首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Batrachotoxin (BTX)-modified Na+ currents were characterized in GH3 cells with a reversed Na+ gradient under whole-cell voltage clamp conditions. BTX shifts the threshold of Na+ channel activation by approximately 40 mV in the hyperpolarizing direction and nearly eliminates the declining phase of Na+ currents at all voltages, suggesting that Na+ channel inactivation is removed. Paradoxically, the steady-state inactivation (h infinity) of BTX-modified Na+ channels as determined by a two-pulse protocol shows that inactivation is still present and occurs maximally near -70 mV. About 45% of BTX-modified Na+ channels are inactivated at this voltage. The development of inactivation follows a sum of two exponential functions with tau d(fast) = 10 ms and tau d(slow) = 125 ms at -70 mV. Recovery from inactivation can be achieved after hyperpolarizing the membrane to voltages more negative than -120 mV. The time course of recovery is best described by a sum of two exponentials with tau r(fast) = 6.0 ms and tau r(slow) = 240 ms at -170 mV. After reaching a minimum at -70 mV, the h infinity curve of BTX-modified Na+ channels turns upward to reach a constant plateau value of approximately 0.9 at voltages above 0 mV. Evidently, the inactivated, BTX-modified Na+ channels can be forced open at more positive potentials. The reopening kinetics of the inactivated channels follows a single exponential with a time constant of 160 ms at +50 mV. Both chloramine-T (at 0.5 mM) and alpha-scorpion toxin (at 200 nM) diminish the inactivation of BTX-modified Na+ channels. In contrast, benzocaine at 1 mM drastically enhances the inactivation of BTX-modified Na+ channels. The h infinity curve reaches minimum of less than 0.1 at -70 mV, indicating that benzocaine binds preferentially with inactivated, BTX-modified Na+ channels. Together, these results imply that BTX-modified Na+ channels are governed by an inactivation process.  相似文献   

2.
In whole cell patch clamp recordings on enzymatically dissociated adrenal zona fasciculata (AZF) cells, a rapidly inactivating A-type K+ current was observed in each of more than 150 cells. Activation of IA was steeply voltage dependent and could be described by a Boltzmann function raised to an integer power of 4, with a midpoint of -28.3 mV. Using the "limiting logarithmic potential sensitivity," the single channel gating charge was estimated to be 7.2 e. Voltage-dependent inactivation could also be described by a Boltzmann function with a midpoint of -58.7 mV and a slope factor of 5.92 mV. Gating kinetics of IA included both voltage-dependent and -independent transitions in pathways between closed, open, and inactivated states. IA activated with voltage-dependent sigmoidal kinetics that could be fit with an n4h formalism. The activation time constant, tau a, reached a voltage- independent minimum at potentials positive to 0 mV. IA currents inactivated with two time constants that were voltage independent at potentials ranging from -30 to +45 mV. At +20 mV, tau i(fast) and tau i(slow) were 13.16 +/- 0.64 and 62.26 +/- 5.35 ms (n = 34), respectively. In some cells, IA inactivation kinetics slowed dramatically after many minutes of whole cell recording. Once activated by depolarization, IA channels returned to the closed state along pathways with two voltage-dependent time constants which were 0.208 s, tau rec-f and 10.02 s, tau rec-s at -80 mV. Approximately 90% of IA current recovered with slow kinetics at potentials between -60 and -100 mV. IA was blocked by 4-aminopyridine (IC50 = 629 microM) through a mechanism that was strongly promoted by channel activation. Divalent and trivalent cations including Ni2+ and La3+ also blocked IA with IC50's of 467 and 26.4 microM, respectively. With respect to biophysical properties and pharmacology, IA in AZF cells resembles to some extent transient K+ currents in neurons and muscle, where they function to regulate action potential frequency and duration. The function of this prominent current in steroid hormone secretion by endocrine cells that may not generate action potentials is not yet clear.  相似文献   

