首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
2.
3.
4.
Autophagy has an important function in cellular homeostasis. In recent years autophagy has been implicated in plant basal immunity and assigned negative (“anti-death”) and positive (“pro-death”) regulatory functions in controlling cell death programs that establish sufficient immunity to microbial infection. We recently showed that Arabidopsis mutants lacking the autophagy-associated (ATG) genes ATG5, ATG10 and ATG18a are compromised in their resistance towards infection with necrotrophic fungal pathogens but display an enhanced resistance towards biotrophic bacterial invaders. Thus, the function of autophagy as either being pro-death or anti-death depends critically on the lifestyle and infection strategy of invading microbes. Here we show that ATG7 contributes to resistance to fungal pathogens. Genetic inactivation of ATG7 results in elevated susceptibility towards the necrotrophic fungal pathogen, Alternaria brassicicola, with atg7 mutants developing spreading necrosis accompanied by production of reactive oxygen intermediates. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in the atg7 mutant. We conclude that ATG7-dependent autophagy constitutes an “anti-death” (“pro-survival”) plant mechanism to control the containment of cell death and immunity to necrophic fungal infection.Key words: autophagy, ATG7, basal immunity, fungal resistance, arabidopsisPlants have evolved a bipartite plant immune system to cope with microbial infections. The first layer of defense relies on the recognition of pathogen-associated molecular patterns (PAMP) by pattern-recognition receptors (PAMP-triggered immunity, PTI).1,2 To overcome this defense strategy, successful pathogens deliver so-called effector proteins into plant cells to modify host cellular processes and to suppress immune responses to enhance virulence. The presence or activities of these microbial effectors is sensed by plant resistance proteins and triggers the second layer of defense, the effector-triggered immunity (ETI).1,2 In contrast to PTI, ETI is most often accompanied by programmed host cell death (PCD) at the site of attempted microbial invasion; however the molecular basis of this apoptosis-like hypersensitive response (HR) is largely unknown.In recent years evidence accumulated that a non-apoptotic form of cell death called autophagy is not only involved in animal PCD and innate immunity3 but is also an important component in the plant basal immune response.4 Generally, autophagy (auto, meaning “self” and phagy, “to eat”) is a cytoplasmic bulk degradation process in which cellular components are targeted to lysosomal or vacuolar degradation. This process is ubiquitous in eukaryotic organisms and is considered to aid cellular survival, differentiation, development and homeostasis by nutrient recycling or removal of damaged or toxic materials.57  相似文献   

5.
America’s obesity epidemic has gathered much media attention recently. A rise in the percent of the population who are obese coincides with an increase in the widespread use of non-caloric artificial sweeteners, such as aspartame (e.g., Diet Coke) and sucralose (e.g., Pepsi One), in food products (Figure 1). Both forward and reverse causalities have been proposed [1,2]. While people often choose “diet” or “light” products to lose weight, research studies suggest that artificial sweeteners may contribute to weight gain. In this mini-review, inspired by a discussion with Dr. Dana Small at Yale’s Neuroscience 2010 conference in April, I first examine the development of artificial sweeteners in a historic context. I then summarize the epidemiological and experimental evidence concerning their effects on weight. Finally, I attempt to explain those effects in light of the neurobiology of food reward.Open in a separate windowFigure 1Time line of artificial sweetener use and obesity trends in the United States. Blue line: changes in the percentage of the population who are obese (BMI >30) from 1961 to 2006. Source: National Health and Nutrition Examination Survey [57]. Orange line: changes in the percentage of the population who are regular artificial sweetener users from 1965 to 2004. Source: National Household Survey [2]. Purple line: changes in the number of new artificial sweetener containing food products introduced to the American market from 1999 to 2004. Source: Mintel Market Analysis [14]. Bars below the time axis indicates the type and availability of artificial sweeteners in the United States over time. Source: Kroger et al [9].  相似文献   

6.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

7.
8.
Elixirs of death     
Substandard and fake drugs are increasingly threatening lives in both the developed and developing world, but governments and industry are struggling to improve the situation.When people take medicine, they assume that it will make them better. However many patients cannot trust their drugs to be effective or even safe. Fake or substandard medicine is a major public health problem and it seems to be growing. More than 200 heart patients died in Pakistan in 2012 after taking a contaminated drug against hypertension [1]. In 2006, cough syrup that contained diethylene glycol as a cheap substitute for pharmaceutical-grade glycerin was distributed in Panama, causing the death of at least 219 people [2,3]. However, the problem is not restricted to developing countries. In 2012, more than 500 patients came down with fungal meningitis and several dozens died after receiving contaminated steroid injections from a compounding pharmacy in Massachusetts [4]. The same year, a fake version of the anti-cancer drug Avastin, which contained no active ingredient, was sold in the USA. The drug seemed to have entered the country through Turkey, Switzerland, Denmark and the UK [5].…many patients cannot trust their drugs to be effective or even safeThe extent of the problem is not really known, as companies and governments do not always report incidents [6]. However, the information that is available is alarming enough, especially in developing countries. One study found that 20% of antihypertensive drugs collected from pharmacies in Rwanda were substandard [7]. Similarly, in a survey of anti-malaria drugs in Southeast Asia and sub-Saharan Africa, 20–42% were found to be either of poor quality or outright fake [8], whilst 56% of amoxicillin capsules sampled in different Arab countries did not meet the US Pharmacopeia requirements [9].Developing countries are particularly susceptible to substandard and fake medicine. Regulatory authorities do not have the means or human resources to oversee drug manufacturing and distribution. A country plagued by civil war or famine might have more pressing problems—including shortages of medicine in the first place. The drug supply chain is confusingly complex with medicines passing through many different hands before they reach the patient, which creates many possible entry points for illegitimate products. Many people in developing countries live in rural areas with no local pharmacy, and anyway have little money and no health insurance. Instead, they buy cheap medicine from street vendors at the market or on the bus (Fig 1; [2,10,11]). “People do not have the money to buy medicine at a reasonable price. But quality comes at a price. A reasonable margin is required to pay for a quality control system,” explained Hans Hogerzeil, Professor of Global Health at Groningen University in the Netherlands. In some countries, falsifying medicine has developed into a major business. The low risk of being detected combined with relatively low penalties has turned falsifying medicine into the “perfect crime” [2].Open in a separate windowFigure 1Women sell smuggled, counterfeit medicine on the Adjame market in Abidjan, Ivory Coast, in 2007. Fraudulent street medecine sales rose by 15–25% in the past two years in Ivory Coast.Issouf Sanogo/AFP Photo/Getty Images.There are two main categories of illegitimate drugs. ‘Substandard'' medicines might result from poor-quality ingredients, production errors and incorrect storage. ‘Falsified'' medicine is made with clear criminal intent. It might be manufactured outside the regulatory system, perhaps in an illegitimate production shack that blends chalk with other ingredients and presses it into pills [10]. Whilst falsified medicines do not typically contain any active ingredients, substandard medicine might contain subtherapeutic amounts. This is particularly problematic when it comes to anti-infectious drugs, as it facilitates the emergence and spread of drug resistance [12]. A sad example is the emergence of artemisinin-resistant Plasmodium strains at the Thai–Cambodia border [8] and the Thai–Myanmar border [13], and increasing multidrug-resistant tuberculosis might also be attributed to substandard medication [11].Many people in developing countries live in rural areas with no local pharmacy, and anyway have little money and no health insuranceEven if a country effectively prosecutes falsified and substandard medicine within its borders, it is still vulnerable to fakes and low-quality drugs produced elsewhere where regulations are more lax. To address this problem, international initiatives are urgently required [10,14,15], but there is no internationally binding law to combat counterfeit and substandard medicine. Although drug companies, governments and NGOs are interested in good-quality medicines, the different parties seem to have difficulties coming to terms with how to proceed. What has held up progress is a conflation of health issues and economic interests: innovator companies and high-income countries have been accused of pushing for the enforcement of intellectual property regulations under the guise of protecting quality of medicine [14,16].The concern that intellectual property (IP) interests threaten public health dates back to the ‘Trade-Related Aspects of Intellectual Property Rights (TRIPS) Agreement'' of the World Trade Organization (WTO), adopted in 1994, to establish global protection of intellectual property rights, including patents for pharmaceuticals. The TRIPS Agreement had devastating consequences during the acquired immunodeficiency syndrome epidemic, as it blocked patients in developing countries from access to affordable medicine. Although it includes flexibility, such as the possibility for governments to grant compulsory licenses to manufacture or import a generic version of a patented drug, it has not always been clear how these can be used by countries [14,16,17].In response to public concerns over the public health consequences of TRIPS, the Doha Declaration on the TRIPS Agreement and Public Health was adopted at the WTO''s Ministerial Conference in 2001. It reaffirmed the right of countries to use TRIPS flexibilities and confirmed the primacy of public health over the enforcement of IP rights. Although things have changed for the better, the Doha Declaration did not solve all the problems associated with IP protection and public health. For example, anti-counterfeit legislation, encouraged by multi-national pharmaceutical industries and the EU, threatened to impede the availability of generic medicines in East Africa [14,16,18]. In 2008–2009, European customs authorities seized shipments of legitimate generic medicines in transit from India to other developing countries because they infringed European IP laws [14,16,17]. “We''re left with decisions being taken based on patents and trademarks that should be taken based on health,” commented Roger Bate, a global health expert and resident scholar at the American Enterprise Institute in Washington, USA. “The health community is shooting themselves in the foot.”Conflating health care and IP issues are reflected in the unclear use of the term ‘counterfeit'' [2,14]. “Since the 1990s the World Health Organization (WHO) has used the term ‘counterfeit'' in the sense we now use ‘falsified'',” explained Hogerzeil. “The confusion started in 1995 with the TRIPS agreement, through which the term ‘counterfeit'' got the very narrow meaning of trademark infringement.” As a consequence, an Indian generic, for example, which is legal in some countries but not in others, could be labelled as ‘counterfeit''—and thus acquire the negative connotation of bad quality. “The counterfeit discussion was very much used as a way to block the market of generics and to put them in a bad light,” Hogerzeil concluded.The rifts between the stakeholders have become so deep during the course of these discussions that progress is difficult to achieve. “India is not at all interested in any international regulation. And, unfortunately, it wouldn''t make much sense to do anything without them,” Hogerzeil explained. Indeed, India is a core player: not only does it have a large generics industry, but also the country seems to be, together with China, the biggest source of fake medical products [19,20]. The fact that India is so reluctant to react is tragically ironic, as this stance hampers the growth of its own generic companies like Ranbaxy, Cipla or Piramal. “I certainly don''t believe that Indian generics would lose market share if there was stronger action on public health,” Bate said. Indeed, stricter regulations and control systems would be advantageous, because they would keep fakers at bay. The Indian generic industry is a common target for fakers, because their products are broadly distributed. “The most likely example of a counterfeit product I have come across in emerging markets is a counterfeit Indian generic,” Bate said. Such fakes can damage a company''s reputation and have a negative impact on its revenues when customers stop buying the product.The WHO has had a key role in attempting to draft international regulations that would contain the spread of falsified and substandard medicine. It took a lead in 2006 with the launch of the International Medical Products Anti-Counterfeiting Taskforce (IMPACT). But IMPACT was not a success. Concerns were raised over the influence of multi-national drug companies and the possibility that issues on quality of medicines were conflated with the attempts to enforce stronger IP measures [17]. The WHO distanced itself from IMPACT after 2010. For example, it no longer hosts IMPACT''s secretariat at its headquarters in Geneva [2].‘Substandard'' medicines might result from poor quality ingredients, production errors and incorrect storage. ‘Falsified'' medicine is made with clear criminal intentIn 2010, the WHO''s member states established a working group to further investigate how to proceed, which led to the establishment of a new “Member State mechanism on substandard/spurious/falsely labelled/falsified/counterfeit medical products” (http://www.who.int/medicines/services/counterfeit/en/index.html). However, according to a publication by Amir Attaran from the University of Ottawa, Canada, and international colleagues, the working group “still cannot agree how to define the various poor-quality medicines, much less settle on any concrete actions” [14]. The paper''s authors demand more action and propose a binding legal framework: a treaty. “Until we have stronger public health law, I don''t think that we are going to resolve this problem,” Bate, who is one of the authors of the paper, said.Similarly, the US Food and Drug Administration (FDA) commissioned the Institute of Medicine (IOM) to convene a consensus committee on understanding the global public health implications of falsified and substandard pharmaceuticals [2]. Whilst others have called for a treaty, the IOM report calls on the World Health Assembly—the governing body of the WHO—to develop a code of practice such as a “voluntary soft law” that countries can sign to express their will to do better. “At the moment, there is not yet enough political interest in a treaty. A code of conduct may be more realistic,” Hogerzeil, who is also on the IOM committee, commented. Efforts to work towards a treaty should nonetheless be pursued, Bate insisted: “The IOM is right in that we are not ready to sign a treaty yet, but that does not mean you don''t start negotiating one.”Whilst a treaty might take some time, there are several ideas from the IOM report and elsewhere that could already be put into action to deal with this global health threat [10,12,14,15,19]. Any attempts to safeguard medicines need to address both falsified and substandard medicines, but the counter-measures are different [14]. Falsifying medicine is, by definition, a criminal act. To counteract fakers, action needs to be taken to ensure that the appropriate legal authorities deal with criminals. Substandard medicine, on the other hand, arises when mistakes are made in genuine manufacturing companies. Such mistakes can be reduced by helping companies do better and by improving quality control of drug regulatory authorities.Manufacturing pharmaceuticals is a difficult and costly business that requires clean water, high-quality chemicals, expensive equipment, technical expertise and distribution networks. Large and multi-national companies benefit from economies of scale to cope with these problems. But smaller companies often struggle and compromise in quality [2,21]. “India has 20–40 big companies and perhaps nearly 20,000 small ones. To me, it seems impossible for them to produce at good quality, if they remain so small,” Hogerzeil explained. “And only by being strict, can you force them to combine and to become bigger industries that can afford good-quality assurance systems.” Clamping down on drug quality will therefore lead to a consolidation of the industry, which is an essential step. “If you look at Europe and the US, there were hundreds of drug companies—now there are dozens. And if you look at the situation in India and China today, there are thousands and that will have to come down to dozens as well,” Bate explained.…innovator companies and high-income countries have been accused of pushing for the enforcement of intellectual property regulations under the guise of protecting […] medicineIn addition to consolidating the market by applying stricter rules, the IOM has also suggested measures for supporting companies that observe best practices [2]. For example, the IOM proposes that the International Finance Corporation and the Overseas Private Investment Corporation, which promote private-sector development to reduce poverty, should create separate investment vehicles for pharmaceutical manufacturers who want to upgrade to international standards. Another suggestion is to harmonize market registration of pharmaceutical products, which would ease the regulatory burden for generic producers in developing countries and improve the efficiency of regulatory agencies.Once the medicine leaves the manufacturer, controlling distribution systems becomes another major challenge in combatting falsified and substandard medicine. Global drug supply chains have grown increasingly complicated; drugs cross borders, are sold back and forth between wholesalers and distributers, and are often repackaged. Still, there is a main difference between developing and developed countries. In the latter case, relatively few companies dominate the market, whereas in poorer nations, the distribution system is often fragmented and uncontrolled with parallel schemes, too few pharmacies, even fewer pharmacists and many unlicensed medical vendors. Every transaction creates an opportunity for falsified or substandard medicine to enter the market [2,10,19]. More streamlined and transparent supply chains and stricter licensing requirements would be crucial to improve drug quality. “And we can start in the US,” Hogerzeil commented.…India is a core player: not only does it have a large generics industry, but the country also seems to be, together with China, the biggest source of fake medical productsDistribution could be improved at different levels, starting with the import of medicine. “There are states in the USA where the regulation for medicine importation is very lax. Anyone can import; private clinics can buy medicine from Lebanon or elsewhere and fly them in,” Hogerzeil explained. The next level would be better control over the distribution system within the country. The IOM suggests that state boards should license wholesalers and distributors that meet the National Association of Boards of Pharmacy accreditation standards. “Everybody dealing with medicine has to be licensed,” Hogerzeil said. “And there should be a paper trail of who buys what from whom. That way you close the entry points for illegal drugs and prevent that falsified medicines enter the legal supply chain.” The last level would be a track-and-trace system to identify authentic drugs [2]. Every single package of medicine should be identifiable through an individual marker, such as a 3D bar code. Once it is sold, it is ticked off in a central database, so the marker cannot be reused.According to Hogerzeil, equivalent measures at these different levels should be established in every country. “I don''t believe in double standards”, he said. “Don''t say to Uganda: ‘you can''t do that''. Rather, indicate to them what a cost-effective system in the West looks like and help them, and give them the time, to create something in that direction that is feasible in their situation.”Nigeria, for instance, has demonstrated that with enough political will, it is possible to reduce the proliferation of falsified and substandard medicine. Nigeria had been a major source for falsified products, but things changed in 2001, when Dora Akunyili was appointed Director General of the National Agency for Food and Drug Administration and Control. Akunyili has a personal motivation for fighting falsified drugs: her sister Vivian, a diabetic patient, lost her life to fake insulin in 1988. Akunyili strengthened import controls, campaigned for public awareness, clamped down on counterfeit operations and pushed for harsher punishments [10,19]. Paul Orhii, Akunyili''s successor, is committed to continuing her work [10]. Although there are no exact figures, various surveys indicate that the rate of bad-quality medicine has dropped considerably in Nigeria [10].China is also addressing its drug-quality problems. In a highly publicized event, the former head of China''s State Food and Drug Administration, Zheng Xiaoyu, was executed in 2007 after he was found guilty of accepting bribes to approve untested medicine. Since then, China''s fight against falsified medicine has continued. As a result of heightened enforcement, the number of drug companies in China dwindled from 5,000 in 2004 to about 3,500 this year [2]. Moreover, in July 2012, more than 1,900 suspects were arrested for the sale of fake or counterfeit drugs.Quality comes at a price, however. It is expensive to produce high-quality medicine, and it is expensive to control the production and distribution of drugs. Many low- and middle-income countries might not have the resources to tackle the problem and might not see quality of medicine as a priority. But they should, and affluent countries should help. Not only because health is a human right, but also for economic reasons. A great deal of time and money is invested into testing the safety and efficacy of medicine during drug development, and these resources are wasted when drugs do not reach patients. Falsified and substandard medicines are a financial burden to health systems and the emergence of drug-resistant pathogens might make invaluable medications useless. Investing in the safety of medicine is therefore a humane and an economic imperative.  相似文献   

9.
