首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity for indirect shoot organogenesis of leaf and root explants of four Dieffenbachia cultivars were examined on a modified Murashige and Skoog (MS; Physiol Plant 15:473–495, 1962) medium supplemented with different plant growth regulators in 112 combinations. Callus formation was only observed from leaf explants on MS supplemented with 1–10 μM thidiazuron (TDZ) and 0.5–1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D) regardless of cultivars. The combination of 5 μM TDZ and 1 μM 2,4-D resulted in the greatest callus formation frequency among the four cultivars tested. Significant differences in callus and shoot formation from leaf explants were also observed among cultivars. Cultivars Camouflage, Camille, Octopus, and Star Bright produced green nodular, brown nodular, yellow friable, and green compact calli with corresponding maximum callus formation frequencies of 96%, 62%, 54%, and 52%, respectively. A maximum of 6.7 shoots/callus was observed in cv. Camouflage, followed by cvs. Camille and Star Bright at 3.7 and 3.5, respectively. Calli of cv. Octopus displayed no capacity for shoot organogenesis. Regardless of cultivar, callus formation was not observed on root explants. Regenerated shoots were successfully acclimatized in a shaded greenhouse condition with 100% survival.  相似文献   

2.
A novel protocol for indirect shoot organogenesis of Dieffenbachia cv. Camouflage was established using leaf explants excised from in vitro shoot cultures. The frequency of callus formation reached 96% for explants cultured on Murashige and Skoog (1962) basal medium supplemented with 5 μM thidiazuron and 1 μM 2,4-dichlorophenozyacetic acid. The number of shoots regenerated was high, with up to 7.9 shoots produced per callus cultured on basal medium supplemented with 40 μM N 6-(Δ2-isopentenyl)adenine and 2 μM indole-3-acetic acid. Regenerated shoots rooted well in a soilless substrate, acclimatized ex vitro at 100%, and grew vigorously under shaded greenhouse conditions. Somaclonal variations in leaf variegation, color, and morphology have been observed in regenerated plants.  相似文献   

3.
Agave americana L. callus were exposed to different concentrations of ethyl methanesulphonate (EMS) 0, 15, 30, 45 and 60 mM and to different times of exposure (2 and 4 h). The viability and capacity of shoot formation were shown to be affected when the callus were exposed to high concentrations (30–60 mM). Only the callus exposed to 15 mM EMS presented shoot formation; the exposure time of two hours produced the largest quantity of shoots regenerated per callus (21 shoots/callus). In order to generate somaclonal variants resistant to Fusarium oxysporum, a selection pressure was applied through of a culture filtrate (CF) of 100 ppm of the fungus. This was made in callus obtained in the treatment with 15 mM EMS during 2 h of exposure. The CF caused oxidation and necrosis in 71.25% of the callus; however, they were capable of generating shoots (3.5 shoots/callus). Molecular markers type RAPD, ISSR and DAMD were used to evaluate the genetic variation arising from the mutations caused by EMS on control plants and 16-month-old somaclonal variants. The polymorphic information content (PIC) for each one of the initiating groups was: 0.28 (DAMD), 0.09 (ISSR) and 0.14 (RAPD). DAMD revealed a greater percentage of polymorphism than RAPD and ISSR. Polymorphic bands were detected in the somaclonal variants. This indicated that the EMS caused genetic variation in the regenerated plants conferring resistance to them against Fusarium oxysporum.  相似文献   

4.
Summary Tissue culture of the Zea mays inbred line A188 resulted in the regeneration of plants having a high level of phenotypic variation compared to seed-grown control plants. To determine how such variation was induced and whether this could be related to specific in vitro culture methods, callus cultures were established and maintained on different, commonly used culture media. Plants were regenerated and the genomic DNA of callus cultures and regenerants analysed for RFLP differences. The results show that regardless of the gene probe used, callus formation resulted in significant deviations from the DNA pattern normally found in seed-grown control plants. Alterations in gene copy number also occurred. As differentiation and organogenesis began, the level of DNA variation fell, and most of the regenerated plants showed a genetic similarity to the controls; those with RFLP differences were the somaclonal variants.  相似文献   