3.
A delayed rectifier potassium current in Xenopus oocytes.   总被引:5,自引:0,他引:5       下载免费PDF全文
A delayed voltage-dependent K+ current endogenous to Xenopus oocytes has been investigated by the voltage-clamp technique. Both activation and inactivation of the K+ current are voltage-dependent processes. The K+ currents were activated when membrane potential was depolarized from a holding potential of -90 to -50 mV. The peak current was reached within 150 ms at membrane potential of +30 mV. Voltage-dependent inactivation of the current was observed by depolarizing the membrane potential from -50 to 0 mV at 10-mV increments. Voltage-dependent inactivation was a slow process with a time constant of 16.5 s at -10 mV. Removal of Ca2+ from the bath has no effect on current amplitudes, which indicates that the current is Ca2+)-insensitive. Tail current analysis showed that reversal potentials were shifted by changing external K+ concentration, as would be expected for a K(+)-selective channel. The current was sensitive to quinine, a K+ channel blocker, with a Ki of 35 microM. The blockade of quinine is voltage-independent in the range of -20 to +60 mV. Whereas oocytes from the same animal have a relatively homogeneous current distribution, average amplitude of the K+ current varied among oocytes from different animals from 30 to 400 nA at membrane potential of +30 mV. Our results indicate the presence of the endogenous K+ current in Xenopus oocytes with characteristics of the delayed rectifier found in some nerve and muscle cells.  相似文献   

4.
The mechanisms of inactivation gating of the neuronal somatodendritic A-type K(+) current and the cardiac I(to) were investigated in Xenopus oocyte macropatches expressing Kv4.1 and Kv4.3 channels. Upon membrane patch excision (inside-out), Kv4.1 channels undergo time-dependent acceleration of macroscopic inactivation accompanied by a parallel partial current rundown. These changes are readily reversible by patch cramming, suggesting the influence of modulatory cytoplasmic factors. The consequences of these perturbations were investigated in detail to gain insights into the biophysical basis and mechanisms of inactivation gating. Accelerated inactivation at positive voltages (0 to +110 mV) is mainly the result of reducing the time constant of slow inactivation and the relative weight of the slow component of inactivation. Concomitantly, the time constants of closed-state inactivation at negative membrane potentials (-90 to -50 mV) are substantially decreased in inside-out patches. Deactivation is moderately accelerated, and recovery from inactivation and the peak G--V curve exhibit little or no change. In agreement with more favorable closed-state inactivation in inside-out patches, the steady-state inactivation curve exhibits a hyperpolarizing shift of approximately 10 mV. Closed-state inactivation was similarly enhanced in Kv4.3. An allosteric model that assumes significant closed-state inactivation at all relevant voltages can explain Kv4 inactivation gating and the modulatory changes.  相似文献   

5.
The whole cell version of the patch clamp technique was used to identify and characterize voltage-gated Ca2+ channels in enzymatically dissociated bovine adrenal zona fasciculata (AZF) cells. The great majority of cells (84 of 86) expressed only low voltage-activated, rapidly inactivating Ca2+ current with properties of T-type Ca2+ current described in other cells. Voltage-dependent activation of this current was fit by a Boltzmann function raised to an integer power of 4 with a midpoint at -17 mV. Independent estimates of the single channel gating charge obtained from the activation curve and using the "limiting logarithmic potential sensitivity" were 8.1 and 6.8 elementary charges, respectively. Inactivation was a steep function of voltage with a v1/2 of -49.9 mV and a slope factor K of 3.73 mV. The expression of a single Ca2+ channel subtype by AZF cells allowed the voltage-dependent gating and kinetic properties of T current to be studied over a wide range of potentials. Analysis of the gating kinetics of this Ca2+ current indicate that T channel activation, inactivation, deactivation (closing), and reactivation (recovery from inactivation) each include voltage-independent transitions that become rate limiting at extreme voltages. Ca2+ current activated with voltage- dependent sigmoidal kinetics that were described by an m4 model. The activation time constant varied exponentially at test potentials between -30 and +10 mV, approaching a voltage-independent minimum of 1.6 ms. The inactivation time constant (tau i) also decreased exponentially to a minimum of 18.3 ms at potentials positive to 0 mV. T channel closing (deactivation) was faster at more negative voltages; the deactivation time constant (tau d) decreased from 8.14 +/- 0.7 to 0.48 +/- 0.1 ms at potentials between -40 and -150 mV. T channels inactivated by depolarization returned to the closed state along pathways that included two voltage-dependent time constants. tau rec-s ranged from 8.11 to 4.80 s when the recovery potential was varied from - 50 to -90 mV, while tau rec-f decreased from 1.01 to 0.372 s. At potentials negative to -70 mV, both time constants approached minimum values. The low voltage-activated Ca2+ current in AZF cells was blocked by the T channel selective antagonist Ni2+ with an IC50 of 20 microM. At similar concentrations, Ni2+ also blocked cortisol secretion stimulated by adrenocorticotropic hormone. Our results indicate that bovine AZF cells are distinctive among secretory cells in expressing primarily or exclusively T-type Ca2+ channels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The model proposed for external TEA block of Shaker K+ channels predicts a proportional relationship between TEA sensitivity and calculated electrical distance derived from measurements of voltage dependence of TEA block. In the present study, we examined this relationship for the A-type K+ current (IA) of Helix aspersa in neuronal somata using the whole-cell patch-clamp technique. External TEA inhibited IA with strong voltage dependence, such that the TEA dissociation constant was increased at depolarized test potentials. The half-inhibition constant (V0.5) for TEA block was approximately 21 mM at 0 mV, and V0.5 increased to approximately 67 mM at 50 mV. The calculated electrical distance for TEA block suggested that TEA traversed 65% of the way into the membrane electrical field. TEA also caused significant shifts in the voltage-dependence of A-type K+ channel gating. For example, at TEA concentrations below that required to fully suppress delayed outward currents, TEA caused depolarizing shifts in the voltage-dependence of A-type channel activation, steady-state inactivation, time for removal of inactivation, and slowed channel activation kinetics. Taken together, these observations suggest that TEA biased the local field potential near voltage-sensing domains of A-type K+ channels, causing the transmembrane electrical field to be relatively hyperpolarized in the presence of TEA. In summary, the calculated electrical distance of TEA block of A-type K+ channels in H. aspersa neurons is unprecedented among other K+ channels. This raises concerns about the conventional interpretation of this value. Furthermore, the voltage-dependent properties of IA are modified by TEA at concentrations previously used to isolate delayed rectifier potassium channels (IKDR) selectively. This lack of specificity has important implications for recent, as well as future studies of IA in H. aspersa and possibly other snail neurons.  相似文献   