Plants are complex living beings, extremely sensitive to environmental factors, continuously adapting to the ever changing environment. Emerging research document that plants sense, memorize, and process experiences and use this information for their adaptive behavior and evolution. As any other living and evolving systems, plants act as knowledge accumulating systems. Neuronal informational systems are behind this concept of organisms as knowledge accumulating systems because they allow the most rapid and efficient adaptive responses to changes in environment. Therefore, it should not be surprising that neuronal computation is not limited to animal brains but is used also by bacteria and plants. The journal, Plant Signaling & Behavior, was launched as a platform for exchanging information and fostering research on plant neurobiology in order to allow our understanding of plants in their whole integrated, communicative, and behavioral complexity.
I always go by official statistics because they are very carefully compounded and, even if they are false, we have no others …∼ Jaroslav Hašek, 1911
Key Words: plant neurobiology, sensory biology, behavior, biological complexity, evolution, signal integrationThis quotation of writer and mystificator Jaroslav Hašek is from his electorial speech aimed to get a seat in the Austro-Hungarian parliament for his imaginary political party ‘Moderate Progress within the Limits of the Law’ in 1911. It indicates how statistics can be misused for manipulation of public opinion, sometimes allegedly for general good. This quotation is partially relevant also for recent biology which is passing through a critical cross-road from reductionist-mechanistic concepts and methodologies towards the post-genomic, holistic, systems-based analysis of integrated and communicative hierarchic networks known as life processes.There is a message hidden in this Hašek''s aphorism. All those mathematical models, scientific theories and concepts, however appealing, harmonious and long-standing … but which do not correspond to reality …; inevitably will be ‘killed by ugly’ facts generated by scientific progress, and finally replaced by new models, theories, and concepts.1Despite the indisputable success of the reductionistic approach in providing many discoveries regarding single cells and their components, it is increasingly clear that promises of ‘mechanistic’ genocentric biology were just chimeras and that living organisms are much more complex than the sum of their constituents. Ernst Mayr, in his final opus, almost a testament published at his age of 100, strongly opposed the belief that the reductionism at the molecular level could help to explain the complexity of life. He stressed that the concept of biological “emergence”, which deals with the occurrence of unexpected features in complex living systems, is not fully accessible using only physical and chemical approaches.2Themes of hierarchy, continuity, and order dominated biology before the turn of the century, but these have in many cases been replaced by images of the workshop. Examples include such terms as ‘machineries’, ‘mechanistic understanding’, ‘mechanistic explanation’, ‘motors’, ‘machines’, ‘clocks’ etc. This shift may well reflect the characteristic style of our age. These concepts, although useful for mining of details, do not reveal the true complexity of life and can be misleading. Even a one-celled organism is made up of ‘millions’ of subcellular parts. Concerning the great complexity of unicellular creatures Ilya Prigogine (1973) wrote: “… but let us have no illusions, our research would still leave us quite unable to grasp the extreme complexity of the simplest of organism.”3 Moreover, eukaryotic cell proved to be, in fact, ‘cells within cell’,48 while there are numerous supracellular situations, the most dramatic one is represented by plants when all cells are interconnected via plasmodesmata into supracellular organism.6 All this collectively indicate that the currently valid ‘Cell Theory’ dogma is approaching its replacement with a new updated concept of a basic unit of eukaryotic life.68All those mathematical models, scientific theories and concepts, however appealing, harmonious and long-standing … but which do not correspond to reality …; inevitably will be ‘killed by ugly’ facts generated by scientific progress, and finally replaced by new models, theories, and concepts.Furthermore, genomes are much more complex and dynamic as we ever anticipated.9,10 They often have as much as 99% of non-coding DNA sequences,11 which is not ‘junk DNA’ but rather DNA which is part of multitask networks integrating coding DNA.12 In genomes exposed to stress (like mutations), changes are scored preferentially in non-coding sequences which regain a new balance by complex changes in genome composition and activity.9,10,13,14 There are several definitions regarding what is gene11 and molecular biologists and genetics are learning to be careful not to make strong conclusions from under-expression, knocking-out, or overexpression of any particular gene. It is increasingly clear that mutations in single genes are accompanied with altered expressions of other genes and non-coding DNA sequences too, and even subtle re-arrangements of chromatin structure and genome architecture are possible. The dynamic genome actively regains the lost balance, also via extensive re-shufflings of non-coding DNA.After complete sequencing of numerous genomes, it is clear that our understanding of what constitutes life and what distinguishes living biological systems from non-living chemical - biochemical systems is not much better than our understanding before the start of the genomics era some 60 years ago. Yet, it is also obvious that living systems, whether single cells or whole complex organisms like animals and plants, are not machines and automata which respond to external signals via a limited set of predefined responses and automatic reflexes. While humans and other animals, even insects, are already out of this ‘mechanistic’ trap15,16 which can be traced back to Descartes,17 plants are still considered to act only in predetermined automatic fashions, as mechanical devices devoid of any possibility for choice and planning of their activities. In contrast to machines, life systems are based on wet chemistry, being systems of hierarchical and dynamic integration, communication and emergence.1,18Recently, a critical mass of data has accumulated demanding reconsideration of this mechanistic view of plants.19,20 Plants are complex living beings, extremely sensitive to environmental factors and continuously adapting to the ever changing environment.21 In addition, plants respond to environmental stimuli as integrated organisms. Often, plants make important decisions, such as onset or breakage of dormancy and onset of flowering, which implicate some central or decentralized command center. Moreover, roots and shoots act in an integrated manner allowing dynamic balance of above-ground and below-ground organs. The journal, Plant Signaling & Behavior, was launched as a platform for exchange of information about the integration of discrete processes, including subcellular signalling integrated with higher-level processes. Signal integration and communication results in adaptive behavior of whole supracellular organisms, encompassing also complex, and still elusive, plant-plant, plant-insect, and plant-animal communications. Coordinated behavior based on sensory perception is inherent for neurobiological systems.22 Therefore, plants can be considered for neuronal individuals. Moreover, plants are also able to share knowledge perceived from environment with other plants, communicating both private and public messages.23,24 This implicates social learning and behavioral inheritance in plants too.After complete sequencing of numerous genomes, it is clear that our understanding of what constitutes life and what distinguishes living biological systems from non-living chemical - biochemical systems is not much better than our understanding before the start of genomics era some 60 years ago.

Behavior

  1. An activity of a defined organism: observable activity when measurable in terms of quantitative effects of the environment whether arising from internal or external stimuli.
  2. Anything that an organism does that involves action and response to stimulation.
(Webster Third New International Dictionary 1961).Neuronal informational systems allow the most rapid and efficient adaptive responses. Therefore, it should not be surprising that neuronal computation is not limited to animal brains but is used also by bacteria and plants.Some of our colleagues assert that plants do not exhibit any integrated neuronal principles.25 They maintain that plants do not show complex experience- or learning-based behavior. Plants, they aver, act rather as machines manifesting predefined reflexes. Yet recent studies indicate that even prokaryotic bacteria exhibit cognitive behavior26,27 and posses linguistic communication and rudimentary intelligence.2830 Therefore, it should not be too surprising that plants also show features of communication and even plant-specific cognition.19,20,31,3235 As any other living systems, plants act as ‘knowledge accumulating systems’.1 In fact, in order to adapt, all organisms continuously generate hypotheses about their environment via well formulated ‘questions’ which are solved by an increasing set of possible ‘answers’ in order to adapt.1 Neuronal informational systems are behind this concept of organisms as ‘knowledge accumulating systems’ because they allow the most rapid and efficient adaptive responses.22 As a consequence, neuronal computation is not limited to animal brains but is used also by bacteria and plants.Reductionistic approaches will continue to “atomize” biological systems. Nevertheless, the avalanche of new data will be in need of functional integration, winning adherents to the idea that plants have integrated signaling and communicative systems that endowed them with complex and adaptive behavior. We trust that Plant Signaling & Behavior, will become an important platform for exchange of these ideas. With progress of sciences, plants show more and more similarities to animals despite obviously plant-specific evolutionary origins, cellular basis, and multicellularity. We can just mention sexuality and sex organs, embryos, stem cells, immunity, circadian rhythms, hormonal and peptide signaling, sensory perception and bioelectricity including action potentials, communication and neurobiological aspects of signal integration. The whole picture strongly suggest that convergent evolution is much more important36,37 than currently envisioned in evolutionary theories.Reductionistic approaches will continue to “atomize” biological systems. Nevertheless, the avalanche of new data will be in need of functional integration, winning adherents to the idea that plants have integrated signaling and communicative systems that endowed them with complex and adaptive behavior.We have started with Jaroslav Hašek and we close with him as well. His quotation from 1911 is also a warning for future that we should stay open-minded. We should not slip into dogmatic ‘traps’ which have been so characteristic for the mechanistic and genocentric biology. Mathematics and computational biology are important tools, and surely will play decisive role in systems biology in the future. But they can be easily misinterpreted, and even misused. Plant systems biology, and the whole biology in general, must overcome dogmas of mechanistic genocentric biology. We hope that characterizing plants in their whole behavioral and communicative complexity will allow us to better understand what is life and how it emerged from chemical and biochemical complex systems.  相似文献   

10.
