils of Western and central Australia, and Queensland, but not in south‐eastern Australia. The presence or absence of defluorinating micro‐organisms in soils from south‐eastern Australia will assist in determining whether long‐term environmental persistence of 1080 is or is not occurring. Soils from the Central West Slopes and Plains and Central Tablelands of New South Wales were sampled to investigate the presence and capability of 1080 defluorinating soil micro‐organisms. Thirty‐one species of micro‐organisms were isolated from soils from each site after 10 days incubation in a 20 mM 1080 solution. Of these, 13 isolates showed measurable defluorinating ability when grown in a 1080 and sterile soil suspension. Two species, the bacteria Micromonospora, and the actinomycete Streptosporangium, have not been previously reported for their defluorinating ability. These results indicate that defluorinating micro‐organisms are present in soils in south‐eastern Australia, which adds weight to other studies that found that 1080 is subject to microbiological degradative processes following removal from the bait substrate. Soil micro‐organism defluorination, in combination with physical breakdown and uptake by plants, indicates that fluoroacetate in soils and natural water ways is unlikely to persist. This has implications for the better informed use of 1080 in pest animal management programmes in south‐eastern Australia.  相似文献   

11.
Grapevine is one of the most widely grown fruit crops in the world. At present, however, there is much concern regarding chemical pollution in viticulture due to the application of chemical fungicides and fertilizers. One viticultural practice to resolve this issue is the application of micro‐organisms to grapevine as a substitute for chemicals. Some micro‐organisms act as an enhancer of grape berry quality as well as a suppresser of disease in grapevine through their antagonistic ability and/or systemic resistance inducing ability. Herein, we review current and prospective applications of micro‐organisms in viticulture.

Significance and Impact of the Study

In this review, we evaluate the applicability of micro‐organisms in viticulture. Micro‐organisms can improve grape berry quality through grapevine disease protection and grape berry quality alteration. Because the use of micro‐organisms to protect grapevine from plant diseases is safer than the use of chemical fungicides, the use of biofungicides in viticulture is expected to be enhanced by the increasing consumer concern towards chemical fungicides. Micro‐organisms also modify plant secondary metabolites for use as flavours, pharmaceuticals and food additives. Studies of micro‐organisms that promote polyphenol, anthocyanin and aroma compound biosynthesis are in progress with an eye to improving grape berry quality.  相似文献   

12.
A characteristic aquatic bioerosion, which peripherally penetrates the bone cortex, has previously been described from the 7‐million‐year‐old Cerro de la Garita calcareous lakeshore site (Concud, Teruel, Spain). This site has also yielded body fossils that appear to have been partly or entirely replaced by a delicate, white ‘crumbly substance’ that disaggregates upon touch. High‐resolution image and chemical analyses of the ‘crumbly substance’, bioeroded and non‐altered fossils, fresh bones and the site sediment are here described. The ‘crumbly substance’ was identified as calcite formed by non‐cemented micro‐crystals, preserving identical micro‐tunnelling than was observed in bioeroded fossil bones. This paper reports these results in detail and discusses how the original bone bioapatite may have been transformed. Results of these analyses have led us to propose that micro‐organisms, peripherally boring the bone, could also have influenced the transformation of bone bioapatite to calcite under specific micro‐environmental conditions.  相似文献   

13.
Well‐developed oncoids and centimetre‐sized stromatolites are reported for the first time from the Darriwilian (Middle Ordovician) cool‐water ‘orthoceratite limestone’ at Kinnekulle, Västergötland, Sweden. The characteristics and stratigraphical distribution of these microbialites show an apparent relationship to fluctuations in relative sea level. The most abundant and well‐developed oncoids occur in stratigraphical intervals that are characterized by notable sea‐level lowstands. Stromatolites, which share many compositional characteristics with the oncoids, are essentially confined to a single bed associated with an especially prominent lowstand. Stromatolite‐like lamination also occurs in the uppermost part of the studied succession, but this feature may be of abiogenic origin. The microbialites appear to be originally calcareous, but synsedimentary iron‐ and/or phosphate‐enriched laminae are conspicuous, and secondary substitution by coarse calcite and barite is common. Iron staining is most prominent in poorly preserved specimens. Diagenesis has occluded the identity of the producers of these microbialites, but characteristics of associated endolithic borings suggest that they were formed in photic waters. The laminated fabrics of the documented microbialites record a depositional environment sensitive to high‐frequency environmental change. Most significantly, the microbialites have provided important information about the depositional environment of their enigmatic host limestone, and the collective observations challenge the notion that the studied strata were deposited in a deep shelf to basinal environment – rather, it appears that they are to a large extent, shallow‐water deposits, formed in waters only a few tens of metres deep.  相似文献   

14.
Hydrothermal activity was common on the early Earth and associated micro‐organisms would most likely have included thermophilic to hyperthermophilic species. 3.5–3.3 billion‐year‐old, hydrothermally influenced rocks contain silicified microbial mats and colonies that must have been bathed in warm to hot hydrothermal emanations. Could they represent thermophilic or hyperthermophilic micro‐organisms and if so, how were they preserved? We present the results of an experiment to silicify anaerobic, hyperthermophilic micro‐organisms from the Archaea Domain Pyrococcus abyssi and Methanocaldococcus jannaschii, that could have lived on the early Earth. The micro‐organisms were placed in a silica‐saturated medium for periods up to 1 year. Pyrococcus abyssi cells were fossilized but the M. jannaschii cells lysed naturally after the exponential growth phase, apart from a few cells and cell remains, and were not silicified although their extracellular polymeric substances were. In this first simulated fossilization of archaeal strains, our results suggest that differences between species have a strong influence on the potential for different micro‐organisms to be preserved by fossilization and that those found in the fossil record represent probably only a part of the original diversity. Our results have important consequences for biosignatures in hydrothermal or hydrothermally influenced deposits on Earth, as well as on early Mars, as environmental conditions were similar on the young terrestrial planets and traces of early Martian life may have been similarly preserved as silicified microfossils.  相似文献   