7.
Time constants of slow inactivation were investigated in NH(2)-terminal deleted Shaker potassium channels using macro-patch recordings from Xenopus oocytes. Slow inactivation is voltage insensitive in physiological solutions or in simple experimental solutions such as K(+)(o)//K(+)(i) or Na(+)(o)//K(+)(i). However, when [Na(+)](i) is increased while [K(+)](i) is reduced, voltage sensitivity appears in the slow inactivation rates at positive potentials. In such solutions, the I-V curves show a region of negative slope conductance between approximately 0 and +60 mV, with strongly increased outward current at more positive voltages, yielding an N-shaped curvature. These changes in peak outward currents are associated with marked changes in the dominant slow inactivation time constant from approximately 1.5 s at potentials less than approximately +60 mV to approximately 30 ms at more than +150 mV. Since slow inactivation in Shaker channels is extremely sensitive to the concentrations and species of permeant ions, more rapid entry into slow inactivated state(s) might indicate decreased K(+) permeation and increased Na(+) permeation at positive potentials. However, the N-shaped I-V curve becomes fully developed before the onset of significant slow inactivation, indicating that this N-shaped I-V does not arise from permeability changes associated with entry into slow inactivated states. Thus, changes in the relative contributions of K(+) and Na(+) ions to outward currents could arise either: (a) from depletions of [K(+)](i) sufficient to permit increased Na(+) permeation, or (b) from voltage-dependent changes in K(+) and Na(+) permeabilities. Our results rule out the first of these mechanisms. Furthermore, effects of changing [K(+)](i) and [K(+)](o) on ramp I-V waveforms suggest that applied potential directly affects relative permeation by K(+) and Na(+) ions. Therefore, we conclude that the voltage sensitivity of slow inactivation rates arises indirectly as a result of voltage-dependent changes in the ion occupancy of these channels, and demonstrate that simple barrier models can predict such voltage-dependent changes in relative permeabilities.  相似文献   

8.
Time- and voltage-dependent components of Kv4.3 inactivation   总被引:6,自引:0,他引:6  
Kv4.3 inactivation is a complex multiexponential process, which can occur from both closed and open states. The fast component of inactivation is modulated by the N-terminus, but the mechanisms mediating the other components of inactivation are controversial. We studied inactivation of Kv4.3 expressed in Xenopus laevis oocytes, using the two-electrode voltage-clamp technique. Inactivation during 2000 ms pulses at potentials positive to the activation threshold was described by three exponents (46 +/- 3, 152 +/- 13, and 930 +/- 50 ms at +50 mV, n = 7) whereas closed-state inactivation (at potentials below threshold) was described by two exponents (1079 +/- 119 and 3719 +/- 307 ms at -40 mV, n = 9). The fast component of open-state inactivation was dominant at potentials positive to -20 mV. Negative to -30 mV, the intermediate and slow components dominated inactivation. Inactivation properties were dependent on pulse duration. Recovery from inactivation was strongly dependent on voltage and pulse duration. We developed an 11-state Markov model of Kv4.3 gating that incorporated a direct transition from the open-inactivated state to the closed-inactivated state. Simulations with this model reproduced open- and closed-state inactivation, isochronal inactivation relationships, and reopening currents. Our data suggest that inactivation can proceed primarily from the open state and that multiple inactivation components can be identified.  相似文献   