11.
12.
The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability.Key words: prion, yeast, sup35, PrP, nonsense suppression, translation termination, amyloid, repeatWe recently described a novel chimeric prion system that was designed to elucidate the consequences of one class of inherited prion disease mutations on protein folding.1,2 We created a fusion between the mammalian prion protein PrP and the yeast prion protein Sup35p (Fig. 1). Sup35p is an essential translation termination factor in yeast. Interestingly, the majority of the protein can be sequestered into a self-propagating aggregate, the [PSI+] prion.3 Remarkably, when yeast are grown in normal laboratory conditions, the [PSI+] prion is not detrimental. In fact, the biological consequences of the switch from the [psi−] non-prion state to the [PSI+] prion state may be beneficial in terms of adaptation and evolution.4 Importantly, the prion state of Sup35p can be readily detected in vivo by monitoring the reduced function of the translation termination factor when the protein is propagating as a prion aggregate.3 In addition, several methods have been developed to not only follow the propagation of the prion, but also to control the propagation and promote prion induction and loss (curing).5 Therefore, in addition to simply being a fascinating biological problem in of itself, the [PSI+] prion in yeast affords the ability to further elucidate both intragenic and extragenic effectors of prion biology.Open in a separate windowFigure 1Schematic representation of the yeast protein Sup35p and the mammalian prion protein PrP highlighting the position of the oligopeptide repeat domain (ORD). The amino acid sequence represents the consensus for a single repeat. Numbers shown represent the amino acid position of the beginning and the end of each ORD. The numbers above the schematic represent the original PrP amino acid positioning and the numbers below represent the original Sup35p amino acid sequence positions.Several prions have now been identified and interestingly, there is little sequence homology between the proteins to suggest that only one type of sequence can form a self-propagating aggregate.68 In vitro studies suggest that many proteins can form amyloids under the appropriate conditions.9 The fact that only a small percentage of proteins propagate as prions in vivo may be partly a consequence of physiological conditions being adequate to promote amyloid formation with those particular sequences. It is unclear what the precise distinction between prion and amyloid is at this time, but localization alone may preclude some amyloidogenic proteins from being “prion proteins” per se.10The sequence context that permits a protein to adopt a prion conformation in vivo is unclear. Several of the identified prion proteins have a domain that is enriched in glutamine and asparagine (Q/N) residues, but this is not true of all prion proteins.7 Our recent study demonstrates that the Q/N character of the Sup35p prion-forming domain can be significantly reduced, yet still propagate as a prion.1 This was also found recently in another prion protein chimera created and expressed in yeast.6 These studies suggest that the lack of stable secondary structure may be one of the defining features of a prion-forming domain. One of the striking sequence similarities that does exist between two prion proteins occurs in an oligopeptide repeat region found in Sup35p and PrP.11 Previous data clearly demonstrated that the Sup35p repeats are important for [PSI+] prion propagation.1215 The deletion of a single repeat from the wild type SUP35 sequence results in the loss of normal [PSI+] prion propagation.12 Moreover, the addition of two extra repeats of Sup35p sequence served to enhance the formation of the [PSI+] prion.13 The expansion of the analogous repeat domain in the mammalian prion protein PrP is associated with an inherited form of prion disease.16 Since the repeat regions of Sup35p and PrP are similar in size and character, we wanted to determine if the Sup35p oligopeptide repeat region could be substituted with that of PrP. Indeed, the PrP repeats in the context of Sup35p supported the propagation of the [PSI+] prion in yeast.1,17 Strikingly, we found phenotypic changes that occurred in a repeat length-dependent manner that suggested that the repeat expansions associated with disease result in an increase in the aggregation propensity but do not necessarily dictate only one type of aggregate structure.1More recently, we verified some of these results in vitro.2 These data are in agreement with other studies on the effect of repeat expansions.18,19 Taking the analysis one step further, we demonstrated that the stability of the amyloid fibers formed with the repeat-expanded proteins did not differ significantly. A very interesting observation that we made was that the formation of amyloid fibers by the longest repeat-expanded chimera (SP14NM) followed drastically different kinetics compared to the chimera containing the wild type number of repeats (SP5NM).2 In unseeded reactions, SP14NM did not show a lag phase during the course of fiber formation whereas SP5NM displayed a characteristic lag phase. Furthermore, the morphology of the amyloid fibers visualized by EM was different between SP14NM and SP5NM. SP14NM fibers were curvy and clumped but SP5NM fibers were long and straight. The correlation between the kinetics and the morphology of amyloid formation of SP14NM and SP5NM is reminiscent of fibers formed by β2-microglobulin (β2m) protein in different conditions.20 At pH 3.6, β2m formed curvy, worm-like fibers with no apparent lag phase. In contrast, long, straight fibers were formed at pH 2.5 and had a distinct lag phase. Analysis of the β2m fibers formed at pH 3.6 using mass spectrometric techniques identified species ranging from monomer to 13-mer. This suggested that the fibers were formed by monomer addition. On the other hand, oligomers larger than tetramers were not formed during fiber formation at pH 2.5. Based on these data the authors propose that β2m forms fibers in a nucleation-independent manner at pH 3.6, but fiber formation at pH 2.5 follows a nucleation-dependent mechanism. We suggest that the mechanism underlying SP5NM and repeat-expanded SP14NM fiber formation is similar to β2m fibers formed at pH 2.5 and pH 3.6, respectively. It will be interesting to determine if disease-associated mutations in amyloidogenic proteins alter the pathway whereby amyloid formation occurs and how that process plays a role in pathogenesis.In our in vivo study,1 we highlighted a unique feature of the longest Sup35-PrP chimera that related to the ability of the protein to adopt multiple self-perpetuating prion conformations more readily than wild type Sup35p. We suggest that this may be an important aspect of prion biology as it relates to inherited disease. If the repeat-expanded proteins can adopt multiple conformations that aggregate, then that may contribute to the large amount of variation observed in pathology and disease progression in this class of inherited prion diseases.21,22We also found that the spontaneous conversion of the repeat-expanded Sup35-PrP chimera into a prion state was significantly increased. However, this conversion required another aggregated protein in vivo, the [RNQ+] prion. In vitro, the prion-forming domain of the chimera showed a similar trend with the longer repeat lengths enhancing the ability of the protein to form amyloid fibers. The chimera with repeat expansions (8, 11 or 14 repeats) formed fibers very quickly as compared to that with the wild type number of repeats (5). While this correlates with the in vivo data in that both systems demonstrate an increased level of conversion with the repeat expansion, the systems are very different with respect to their requirement for a different “seed” to initiate the prion conversion. So, how does the [RNQ+] prion influence [PSI+]? At the moment, that isn''t entirely clear. Susan Liebman and colleagues discovered another epigenetic factor in yeast, [PIN+], which was important for the de novo induction of [PSI+].2325 Several years later, the [RNQ+] prion26 was found to be that factor in the commonly used [PSI+] laboratory strains, but they also found that the overexpression of other proteins could reproduce the effect.25 Hence, [RNQ+] can be [PIN+], and may be the primary epigenetic element that influences [PSI+] induction in yeast, but need not be in every case. Two models were proposed to explain the ability of [RNQ+] to influence the induction of [PSI+].25,27 One suggested that there is a direct templating effect where the aggregated state of the Rnq1 protein in the [RNQ+] prion serves as a seed for the direct physical association and aggregation of Sup35p and initiates [PSI+]. The second postulated that there is an inhibitor of aggregation in cells that is titrated out by the presence of another aggregated protein. Recent experimental evidence suggests that the templating model may explain at least part of the mechanism of action behind the [RNQ+] prion inducing the formation of [PSI+].28,29Why is [RNQ+] required for the in vivo conversion of the repeatexpanded chimera that forms amyloid on its own very efficiently in vitro? Interestingly, we found that the [RNQ+] prion per se is not required. We overexpressed the Rnq1 protein from a constitutive high promoter (pGPD-RNQ1) and found that Rnq1p aggregated in the cells but did not induce the [RNQ+] prion. That is, the cells were still [rnq−] and did not genetically transmit the aggregated state of the protein. However, even these non-prion aggregates of Rnq1p served to enhance the induction of the chimeric prions. Therefore, either the [RNQ+] prion or an aggregate of Rnq1 protein is sufficient, which is in line with previous studies that demonstrated that some proteins that aggregate when overexpressed can also enhance the induction of [PSI+].25 Also of note, recent data suggests that the requirement of [RNQ+] for the induction of Sup35p aggregation in vivo can be overcome by very long polyglutamine or glutamine/tyrosine stretches fused to the non-prion forming domain of Sup35p.30 These fusions may alter protein-protein interactions or destabilize the non-prion structure of Sup35p in such a manner that the [RNQ+] prion seed is no longer required to form [PSI+] de novo. Indeed, the non-polymerizing state of some of the fusion proteins was shown to be very unstable.So, what is the important difference between our in vitro and in vivo systems in the prion conversion? Obviously there are many candidates. First, the full length Sup35 protein may alter the conversion properties since a large part of the molecule is the structured C terminal domain. The C terminal domain may influence the initiation of prion propagation in vivo and that is not a factor in the in vitro system. Second, the influences of co-translational folding and potentially some initial unfolding of the prion-forming domain are not present since the in vitro system starts with denatured protein. Third, the environmental influences are clearly different. The molecular crowding effects and chaperones that are required for prion propagation in vivo are not required for the formation of amyloid in vitro. Finally, it is unclear if amyloid structures similar to those formed with the prion-forming domain in vitro actually exist in yeast. Certainly there is some correlation between the structures since aggregated Sup35 protein from [PSI+] cell lysates can seed amyloid formation in vitro31,32 and the fibers formed in vitro can be transformed into [psi−] cells and cause conversion to [PSI+].33 Nevertheless, we find it interesting that the expansion of the repeat region can have a tremendous effect on amyloid formation in vitro yet still cannot overcome the requirement for [RNQ+] for conversion in vivo. The presence of co-aggregating or cross-seeding proteins may play a role in the sporadic appearance or progression of neurodegenerative diseases and the interconnected yeast prions [RNQ+] and [PSI+] may provide a model system for elucidating the mechanism underlying such effects.  相似文献   

13.