5.
Summary Development of an efficient transformation method for recalcitrant crops such as sugar beet (Beta vulgaris L.) depends on identification of germplasm with relatively high regeneration potential. Individual plants of seven sugar beet breeding lines were screened for their ability to form adventitious shoots on leaf disk callus. Disks were excised from the first pair of true leaves of 3-wk-old seedlings or from partially expanded leaves of 8-mo.-old plants and cultured on medium with 4.4 μM 6-benzylaminopurine for 10 wk. At 5 wk of culture, friable calluses and adventitious shoots began to develop. Rates of callus and shoot formation varied between breeding lines and between individual plants of the same line. Line FC607 exhibited the highest percentage (61%) of plants that regenerated shoots on explants. Among the plants with a positive shoot regeneration response, line FC607 also had the highest mean number (8.3±1.1) of shoots per explant. Individual plants within each line exhibited a wide range of percentages of explants that regenerated shoots. A similar variation was observed in the number of shoots that regenerated per explant of an individual plant. No loss of regeneration potential was observed on selected plants maintained in the greenhouse for 3 yr. Regenerated plants exhibited normal phenotypes and regeneration abilities comparable to the respective source plants. Based on our results, it is imperative to screen a large number of individual plants within sugar beet breeding lines in order to identify the high regenerators for use in molecular breeding and improvement programs.  相似文献   

6.
 A method was developed to maintain plant regeneration activity of rice cells (Oryza sativa L.) using embryogenic callus. Calluses were cultured in suspension, then on solid medium, to form compact globular callus resistant to low-temperature stress and with high plant regeneration activity. Callus preserved at 5  °C for 5 months regenerated plants from protoplasts at a frequency higher than from non-preserved callus from cv. Nipponbare, and cv. Koshihikari, but at lower rates from cv. Akitakomachi. Similar results were obtained from protoplasts of the three cultivars. Callus preserved at 5  °C for 8 months incurred cell damage, yet some surviving cells divided in suspension culture and eventually regenerated whole plants. Preserved and non-preserved regenerated plants showed similar levels of somaclonal variation. Received: 7 January 1999 / Revision received: 28 April 1999 / Accepted: 26 May 1999  相似文献   

7.
Several hundred somaclones established from plants regenerated from embryogenic callus cultures of six high tannin sorghum lines were screened for variants with altered levels of polyphenols in the grain. Grain from over 6000 plants including the R 1 (primary), R2, and R3 generations were analyzed for total phenols, flavan-4-ols, and proanthocyanidins (condensed tannins). Although many variants which had lost the ability to synthesize chlorophyll were found, none of the somaclones tested had lost or greatly reduced the ability to synthesize any of the polyphenols assayed. However, we did observe statistically significant differences in polyphenol concentration between tissue culture-derived R1 plants and the parental controls. In the R2 generation the proportion of somaclones which differed significantly from the parents varied from 47% to 68% depending upon genotype. The average somaclonal variation rate and somaclonal variant frequency estimated in the tested population for the three polyphenol characteristics ranged from 37.3% to 40.7% and 5.3% to 7.8%, respectively. Variants with decreased levels of polyphenols were usually epigenetic and reverted back to normal levels in subsequent generations, but those with increased levels usually persisted after two meiotic cycles, indicating they are heritable. Variants with polyphenol levels increased up to 80% or decreased by 30% were selected for in the R3 generation.  相似文献   

8.
The effect of plant growth regulator concentrations and ageing of callus on the extent and nature of variation among callus culture regenerants of strawberry (Fragaria × ananassa) cv. Redcoat was examined. Plants regenerated from callus culture had reduced plant vigour, shorter petiole length and smaller leaf size, but more leaves and runners under greenhouse conditions. These responses appeared to be due to a physiological influence of plant growth regulators. No distinct phenotypic variants were observed at plant growth regulator concentrations in the range of 1–10 M each of BA and 2,4-d combination, but the highest concentration (20 M each) of this combination produced a high frequency (10%) of dwarf type variants. The dwarf nature of these variants was maintained in the runner plants produced by the primary regenerants. The plants regenerated from 8-week-old calli did not show any distinct morphological variants. However, a significant proportion of deformed leaf shape (6–13%) and yellow leaf (21–29%) variants was obtained among plants regenerated from 16 and 24-week-old calli. The primary regenerants of the leaf shape variants were established as chimeras. The chimeric plants produced runner progeny with normal plants and plants with completely distorted leaf morphology. Both leaf shape and yellow leaf variants remained stable through runner propagation. Isozyme analysis failed to distinguish any of the variants from the standard runner plants. Flow cytometric analysis indicated the aneuploid nature of leaf shape variants but it could not distinguish dwarf and yellow leaf variants from standard runner plants.  相似文献   