15.
Detailed histological investigations have shed new light on the nature of Pseudooneotodus Drygant, 1974 (?Arenig/ljanvirn - Emsian). The genus has generally been interpreted as a conodont and is represented by squat phosphatic cones. These conodont dements show a differentiation into a lamellar cap, indistinguishable from vertebrate enamel, which is underlain by a spherulitic basal tissue with several characters indicative of dentine. The presence of these two issues in the elements of a conodont argues persuasively for the. vertebrate classification of the cladc, and illustrates that at least some conodonts have a hard tissue complex which is histologically indistinguishable from those of other primitive vertebrates. These observations have potentially important implications for conodont classification and the stratigraphic first appearances of vertebrate hard tissues.  相似文献   

16.
17.
Until 2004, the secondary metabolites of marine organisms of the Vietnamese territorial waters had been studied very poorly. Only four new compounds were isolated from 1977 to 2003. Joint Russian‐Vietnamese expeditions aboard the research vessel ‘Akademik Oparin’ made it possible to study in detail the chemical diversity of marine micro‐ and macroorganisms. As a result of five expeditions, more than 250 low‐molecular weight natural compounds, including 117 new metabolites, were isolated from marine invertebrates and microfilamentous fungi. Their biological activities, such as cytotoxic, cytoprotective, and antioxidant activities, were investigated. Information about the structure and biological activity of the compounds, the source for their isolation and the geographical location of the objects is summarized in this review.  相似文献   

18.
The last years there has been a significant rise in the number of publications in the international literature that deal with the production of lipids by microbial sources (the ‘single cell oils; SCOs’ that are produced by the so‐called ‘oleaginous’ micro‐organisms). In the first part of the present review article, a general overview of the oleaginous micro‐organisms (mostly yeasts, algae and fungi) and their potential upon the production of SCOs is presented. Thereafter, physiological and kinetic events related with the production of, mostly, yeast and fungal lipids when sugars and related substrates like polysaccharides, glycerol, etc. (the de novo lipid accumulation process) or hydrophobic substrates like oils and fats (the ex novo lipid accumulation process) were employed as microbial carbon sources, are presented and critically discussed. Considerations related with the degradation of storage lipid that had been previously accumulated inside the cells, are also presented. The interplay of the synthesis of yeast and fungal lipids with other intracellular (i.e. endopolysaccharides) or extracellular (i.e. citric acid) secondary metabolites synthesized is also presented. Finally, aspects related with the lipid extraction and lipidome analysis of the oleaginous micro‐organisms are presented and critically discussed.  相似文献   

19.
Metallothioneins (MTs) are ubiquitous proteins with the capacity to bind heavy metal ions (mainly Cd, Zn or Cu), and they have been found in animals, plants, eukaryotic and prokaryotic micro‐organisms. We have carried out a comparative analysis of ciliate MTs (Tetrahymena species) to well‐known MTs from other organisms, discussing their exclusive features, such as the presence of aromatic amino acid residues and almost exclusive cysteine clusters (CCC) present in cadmium‐binding metallothioneins (CdMTs), higher heavy metal‐MT stoichiometry values, and a strictly conserved modular–submodular structure. Based on this last feature and an extensive gene duplication, we propose a possible model for the evolutionary history of T. thermophila MTs. We also suggest possible functions for these MTs from consideration of their differential gene expressions and discuss the potential use of these proteins and/or their gene promoters for designing molecular or whole‐cell biosensors for a fast detection of heavy metals in diverse polluted ecosystems.  相似文献   

20.
Hyoliths are a group of Palaeozoic fossils with calcareous shells whose affinities remain controversial. As their shells were originally aragonitic, their fossils are usually coarsely recrystallized, and few data on their microstructure are available. We report hyoliths from the middle Cambrian (Drumian, Floran) Gowers Formation of the eastern Georgina Basin, Queensland. These are preserved as phosphatic internal moulds, often with the inner layers of the shell also partly replaced by phosphate. Microstructural details preserved by this early diagenetic phosphatization show that these hyolith conchs were originally composed of fibrous crystallites, c. 0.5 μm wide, parallel to one another and to the inner surface of the shell. In several species, the fibres are arranged in a plywood‐like structure composed of multiple lamellae with a different fibre orientation in each lamella: often they are transversely oriented (relative to the long axis of the conch) in the inner part of the wall and longitudinally oriented in the outer part. Opercula also show a microstructure of parallel fibres. The lamello‐fibrillar microstructure we report from hyoliths is reminiscent of microstructures of many Cambrian molluscs; that this microstructure is found in both conchs and opercula suggests that these structures are serial homologues of one another, and in this respect they resemble brachiopod valves. As with many other biological plywoods, the hyolith shell probably records self‐organization in a liquid‐crystal‐like organic matrix. This provided a straightforward way to construct a material that could resist stresses from different directions, offering an effective defence against predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号