14.
L Bornmann 《EMBO reports》2012,13(8):673-676
The global financial crisis has changed how nations and agencies prioritize research investment. There has been a push towards science with expected benefits for society, yet devising reliable tools to predict and measure the social impact of research remains a major challenge.Even before the Second World War, governments had begun to invest public funds into scientific research with the expectation that military, economic, medical and other benefits would ensue. This trend continued during the war and throughout the Cold War period, with increasing levels of public money being invested in science. Nuclear physics was the main benefactor, but other fields were also supported as their military or commercial potential became apparent. Moreover, research came to be seen as a valuable enterprise in and of itself, given the value of the knowledge generated, even if advances in understanding could not be applied immediately. Vannevar Bush, science advisor to President Franklin D. Roosevelt during the Second World War, established the inherent value of basic research in his report to the President, Science, the endless frontier, and it has become the underlying rationale for public support and funding of science.However, the growth of scientific research during the past decades has outpaced the public resources available to fund it. This has led to a problem for funding agencies and politicians: how can limited resources be most efficiently and effectively distributed among researchers and research projects? This challenge—to identify promising research—spawned both the development of measures to assess the quality of scientific research itself, and to determine the societal impact of research. Although the first set of measures have been relatively successful and are widely used to determine the quality of journals, research projects and research groups, it has been much harder to develop reliable and meaningful measures to assess the societal impact of research. The impact of applied research, such as drug development, IT or engineering, is obvious but the benefits of basic research are less so, harder to assess and have been under increasing scrutiny since the 1990s [1]. In fact, there is no direct link between the scientific quality of a research project and its societal value. As Paul Nightingale and Alister Scott of the University of Sussex''s Science and Technology Policy Research centre have pointed out: “research that is highly cited or published in top journals may be good for the academic discipline but not for society” [2]. Moreover, it might take years, or even decades, until a particular body of knowledge yields new products or services that affect society. By way of example, in an editorial on the topic in the British Medical Journal, editor Richard Smith cites the original research into apoptosis as work that is of high quality, but that has had “no measurable impact on health” [3]. He contrasts this with, for example, research into “the cost effectiveness of different incontinence pads”, which is certainly not seen as high value by the scientific community, but which has had an immediate and important societal impact.…the growth of scientific research during the past decades has outpaced the public resources available to fund itThe problem actually begins with defining the ‘societal impact of research''. A series of different concepts has been introduced: ‘third-stream activities'' [4], ‘societal benefits'' or ‘societal quality'' [5], ‘usefulness'' [6], ‘public values'' [7], ‘knowledge transfer'' [8] and ‘societal relevance'' [9, 10]. Yet, each of these concepts is ultimately concerned with measuring the social, cultural, environmental and economic returns from publicly funded research, be they products or ideas.In this context, ‘societal benefits'' refers to the contribution of research to the social capital of a nation, in stimulating new approaches to social issues, or in informing public debate and policy-making. ‘Cultural benefits'' are those that add to the cultural capital of a nation, for example, by giving insight into how we relate to other societies and cultures, by providing a better understanding of our history and by contributing to cultural preservation and enrichment. ‘Environmental benefits'' benefit the natural capital of a nation, by reducing waste and pollution, and by increasing natural preserves or biodiversity. Finally, ‘economic benefits'' increase the economic capital of a nation by enhancing its skills base and by improving its productivity [11].Given the variability and the complexity of evaluating the societal impact of research, Barend van der Meulen at the Rathenau Institute for research and debate on science and technology in the Netherlands, and Arie Rip at the School of Management and Governance of the University of Twente, the Netherlands, have noted that “it is not clear how to evaluate societal quality, especially for basic and strategic research” [5]. There is no accepted framework with adequate datasets comparable to,for example, Thomson Reuters'' Web of Science, which enables the calculation of bibliometric values such as the h index [12] or journal impact factor [13]. There are also no criteria or methods that can be applied to the evaluation of societal impact, whilst conventional research and development (R&D) indicators have given little insight, with the exception of patent data. In fact, in many studies, the societal impact of research has been postulated rather than demonstrated [14]. For Benoît Godin at the Institut National de la Recherche Scientifique (INRS) in Quebec, Canada, and co-author Christian Doré, “systematic measurements and indicators [of the] impact on the social, cultural, political, and organizational dimensions are almost totally absent from the literature” [15]. Furthermore, they note, most research in this field is primarily concerned with economic impact.A presentation by Ben Martin from the Science and Technology Policy Research Unit at Sussex University, UK, cites four common problems that arise in the context of societal impact measurements [16]. The first is the causality problem—it is not clear which impact can be attributed to which cause. The second is the attribution problem, which arises because impact can be diffuse or complex and contingent, and it is not clear what should be attributed to research or to other inputs. The third is the internationality problem that arises as a result of the international nature of R&D and innovation, which makes attribution virtually impossible. Finally, the timescale problem arises because the premature measurement of impact might result in policies that emphasize research that yields only short-term benefits, ignoring potential long-term impact.…in many studies, the societal impact of research has been postulated rather than demonstratedIn addition, there are four other problems. First, it is hard to find experts to assess societal impact that is based on peer evaluation. As Robert Frodeman and James Britt Holbrook at the University of North Texas, USA, have noted, “[s]cientists generally dislike impacts considerations” and evaluating research in terms of its societal impact “takes scientists beyond the bounds of their disciplinary expertise” [10]. Second, given that the scientific work of an engineer has a different impact than the work of a sociologist or historian, it will hardly be possible to have a single assessment mechanism [4, 17]. Third, societal impact measurement should take into account that there is not just one model of a successful research institution. As such, assessment should be adapted to the institution''s specific strengths in teaching and research, the cultural context in which it exists and national standards. Finally, the societal impact of research is not always going to be desirable or positive. For example, Les Rymer, graduate education policy advisor to the Australian Group of Eight (Go8) network of university vice-chancellors, noted in a report for the Go8 that, “environmental research that leads to the closure of a fishery might have an immediate negative economic impact, even though in the much longer term it will preserve a resource that might again become available for use. The fishing industry and conservationists might have very different views as to the nature of the initial impact—some of which may depend on their view about the excellence of the research and its disinterested nature” [18].Unlike scientific impact measurement, for which there are numerous established methods that are continually refined, research into societal impact is still in the early stages: there is no distinct community with its own series of conferences, journals or awards for special accomplishments. Even so, governments already conduct budget-relevant measurements, or plan to do so. The best-known national evaluation system is the UK Research Assessment Exercise (RAE), which has evaluated research in the UK since the 1980s. Efforts are under way to set up the Research Excellence Framework (REF), which is set to replace the RAE in 2014 “to support the desire of modern research policy for promoting problem-solving research” [21]. In order to develop the new arrangements for the assessment and funding of research in the REF, the Higher Education Funding Council for England (HEFCE) commissioned RAND Europe to review approaches for evaluating the impact of research [20]. The recommendation from this consultation is that impact should be measured in a quantifiable way, and expert panels should review narrative evidence in case studies supported by appropriate indicators [19,21].…premature measurement of impact might result in policies that emphasize research that yields only short-term benefits, ignoring potential long-term impactMany of the studies that have carried out societal impact measurement chose to do so on the basis of case studies. Although this method is labour-intensive and a craft rather than a quantitative activity, it seems to be the best way of measuring the complex phenomenon that is societal impact. The HEFCE stipulates that “case studies may include any social, economic or cultural impact or benefit beyond academia that has taken place during the assessment period, and was underpinned by excellent research produced by the submitting institution within a given timeframe” [22]. Claire Donovan at Brunel University, London, UK, considers the preference for a case-study approach in the REF to be “the ‘state of the art'' [for providing] the necessary evidence-base for increased financial support of university research across all fields” [23]. According to Finn Hansson from the Department of Leadership, Policy and Philosophy at the Copenhagen Business School, Denmark, and co-author Erik Ernø-Kjølhede, the new REF is “a clear political signal that the traditional model for assessing research quality based on a discipline-oriented Mode 1 perception of research, first and foremost in the form of publication in international journals, was no longer considered sufficient by the policy-makers” [19]. ‘Mode 1'' describes research governed by the academic interests of a specific community, whereas ‘Mode 2'' is characterized by collaboration—both within the scientific realm and with other stakeholders—transdisciplinarity and basic research that is being conducted in the context of application [19].The new REF will