9.
Two successive cycles of mature embryo-derived callus culture separated by one cycle of sexual reproduction of R0 regenerated plants were performed using two rice (Oryza sativa L.) cultivars in order to gain information upon the nature of somaclonal variation in this species. Plants regenerated after one cycle of tissue culture exhibited higher variability and lower performances than those of initial cultivar. A second cycle performed using R1 embryos as explants showed that the cellular component of salt resistance in terms of growth and regenerating abilities selected during the first cycle could be transmitted to the progenies. The extent and the nature of somaclonal variation depended on the identity of R0 mother plant and culture conditions, somaclonal variation being strongly reduced in some families obtained from salt-treated calli.  相似文献   

10.
Summary Embryogenic callus of Anliucheng sweet orange (Citrus sinensis Osbeck) is theoretically diploid. However, significant chromosomal variations occurred when the calluses were subcultured and preserved for a long time. Cytological observation revealed a variety of mitotic irregularities underlying the occurrence of chromosomal variations. Despite the ubiquitous existence of chromosomal variations, long-term-cultured calluses were still capable of producing somatic embryos and plants. Interestingly, chromosomal variants were selected against when somatic embryos and plants regenerated from the embryogenic callus. Randomly amplified polymorphic DNA (RAPD) analysis was also carried out to detect DNA sequence variation in regenerated plants derived from the embryogenic callus. No difference in banding patterns was detected. It was clear that the plant regeneration from long-term-cultured callus was inclined to select against somaclonal variations.  相似文献   

11.
The production of strawberry plants from callus cultures   总被引:1,自引:0,他引:1  
Shoots were regenerated from callus of the commercially important strawberry varieties Bogota, Brighton, Cambridge Favourite, Hapil, Ostara, Rapella, Red Gauntlet and JILA33 which is a promising selection from a current breeding programme.The callus was initiated from explants of petiole or lamina of leaves of micropropagated shoots in vitro or of lamina or peduncle from greenhouse plants. There was more shoot regeneration with callus from lamina than from petiole although with the variety Hapil, regeneration occurred only with callus from peduncle.With seven of the varieties, shoot regeneration occurred on culture media with BAP and 2,4-D whilst with the remaining variety, Cambridge Favourite, it occurred only with medium which contained 1AA- alanine conjugate in place of 2,4-D.Regenerated shoots rooted readily and the plants produced are being studied for somaclonal variation.  相似文献   

12.
Comparative hybridization analyses of total DNA from fertile and cytoplasmic male-sterile (CMS) triticale plants which had been regenerated from embryogenic callus cultures revealed the organization and variation of the mitochondrial atp6 gene region. In order to compare different developmental phases, we analysed mitochondrial DNA (mtDNA) from both the shoots and full-grown regenerants. Somaclonal variants were identified on the basis of differences in the mtDNA from fertile and CMS triticale. Several shoots as well as all of the full-grown plants analysed showed somaclonal variation. This phenomenon could be traced back to having primarily orginated from the influence of the nuclear background, which give rise to a stoichiometric increase in a rye-specific orf25 gene copy, and a tissue culture-induced combination of fertile and CMS-specific mtDNA organization of the atp6 gene area. The latter event is probably caused by the homologous recombination of repetitive sequences that may be accompanied by selective amplifications.  相似文献   

13.
The organ-specific somaclonal variation means the differences between the variability of somaclones originated from different somatic tissue of plant. Significant differences in some agronomical characters were achieved among somaclones of seed and plumule meristem origin. The ploidy-dependent somaclonal variation means the differences between the variability of somaclones originated from different ploidy-level tissue. Increased variation among regenerated plants was postulated by origin from cultured cells of reduced ploidy level. The comparison of somaclonal variation in the progenies of diploid plants regenerated from callus of haploid and diploid origin supported the ploidy dependent theory. The pollenhaploid somaclone method (PHS-method) was developed and tested for utilization somaclonal variation in rice breeding. The PHS-method comprises the two well-known and widely applied in vitro methods which are the androgenesis (another culture) and genetic instability of cultured haploid somatic cells (callus cultures). Developmental varieties produced by this breeding sheme are under certification in Hungary.  相似文献   

14.
Summary In a micropropagation program, where it is of paramount importance to produce true-to-type planting material, somaclonal variation of any kind is undesirable. Variation among plants regenerated from tissue culture is termed ‘somaclonal variation’. In banana, somaclonal variants of different type have been reported with regard to plant morphology. This article discusses various factors due to which somaclonal variations may arise. Somaclonal variation may be detected by visual screening or by using molecular markers such as randomly amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and by cytological studies. Although somaclonal variation is undesirable in the context of micropropagation, it can be used to advantage for genetic improvement of banana, as has been described.  相似文献   