9.
Both wild-type (WT) and nonconducting W472F mutant (NCM) Kv1.5 channels are able to conduct Na(+) in their inactivated states when K(+) is absent. Replacement of K(+) with Na(+) or NMG(+) allows rapid and complete inactivation in both WT and W472F mutant channels upon depolarization, and on return to negative potentials, transition of inactivated channels to closed-inactivated states is the first step in the recovery of the channels from inactivation. The time constant for immobilized gating charge recovery at -100 mV was 11.1 +/- 0.4 ms (n = 10) and increased to 19.0 +/- 1.6 ms (n = 3) when NMG(+)(o) was replaced by Na(+)(o). However, the decay of the Na(+) tail currents through inactivated channels at -100 mV had a time constant of 129 +/- 26 ms (n = 18), much slower than the time required for gating charge recovery. Further experiments revealed that the voltage-dependence of gating charge recovery and of the decay of Na(+) tail currents did not match over a 60 mV range of repolarization potentials. A faster recovery of gating charge than pore closure was also observed in WT Kv1.5 channels. These results provide evidence that the recovery of the gating elements is uncoupled from that of the pore in Na(+)-conducting inactivated channels. The dissociation of the gating charge movements and the pore closure could also be observed in the presence of symmetrical Na(+) but not symmetrical Cs(+). This difference probably stems from the difference in the respective abilities of the two ions to limit inactivation to the P-type state or prevent it altogether.  相似文献   

10.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

11.
12.
Macroscopic current from the microI skeletal muscle sodium channel expressed in Xenopus oocytes shows inactivation with two exponential components. The major, slower component's amplitude decreases with rapid pulsing. When microI cRNA is coinjected with rat skeletal muscle or brain mRNA the faster component becomes predominant. Individual microI channels switch between two principal gating modes, opening either only once per depolarization, or repeatedly in long bursts. These two modes differ in both activation and inactivation kinetics. There is also evidence for additional gating modes. It appears that the equilibrium among gating modes is influenced by a modulating factor encoded in rat skeletal muscle and brain mRNA. The modal gating is similar to that observed in hyperkalemic periodic paralysis.  相似文献   

13.
Enzymatically isolated myocytes from ferret right ventricles (12-16 wk, male) were studied using the whole cell patch clamp technique. The macroscopic properties of a transient outward K+ current I(to) were quantified. I(to) is selective for K+, with a PNa/PK of 0.082. Activation of I(to) is a voltage-dependent process, with both activation and inactivation being independent of Na+ or Ca2+ influx. Steady-state inactivation is well described by a single Boltzmann relationship (V1/2 = -13.5 mV; k = 5.6 mV). Substantial inactivation can occur during a subthreshold depolarization without any measurable macroscopic current. Both development of and recovery from inactivation are well described by single exponential processes. Ensemble averages of single I(to) channel currents recorded in cell-attached patches reproduce macroscopic I(to) and indicate that inactivation is complete at depolarized potentials. The overall inactivation/recovery time constant curve has a bell-shaped potential dependence that peaks between -10 and -20 mV, with time constants (22 degrees C) ranging from 23 ms (-90 mV) to 304 ms (-10 mV). Steady-state activation displays a sigmoidal dependence on membrane potential, with a net aggregate half- activation potential of +22.5 mV. Activation kinetics (0 to +70 mV, 22 degrees C) are rapid, with I(to) peaking in approximately 5-15 ms at +50 mV. Experiments conducted at reduced temperatures (12 degrees C) demonstrate that activation occurs with a time delay. A nonlinear least- squares analysis indicates that three closed kinetic states are necessary and sufficient to model activation. Derived time constants of activation (22 degrees C) ranged from 10 ms (+10 mV) to 2 ms (+70 mV). Within the framework of Hodgkin-Huxley formalism, Ito gating can be described using an a3i formulation.  相似文献   