also entail changes in budget allocations. The evaluation of a research unit for the purpose of allocations will determine 20% of the societal influence dimension [19]. The final REF guidance contains lists of examples for different types of societal impact [24].Societal impact is much harder to measure than scientific impact, and there are probably no indicators that can be used across all disciplines and institutions for collation in databases [17]. Societal impact often takes many years to become apparent, and “[t]he routes through which research can influence individual behaviour or inform social policy are often very diffuse” [18].Yet, the practitioners of societal impact measurement should not conduct this exercise alone; scientists should also take part. According to Steve Hanney at Brunel University, an expert in assessing payback or impacts from health research, and his co-authors, many scientists see societal impact measurement as a threat to their scientific freedom and often reject it [25]. If the allocation of funds is increasingly oriented towards societal impact issues, it challenges the long-standing reward system in science whereby scientists receive credits—not only citations and prizes but also funds—for their contributions to scientific advancement. However, given that societal impact measurement is already important for various national evaluations—and other countries will follow probably—scientists should become more concerned with this aspect of their research. In fact, scientists are often unaware that their research has a societal impact. “The case study at BRASS [Centre for Business Relationships, Accountability, Sustainability and Society] uncovered activities that were previously ‘under the radar'', that is, researchers have been involved in activities they realised now can be characterized as productive interactions” [26] between them and societal stakeholders. It is probable that research in many fields already has a direct societal impact, or induces productive interactions, but that it is not yet perceived as such by the scientists conducting the work.…research into societal impact is still in the early stages: there is no distinct community with its own series of conferences, journals or awards for special accomplishmentsThe involvement of scientists is also necessary in the development of mechanisms to collect accurate and comparable data [27]. Researchers in a particular discipline will be able to identify appropriate indicators to measure the impact of their kind of work. If the approach to establishing measurements is not sufficiently broad in scope, there is a danger that readily available indicators will be used for evaluations, even if they do not adequately measure societal impact [16]. There is also a risk that scientists might base their research projects and grant applications on readily available and ultimately misleading indicators. As Hansson and Ernø-Kjølhede point out, “the obvious danger is that researchers and universities intensify their efforts to participate in activities that can be directly documented rather than activities that are harder to document but in reality may be more useful to society” [19]. Numerous studies have documented that scientists already base their activities on the criteria and indicators that are applied in evaluations [19, 28, 29].Until reliable and robust methods to assess impact are developed, it makes sense to use expert panels to qualitatively assess the societal relevance of research in the first instance. Rymer has noted that, “just as peer review can be useful in assessing the quality of academic work in an academic context, expert panels with relevant experience in different areas of potential impact can be useful in assessing the difference that research has made” [18].Whether scientists like it or not, the societal impact of their research is an increasingly important factor in attracting the public funding and support of basic researchWhether scientists like it or not, the societal impact of their research is an increasingly important factor in attracting public funding and support of basic research. This has always been the case, but new research into measures that can assess the societal impact of research would provide better qualitative and quantitative data on which funding agencies and politicians could base decisions. At the same time, such measurement should not come at the expense of basic, blue-sky research, given that it is and will remain near-impossible to predict the impact of certain research projects years or decades down the line.  相似文献   

15.
16.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

17.
The review tracks the history of electrical long-distance signals from the first recordings of action potentials (APs) in sensitive Dionea and Mimosa plants at the end of the 19th century to their re-discovery in common plants in the 1950''s, from the first intracellular recordings of APs in giant algal cells to the identification of the ionic mechanisms by voltage-clamp experiments. An important aspect is the comparison of plant and animal signals and the resulting theoretical implications that accompany the field from the first assignment of the term “action potential” to plants to recent discussions of terms like plant neurobiology.Key Words: action potentials, slow wave potentials, plant nerves, plant neurobiology, electrical signaling in plants and animailsFor a long time plants were thought to be living organisms whose limited ability to move and respond was appropriately matched by limited abilities of sensing.1 Exceptions were made for plants with rapid and purposeful movements such as Mimosa pudica (also called the sensitive plant), Drosera (sundews), Dionea muscipula (flytraps) and tendrils of climbing plants. These sensitive plants attracted the attention of outstanding pioneer researchers like Pfeffer,2,3 Burdon-Sanderson,4,5 Darwin,6 Haberlandt79 and Bose.1013 They found them not only to be equipped with various mechanoreceptors exceeding the sensitivity of a human finger but also to trigger action potentials (APs) that implemented these movements.The larger field of experimental electrophysiology started with Luigi Galvani''s discovery of “animal electricity” or contractions of isolated frog legs suspended between copper hooks and the iron grit of his balcony.14 It soon became clear that the role of the electric current was not to provide the energy for the contraction but to simulate a stimulus that existed naturally in the form of directionally transmitted electrical potentials. Studies by both Matteucci and Du Bois-Reymond15 recognized that wounding of nerve strands generated the appearance of a large voltage difference between the wounded (internal) and intact (external) site of nerves. This wound or injury potential was the first, crude measurement of what later became known as membrane or resting potential of nerve cells. It was also found that various stimuli reduced the size of the potential (in modern terms: they caused a depolarization), and to describe the propagating phenomenon novel terms such as action potential (AP) and action current were created (reviewed in refs. 15 and 16). Rather than relying on such indirect methods, the membrane theory of exicitation proposed by Bernstein in 191217 made it desirable to directly measure the value of cell membrane potentials. Such progress soon became possible by the introduction of microelectrodes (KCl-filled glass micropipettes with a tip diameter small enough to be inserted into living cells) to record intracellular, i.e., the real membrane potentials (Vm). The new technique was simultaneously adopted for giant cells (axons) of cephalopods such as Loligo and Sepia18 and giant internodal cells of Charophytic green algae. In the 1930s Umrath and Osterhout1921 not only made the first reliable, intracellular measurements of membrane potentials in plant cells (reporting Vm values between −100 to −170 mV) but the first intracellular recordings of plant APs as well. When this technique was complemented with precise electronic amplifiers and voltage clamp circuits in the 1940s, one could measure ion currents (instead of voltages) and so directly monitor the activity of ion channels. The smart application of these methods led to a new, highly detailed understanding of the ionic species and mechanisms involved in Vm changes, especially APs.2227 Whereas the depolarizing spike in animal nerve cells is driven by an increased influx of Na+ ions, plant APs were found to involve influx of Ca2+ and/or efflux of Cl−1 ions.The first extracellular recording of a plant AP was initiated by Charles Darwin and performed on leaves of the Venus flytrap (Dionea muscipula Ellis) by the animal physiologist Burdon-Sanderson in 1873.46 Ever since APs have often been considered to fulfil comparable roles in plants and nerve-muscle preparations of animals. However, this was never a generally accepted view. While it is commonly assumed that the AP causes the trap closure, this had not been definitely shown (see refs. 28 and 29). Kunkel (1878) and Bose (1907, 1926) measured action spikes also in Mimosa plants where they preceded the visible folding movements of the leaflets.1213,3031 Dutrochet and Pfeffer23 had already found before that interrupting vascular bundles by incision prevented the excitation from propagating beyond the cut and concluded that the stimulus must move through the vascular bundles, in particular the woody or hadrome part (in modern terms the xylem). Haberlandt7 cut or steam-killed the external, nonwoody part of the vascular bundles and concluded that the phloem strands were the path for the excitation, a notion which is confirmed by a majority of recent studies in Mimosa and other plant species. APs have their largest amplitude near and in the phloem and there again in the sieve cells.2324,3235 Moreover, APs can be recorded through the excised stylets of aphids known to be inserted in sieve tube elements.3637 Other studies found that AP-like signals propagate with equal rate and amplitude through all cells of the vascular bundle.38 Starting studies with isolated vascular bundles (e.g., from the fern Adiantum), Bose found increasing amplitudes of heat-induced spikes by repeated stimulation (tetanisation) and incubation in 0.5 % solution of sodium carbonate.1013 Since the electrical behavior of isolated vascular strands was comparable to that of isolated frog nerves, Bose felt justified to refer to them as plant nerves.Although at the time a hardly noticed event, the discovery that normal plants such as pumpkins had propagating APs just as the esoteric “sensitive” plants was a scientific breakthrough with important consequences.3940,32 First, it corrected the long-held belief that normal plants are simply less sensitive and responsive than the so-called “sensitive plants” from Mimosa to Venus flytraps. Second, it led to the stimulating belief that so widely distributed electric signals must carry important messages.41 The ensuing studies made considerable progress in linking electrical signals with respiration and photosynthesis,4042 pollination,4344 phloem transport33,3637,45 and the rapid, plant-wide deployment of plant defenses.4653The detailed visualization of nerve cells with silver salts by the Spanish zoologist S. Ramon y Cajal, the demonstrated existence of APs in Dionea and Mimosa as well as the discovery of plant