15.
An efficient callus suspension culture and regeneration system in a triploid bermudagrass (Cynodon dactylon × C. transvaalensis cv. Tifeagle) was studied in this report. Proline improved callus proliferation, but had no effect on regeneration. 0.6–1.2 mg l−1 BA improved regeneration, but higher concentrations of BA (≤1.2 mg l−1) resulted in the production of rootless plantlets. The embryogenic calli were able to proliferate continuously for at least 2 years with regeneration ability through the established suspension culture system. Observations with scanning electron microscope and light microscope showed somatic embryogenesis during the regeneration. Somaclonal variations were observed in regenerated plants. More than 2000 regenerants were screened for drought tolerance in the greenhouse, from which seven lines appeared to have increased drought tolerance relative to their parental variety. It is suggested that somaclonal variation in triploid bermudagrass offers an effective tool for its breeding.  相似文献   

16.

Background  

Vanilla planifolia is an important Orchid commercially cultivated for the production of natural vanilla flavour. Vanilla plants are conventionally propagated by stem cuttings and thus causing injury to the mother plants. Regeneration and in vitro mass multiplication are proposed as an alternative to minimize damage to mother plants. Because mass production of V. planifolia through indirect shoot differentiation from callus culture is rare and may be a successful use of in vitro techniques for producing somaclonal variants, we have established a novel protocol for the regeneration of vanilla plants and investigated the initial biochemical and molecular mechanisms that trigger shoot organogenesis from embryogenic/organogenic callus.  相似文献   

17.
Summary Cytogenetic analysis of immature embryoderived calli and regenerated plants of barley has demonstrated high heterogeneity of callus cultures and significant differences in cytogenetic processes between different callus lines. Regenerated plants usually have a normal chromosome complement (2n=14). Tetraploid plaints occur with a frequency of 1%. No chromosome aberrations have been detected by Feulgen staining. The phenomenon of chromosome stickiness recorded from the 2nd day of culture was discovered in a majority of callus lines as well as the phenomena of chromatin hypercondensation and chromosome supercoiling. A possible contribution of cytogenetic and molecular processes to somaclonal variation is discussed.  相似文献   

18.
In vitro breeding and somaclonal variation were used as tools to improve the potential of Indian mustard (Brassica juncea L.) to extract and accumulate toxic metals. Calli from B. juncea were cultivated on a modified MS medium supplemented with 10–200 μM Cd or Pb. Afterwards, new B. juncea somaclones were regenerated from metal-tolerant callus cells. Three different phenotypes with improved tolerance of Cd, Zn and Pb were observed under hydroponic conditions: enhanced metal accumulation in both shoots and roots; limited metal translocation from roots to shoots; reduced accumulation in shoots and roots. Seven out of thirty individual variants showed a significantly higher metal extraction than the control plants. The improvement of metal shoot accumulation of the best regenerant (3× Cd, 1.6× Zn, 1.8× Pb) and metal extraction (6.2× Cd, 3.2× Zn, 3.8× Pb) indicated a successful breeding and selection of B. juncea, which could be used for phytoremediation purpose.  相似文献   

19.
Plants regenerated from callus cultures derived from leaf discs and mesophyll protoplasts ofPetunia hybrida cv. Rose of Heaven exhibit a high frequency of genetic and chromosomal variation. Of twelve leaf disc-derived plants examined, only three had the normal diploid chromosome number (2n=14) while seven were tetraploid and two were aneuploid (16 and 27 chromosomes). Of seventeen plants derived from two protoplasts, none had the diploid chromosome number. Most had 28 chromosomes, one 29, two 27, one 26 and one had variable numbers (14–28) in different root tip cells. In all cases aneuploidy was associated with developmental abnormality. In addition, heritable differences in growth, morphology and flower pigmentation were observed in callus-derived tetraploids and diploids, including one diploid which differed from parent plants in at least four characters. These results are discussed in terms of the importance ofPetunia in genetics research and for studies of somaclonal variation.  相似文献   

20.
Plants regenerated from seed-derived callus of a PNMS 6B line of pearl millet (Pennisetum glaucum (L.) R. Br.) were evaluated for their resistance induced by somaclonal variation for downy mildew disease caused by Sclerospora graminicola (Sacc.) Schroter. Among the 201 lines regenerated, only 3 lines consistently proved highly resistant (free from disease incidence) for up to 5 generations; whereas, 17 lines were resistant (disease incidence ranging from 1 to 9%). Resistance was confirmed by testing the plants under both laboratory and field conditions. The plants were evaluated for their agronomic traits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号