14.
Gating currents were measured by subtracting the linear component of the capacitative current recorded at very positive or very negative potentials. When the membrane is depolarized for a few minutes, repolarized to the usual holding potential (HP) of --70 mV for 1 ms, and then pulsed to 0 mV, the charge transferred in 2--4 ms is approximately 50% of that which was transferred during the same pulse holding at --70 mV. This charge decrease, called slow inactivation of the gating current, was found to be consistent with a shift of the charge vs. potential (Q-V) curve to more hyperpolarized potentials. When the HP is 0 mV, the total charge available to move is the same as the total charge available when the HP is --70 mV. The time constants of the fast component of the ON gating current are smaller at depolarized holding potentials than at --70 mV. When the HP is --70 mV and a prepulse of 50 ms duration is given to 0 mV, the Q-V curve is also shifted to more hyperpolarized potentials (charge immobilization), but the effect is not as pronounced as the one obtained by holding at 0 mV. When the HP is 0 mV, a prepulse to --70 mV for 50 ms partially shifts back the Q-V curve, indicating that fast inactivation of the gating charge may be recovered in the presence of slow inactivation. A physical model consisting of a gating particle that interacts with a fast inactivating particle, and a slow inactivating particle, reproduces most of the experimental results.  相似文献   

15.
External Ba2+ speeds the OFF gating currents (IgOFF) of Shaker K+ channels but only upon repolarization from potentials that are expected to open the channel pore. To study this effect we used a nonconducting and noninactivating mutant of the Shaker K+ channel, ShH4-IR (W434F). External Ba2+ slightly decreases the quantity of ON gating charge (QON) upon depolarization to potentials near -30 mV but has little effect on the quantity of charge upon stepping to more hyperpolarized or depolarized potentials. More strikingly, Ba2+ significantly increases the decay rate of IgOFF upon repolarization to -90 mV from potentials positive to approximately -55 mV. For Ba2+ to have this effect, the depolarizing command must be maintained for a duration that is dependent on the depolarizing potential (> 4 ms at -30 mV and > 1 ms at 0 mV). The actions of Ba2+ on the gating current are dose-dependent (EC50 approximately 0.2 mM) and are not produced by either Ca2+ or Mg2+ (2 mM). The results suggest that Ba2+ binds to a specific site on the Shaker K+ channel that destabilizes the open conformation and thus facilitates the return of gating charge upon repolarization.  相似文献   

16.
17.
The skeletal and cardiac muscle dihydropyridine receptors (DHPRs) differ with respect to their rates of channel activation and in the means by which they control Ca2+ release from the sarcoplasmic reticulum (Adams, B.A., and K.G. Beam. 1990. FASEB J. 4:2809-2816). We have examined the functional properties of skeletal (SkEIIIK) and cardiac (CEIIIK) DHPRs in which a highly conserved glutamate residue in the pore region of repeat III was mutated to a positively charged lysine residue. Using expression in dysgenic myotubes, we have characterized macroscopic ionic currents, intramembrane gating currents, and intracellular Ca2+ transients attributable to these two mutant DHPRs. CEIIIK supported very small inward Ca2+ currents at a few potentials (from -20 to +20 mV) and large outward cesium currents at potentials greater than +20 mV. SkEIIIK failed to support inward Ca2+ flux at any potential. However, large, slowly activating outward cesium currents were observed at all potentials greater than + 20 mV. The difference in skeletal and cardiac Ca2+ channel activation kinetics was conserved for outward currents through CEIIIK and SkEIIIK, even at very depolarized potentials (at +100 mV; SkEIIIK: tau(act) = 30.7 +/- 1.9 ms, n = 11; CEIIIK: tau(act) = 2.9 +/- 0.5 ms, n = 7). Expression of SkEIIIK in dysgenic myotubes restored both evoked contractions and depolarization-dependent intracellular Ca(2+) transients with parameters of voltage dependence (V(0.5) = 6.5 +/- 3.2 mV and k = 9.3 +/- 0.7 mV, n = 5) similar to those for the wild-type DHPR (Garcia, J., T. Tanabe, and K.G. Beam. 1994. J. Gen. Physiol. 103:125-147). However, CEIIIK-expressing myotubes never contracted and failed to exhibit depolarization-dependent intracellular Ca2+ transients at any potential. Thus, high Ca2+ permeation is required for cardiac-type excitation-contraction coupling reconstituted in dysgenic myotubes, but not skeletal-type. The strong rectification of the EIIIK channels made it possible to obtain measurements of gating currents upon repolarization to -50 mV (Qoff) following either brief (20 ms) or long (200 ms) depolarizing pulses to various test potentials. For SkEIIIK, and not CEIIK, Qoff was significantly (P < 0.001) larger after longer depolarizations to +60 mV (121.4 +/- 2.0%, n = 6). The increase in Qoff for long depolarizations exhibited a voltage dependence similar to that of channel activation. Thus, the increase in Q(off) may reflect a voltage sensor movement required for activation of L-type Ca2+ current and suggests that most DHPRs in skeletal muscle undergo this voltage-dependent transition.  相似文献   