mechanoreceptors in these and other plants9 at the end of the century was sufficient stimulation to start a search for structures that could facilitate the rapid propagation of these and other excitation signals. Researchers began to investigate easily stainable intracellular plasma strands that run across the lumen of many plant cells, and sometimes even continue over several cells for their potential role as nerve-like, excitation-conducting structures. Such strands were shown to occur in traumatized areas of many roots54 and in insectivorous butterworts where they connect the glue-containing hair tips with the basal peptidase-producing glands of the Pinguicula leaves.5556 However, after investigating these claims, Haberlandt came to the conclusion that the only nerve-like structures of plants were situated the long phloem cells of the vascular bundles.78 From that time on papers, lectures and textbooks reiterated statements that “plants have no nerves”.This unproductive expression ignores the work of Darwin, Haberlandt, Pfeffer and Bose together with the fact that in spite of their anatomical differences, nerve cell networks and vascular bundles share the analog function of conducting electrical signals. Similar anatomical differences have not been an obstacle to stating that both plants and animals consist of cells. The mechanistic similarity of excitations (consisting of a transient decline in cell input resistance) in plant and nerve cells was later elegantly demonstrated by the direct comparison of action potentials in Nitella and the giant axon of squids.5758 Today, consideration of nerve-like structures in plants involves increasingly more aspects of comparison. We know that many plants can efficiently produce electric signals in the form of action potentials and slow wave potentials (= variation potentials) and that the long-distance propagation of these signals proceeds in the vascular bundles. We also know that plants like Dionea can propagate APs with high efficiency and speed without the use of vascular bundles, probably because their cells are electrically coupled through plasmodesmata. Other analogies with neurobiology include vesicle-operated intercellular clefts in axial root tissues (the so-called plant synapses)59 as well as the certain existence and operation of substances like neurotransmitters and synaptotagmins in plant cells (e.g., refs. 60 and 61). The identification of the role(s) of these substances in plants will have important implications. Altogether, modern plant neurobiology might emerge as a coherent science.62Electrophysiological and other studies of long-distance signals in plants and animals greatly contributed to our knowledge of the living world by revealing important similarities and crucial differences between plants and animals in an area that might directly relate to their different capacities to respond to environmental signals. Even at this stage the results are surprising. Rather than lacking electric signals, higher plants have developed more than just one signal type that is able to cover large distances. In addition to APs that occur also in animals and lower plants,63 higher plants feature an additional, unique, hydraulically propagated type of electric signals called slow wave potentials.64  相似文献   

18.
The dramatic movements of some carnivorous plants species are triggered by sensory structures derived from trichomes. While unusual plant species such as the Venus fly trap and sundews may be expected to have elaborate sensors to capture their insect prey, more modest plant species might not be expected to have similar sensory capabilities. Our recent work, however, has revealed that glandular trichomes on tomato (Solanum lycopersicum) appear to have a function similar to trigger hairs of carnivorous species, acting as “early warning” sensors. Using a combination of behavioral, molecular, and biochemical techniques, we determined that caterpillars, moths and mechanical disruption upregulate signaling molecules and defensive genes found in glandular trichomes. Importantly, we discovered that plants whose trichomes have been broken respond more vigorously when their defenses were induced. Taken together, our results suggest that glandular trichomes can act as sensors that detect activity on the leaf surface, and ready plants for herbivore attack.Key words: glandular trichome, induced responses, jasmonic acid, plant-insect interactions, sensor, Solanum lycopersicum, tomatoCertain plant species are renowned for their ability to respond to contact. The Venus fly trap (Dionaea muscipula) and sundew (Drosera) species come to mind quickly as obviously thigmotropic species. When an insect lands on these carnivorous plant species, dramatic movements ensue once the prey is detected. Some Drosera species respond to contact by bending their “tentacles” toward their trapped prey to further ensnare the victim and begin the process of digestion. These dramatic plant species have captured the attention of many scientists, including Darwin, who remarked on the “extraordinary sensitiveness of [their] glands to slight pressure” and surmised that the tentacles of sundew plants “existed primordially as glandular hairs.”1 As is often the case, Darwin appears to have been quite right. Indeed, morphological and molecular work supports the notion that sundew tentacles and the trigger hairs of the Venus fly trap are homologous sensory structures likely derived from trichomes.2,3Given Darwin’s appreciation of these trichome-derived sensory organs, he perhaps would not have been surprised by mounting evidence that suggests that trichomes may play even a broader sensory role for plants. We have recently found evidence that glandular trichomes can act as early detection sensors for some plant species.4 These trichomes can be disrupted by the footsteps of walking moths and caterpillars (and other forms of light touching), and this apparently minor plant damage leads to a state of defensive readiness that allows plants to respond to herbivory more quickly than undamaged plants. While this level of trichome-mediated detection does not result in the conspicuous responses of some carnivorous plant species, it still results in significant physiological changes that prepare plants for attack.In our recent effort, we worked with tomato (Solanum lycopersicum), using a combination of behavioral, molecular, and biochemical techniques to understand the role of trichomes in detecting activity on the leaf surface.4 Defense signaling has been well studied in tomato and there exists a variety of mutants whose defensive responses have been compromised. Moreover, it has been known that tomatoes have a variety of trichome types, including two types of glandular trichomes that burst upon contact with insects, releasing their cellular contents and physically impeding insects (Fig. 1).5,6Open in a separate windowFigure 1Surface of a tomato leaf showing (A) intact rounded heads of glandular trichomes (black arrows) and (B) trichomes disrupted with a gloved hand (absence of rounded heads except for a few in the upper left corner [black arrows]). Images were captured at 36x magnification and were taken from different parts of the same leaf.To determine if plant defense pathways were induced by insect contact, we allowed three species of caterpillar (Manduca sexta, Heliothis virescens and Helicoverpa zea) and one species of moth (H. zea) to crawl over tomato leaves for ten minutes. As a positive control, we also lightly rubbed leaves with a gloved hand or a metal rod. Within time frames ranging from three to twenty-four hours all treatments, insect and otherwise, significantly induced defensive genes as measured by qRT-PCR. Using a combination of RT-PCR and in situ hybridization, we confirmed that JA-signaling and defensive genes are expressed in trichomes. A GC-MS-based technique then confirmed that JA was present in trichomes of undamaged plants and DAB staining, in combination with catalase treatment, provided evidence that hydrogren peroxide and JA are key signals mediating defensegene induction. These conclusions were further reinforced by experiments with def1 mutants, a line of tomato impaired in JA signaling, and accession LA3610, a tomato variety with reduced numbers of trichomes. Lastly, we conducted a factorial experiment both disrupting trichomes and treating tomato plants with methyl jasmonate (MeJA), which induces plant defenses and increases densities of trichomes.7 Results of this final experiment indicated that plants that received both treatments (i.e., MeJA and disruption) had greater defensive gene induction than plants that were only treated with MeJA or plants whose trichomes remained intact, suggesting that increases in trichomes may contribute to greater sensitivity to touch-induced responses.Taken together, our results are highly suggestive that trichomes can act as “early warning” detectors for plants. Moths seeking to lay eggs on tomato are likely to break trichomes as they explore leaves, upregulating plant defenses in anticipation of egg hatch and feeding by neonate caterpillars. Similarly, herbivores colonizing a new host plant and breaking trichomes on their way across a leaf also appear to “tip the plant off” to impending attack. Considering the drastic response of carnivorous plants to touch, perhaps it should not be surprising that trichomes can function more broadly as sensors. In an evolutionary context, it seems logical that trichomes took on this role. For many plant species, “hairy” varieties receive less herbivory,8 so within a population there could have been a fitness advantage in having more trichomes. Once established, this hairy phenotype could then have been refined via mutation and selection for trichome varieties that had functions adaptive for the plant, perhaps driving the evolution of glandular trichomes and their role as sensors.Granted, the generalized nature of our results would appear to indicate that plants could be “primed” by nearly any arthropod species that crosses one of their leaves. This would, of course, include natural enemies, which are capable of decreasing herbivore pressure and improving plant fitness.9,10 However, it has been hypothesized that priming evolved due to high fitness costs associated with defensive induction following threats of only minor severity.11 Priming provides an advantage by settling plants into an intermediate “ready” state that allows them to deploy strong defense responses more quickly and the fitness cost associated with being “primed” are lower than full defensive induction.12 Presumably, fitness costs following priming due to natural enemyinduced trichome disruption would also be less than the cost incurred from a bout of unanticipated herbivory and, over the life of the plant, it would be worth the effort to prepare for attack even if the perceived risk is from a natural enemy and not a foe.Our results build on previously reported priming mechanisms that prepare plants for attack.13,14 And they reveal an additional level of sophistication in the sensory capabilities of plants, which have already been shown to be able to detect nearby threats of herbivory and increase their defenses in response.15,16 It seems that trichomes may have played a much wider role in shaping the nature of plant-animal interaction than previously recognized and we look forward to further work elaborating their function.  相似文献   

19.