18.
A slowly inactivating potassium current in native oocytes of Xenopus laevis   总被引:2,自引:0,他引:2  
Membrane currents were recorded in voltage-clamped oocytes of Xenopus laevis in response to voltage steps. We describe results obtained in oocytes obtained from one donor frog, which showed an unusually large outward current upon depolarization. Measurements of reversal potentials of tail currents in solutions of different K+ concentration indicated that this current is carried largely by K+ ions. It was strongly reduced by extracellular application of tetraethylammonium, though not by Ba2+ or 4-aminopyridine. Removal of surrounding follicular cells did not reduce the K+ current, indicating that it arises across the oocyte membrane proper. Activation of the K+ conductance was first detected with depolarization to about -12 mV, increased with a limiting voltage sensitivity of 3 mV for an e-fold change in current, and was half-maximally activated at about +10 mV. The current rose following a single exponential timecourse after depolarization, with a time constant that shortened from about 400 ms at -10 mV to about 15 ms at +80 mV. During prolonged depolarization the current inactivated with a time constant of about 4 s, which did not alter greatly with potential. The K+ current was independent of Ca2+, as it was not altered by addition of 10 mM Mn2+ to the bathing medium, or by intracellular injection of EGTA. Noise analysis of K+ current fluctuations indicated that the current is carried by channels with a unitary conductance of about 20 ps and a mean open lifetime of about 300 ms (at room temperature and potential of +10 to +20 mV).  相似文献   

19.
Ion permeation and gating kinetics of voltage-gated K channels critically depend on the amino-acid composition of the cavity wall. Residue 470 in the Shaker K channel is an isoleucine, making the cavity volume in a closed channel insufficiently large for a hydrated K(+) ion. In the cardiac human ether-a-go-go-related gene channel, which exhibits slow activation and fast inactivation, the corresponding residue is tyrosine. To explore the role of a tyrosine at this position in the Shaker channel, we studied I470Y. The activation became slower, and the inactivation faster and more complex. At +60 mV the channel inactivated with two distinct rates (tau(1) = 20 ms, tau(2) = 400 ms). Experiments with tetraethylammonium and high K(+) concentrations suggest that the slower component was of the P/C-type. In addition, an inactivation component with inverted voltage dependence was introduced. A step to -40 mV inactivates the channel with a time constant of 500 ms. Negative voltage steps do not cause the channel to recover from this inactivated state (tau > 10 min), whereas positive voltage steps quickly do (tau = 2 ms at +60 mV). The experimental findings can be explained by a simple branched kinetic model with two inactivation pathways from the open state.  相似文献   

20.
Fast inactivation causes rectification of the IKr channel   总被引:7,自引:0,他引:7       下载免费PDF全文
The mechanism of rectification of HERG, the human cardiac delayed rectifier K+ channel, was studied after heterologous expression in Xenopus oocytes. Currents were measured using two-microelectrode and macropatch voltage clamp techniques. The fully activated current- voltage (I-V) relationship for HERG inwardly rectified. Rectification was not altered by exposing the cytoplasmic side of a macropatch to a divalent-free solution, indicating this property was not caused by voltage-dependent block of outward current by Mg2+ or other soluble cytosolic molecules. The instantaneous I-V relationship for HERG was linear after removal of fast inactivation by a brief hyperpolarization. The time constants for the onset of and recovery from inactivation were a bell-shaped function of membrane potential. The time constants of inactivation varied from 1.8 ms at +50 mV to 16 ms at -20 mV; recovery from inactivation varied from 4.7 ms at -120 mV to 15 ms at -50 mV. Truncation of the NH2-terminal region of HERG shifted the voltage dependence of activation and inactivation by +20 to +30 mV. In addition, the rate of deactivation of the truncated channel was much faster than wild-type HERG. The mechanism of HERG rectification is voltage-gated fast inactivation. Inactivation of channels proceeds at a much faster rate than activation, such that no outward current is observed upon depolarization to very high membrane potentials. Fast inactivation of HERG and the resulting rectification are partly responsible for the prolonged plateau phase typical of ventricular action potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号