The soil phytopathogen Agrobacterium has the unique ability to introduce single-stranded transferred DNA (T-DNA) from its tumor-inducing (Ti) plasmid into the host cell in a process known as horizontal gene transfer. Following its entry into the host cell cytoplasm, the T-DNA associates with the bacterial virulence (Vir) E2 protein, also exported from Agrobacterium, creating the T-DNA nucleoprotein complex (T-complex), which is then translocated into the nucleus where the DNA is integrated into the host chromatin. VirE2 protects the T-DNA from the host DNase activities, packages it into a helical filament and interacts with the host proteins, one of which, VIP1, facilitates nuclear import of the T-complex and its subsequent targeting to the host chromatin. Although the VirE2 and VIP1 protein components of the T-complex are vital for its intracellular transport, they must be removed to expose the T-DNA for integration. Our recent work demonstrated that this task is aided by an host defense-related F-box protein VBF that is induced by Agrobacterium infection and that recognizes and binds VIP1. VBF destabilizes VirE2 and VIP1 in yeast and plant cells, presumably via SCF-mediated proteasomal degradation. VBF expression in and export from the Agrobacterium cell lead to increased tumorigenesis. Here, we discuss these findings in the context of the “arms race” between Agrobacterium infectivity and plant defense.Key words: Arabidopsis, defense response, proteasomal degradation, bacterial infection, F-box proteinAgrobacterium infection of plants consists of a chain of events that usually starts in physically wounded tissue which produces Plant defense pathways subverted by Agrobacterium for genetic transformation small phenolic molecules, such as acetosyringone (AS).1 These phenolics serve as chemotactic agents and activating signals for the virulence (vir) gene region of the Ti plasmid.2,3 The vir gene products then process the T-DNA region of the Ti plasmid to a single-stranded DNA molecule that is exported with several Vir proteins into the host cell cytoplasm, in which it forms a the T-DNA nucleoprotein complex (T-complex).4,5 The plant responds to the coming invasion by expressing and activating several defense-related proteins,5 such as VBF6 and VIP1,7 aimed at suppressing the pathogen. However, the Agrobacterium has evolved mechanisms to take advantage of these host defense proteins.8 Some of the unique strategies for achieving this goal include (1) the use of VIP1 to bind the T-complex—via the VIP1 interaction with the T-DNA packaging protein VirE2,9,10—and assist its nuclear import7 and chromatin targeting,11 and (2) the use of VBF to mark VIP1 and its associated VirE2 for proteasomal degradation, presumably for uncoating the T-complex prior to the T-DNA integration into the plant genome.6,12 Here, we examine these subversion strategies in the context of “arms race” between Agrobacterium and plants.  相似文献   

20.
The visual photoreceptor rhodopsin is a prototypical class I (rhodopsin-like) G protein-coupled receptor. Photoisomerization of the covalently bound ligand 11-cis-retinal leads to restructuring of the cytosolic face of rhodopsin. The ensuing protonation of Glu-134 in the class-conserved D(E)RY motif at the C-terminal end of transmembrane helix-3 promotes the formation of the G protein-activating state. Using transmembrane segments derived from helix-3 of bovine rhodopsin, we show that lipid protein interactions play a key role in this cytosolic “proton switch.” Infrared and fluorescence spectroscopic pKa determinations reveal that the D(E)RY motif is an autonomous functional module coupling side chain neutralization to conformation and helix positioning as evidenced by side chain to lipid headgroup Foerster resonance energy transfer. The free enthalpies of helix stabilization and hydrophobic burial of the neutral carboxyl shift the side chain pKa into the range typical of Glu-134 in photoactivated rhodopsin. The lipid-mediated coupling mechanism is independent of interhelical contacts allowing its conservation without interference with the diversity of ligand-specific interactions in class I G protein-coupled receptors.G protein-coupled receptors (GPCRs)2 are hepta-helical membrane proteins that couple a large variety of extracellular signals to cell-specific responses via activation of G proteins. In the visual photoreceptor rhodopsin, a prototypical class I GPCR (1, 2), molecular activation processes can be monitored in real time by spectroscopic assays and analyzed in the context of several crystal structures (38). The primary signal for rhodopsin is the 11-cis to all-trans photoisomerization of retinal covalently bound to the apoprotein opsin through a protonated Schiff base to Lys296. Current models converge toward a picture in which “microdomains” act as conformational switches that are coupled to different degrees to the primary activation process. Two activating “proton switches” have been identified (9) as follows: breakage of an intramolecular salt bridge (10) by transfer of the Schiff base proton to its counter ion Glu-113 (11) is followed by movement of helix-6 (H6) (12, 13) in the metarhodopsin IIa (MIIa) to MIIb transition. The MIIb state takes up a proton at Glu-134 (14) in the class-conserved D(E)RY motif at the C-terminal end of helix-3 (H3) leading to the MIIbH+ intermediate (15, 16), which activates transducin (Gt), the G protein of the photoreceptor cell. Glu-134 regulates the pH sensitivity of receptor signaling (17) in membranes as reviewed previously (18), and in complex with Gt the protonated state of the carboxyl group becomes stabilized (19). This charge alteration is linked to the release of an “ionic lock,” originally described for the β2-adrenergic receptor (20), which also in rhodopsin stabilizes the inactive state (16) through interactions between the cytosolic ends of H3 and H6 (21).In the absence of a lipidic bilayer, proton uptake and H6 movement become uncoupled (15). Lipidic composition affects MII formation, rhodopsin structure, and oligomerization (2224) and differs at the rhodopsin membrane interface from the bulk lipidic phase (25). Likewise, MII formation specifically affects lipid structure (26). Although of fundamental importance for GPCR activation, the potential implication of lipid protein interactions in “proton switching” is not clear. A functional role of Glu-134 in lipid interactions has been originally derived from IR spectra where E134Q replacement abolished changes of lipid headgroup vibrations in the MIIGt complex (19). Computational approaches emphasized the “strategic” location of the D(E)RY motif (27), and the Glu-134 carboxyl pKa may critically depend on the lipid protein interface (28). However, the implications for proton switching are not evident, and the theoretical interest is contrasted by the lack of experimental data addressing the effect of the lipidic phase on side chain protonation, secondary structure, and membrane topology of the D(E)RY motif.We have studied the coupling between conformation and protonation in single transmembrane segments derived from H3 of bovine rhodopsin. We have assessed the “modular” function of the D(E)RY motif by determining parameters not evident from the crystal structures, i.e. the pKa of the conserved carboxyl, its linkage to helical structure, and the effect of protonation on side chain to lipid headgroup distance. We show that the D(E)RY motif encodes an autonomous “proton switch” controlling side chain exposure and helix formation in the low dielectric of a lipidic phase. The data ascribe a functional role to lipid protein interactions that couple the chemical potential of protons to an activity-promoting GPCR conformation in a ligand-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号