首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modest elevations in pancreatic polypeptide (PP) have been observed during exercise while fasting. To determine whether the PP response to a meal is similarly affected by exercise, seven healthy subjects were studied on two occasions. First, the postprandial PP response was determined during rest and then compared to a meal which was subsequently followed by a 45 min period of moderate exercise. Postprandial exercise significantly (P less than 0.01) enhanced the plasma PP response to peak levels of 182 +/- 22 pM versus 85 +/- 22 pM at rest. Concomitantly the plasma glucose fell to a nadir of 84 +/- 4 mg/dl which was significantly (P less than 0.01) below the rest level of 129 +/- 8 mg/dl. Although the rise in PP paralleled the fall in glucose, there was little relationship (r = 0.27) between the incremental changes in these two parameters. Thus, exercise is a natural setting which augments the plasma PP response to a meal. The mechanism may be related to the enhanced cholinergic vagal activity associated with the attendant fall in glycemia.  相似文献   

2.
The glucoregulatory response to intense exercise [IE, >80% maximum O(2) uptake (VO(2 max))] comprises a marked increment in glucose production (R(a)) and a lesser increment in glucose uptake (R(d)), resulting in hyperglycemia. The R(a) correlates with plasma catecholamines but not with the glucagon-to-insulin (IRG/IRI) ratio. If epinephrine (Epi) infusion during moderate exercise were able to markedly stimulate R(a), this would support an important role for the catecholamines' response in IE. Seven fit male subjects (26 +/- 2 yr, body mass index 23 +/- 0.5 kg/m(2), VO(2 max) 65 +/- 5 ml x kg(-1) x min(-1)) underwent 40 min of postabsorptive cycle ergometer exercise (145 +/- 14 W) once without [control (CON)] and once with Epi infusion [EPI (0.1 microg x kg(-1) x min(-1))] from 30 to 40 min. Epi levels reached 9.4 +/- 0.8 nM (20x rest, 10x CON). R(a) increased approximately 70% to 3.75 +/- 0.53 in CON but to 8.57 +/- 0.58 mg x kg(-1) x min(-1) in EPI (P < 0.001). Increments in R(a) and Epi correlated (r(2) = 0.923, P 相似文献   

3.
We examined the contributions of insulin secretion, glucagon suppression, splanchnic and peripheral glucose metabolism, and delayed gastric emptying to the attenuation of postprandial hyperglycemia during intravenous exenatide administration. Twelve subjects with type 2 diabetes (3 F/9 M, 44 +/- 2 yr, BMI 34 +/- 4 kg/m2, Hb A(1c) 7.5 +/- 1.5%) participated in three meal-tolerance tests performed with double tracer technique (iv [3-3H]glucose and oral [1-14C]glucose): 1) iv saline (CON), 2) iv exenatide (EXE), and 3) iv exenatide plus glucagon (E+G). Acetaminophen was given with the mixed meal (75 g glucose, 25 g fat, 20 g protein) to monitor gastric emptying. Plasma glucose, insulin, glucagon, acetaminophen concentrations and glucose specific activities were measured for 6 h post meal. Post-meal hyperglycemia was markedly reduced (P < 0.01) in EXE (138 +/- 16 mg/dl) and in E+G (165 +/- 12) compared with CON (206 +/- 15). Baseline plasma glucagon ( approximately 90 pg/ml) decreased by approximately 20% to 73 +/- 4 pg/ml in EXE (P < 0.01) and was not different from CON in E+G (81 +/- 2). EGP was suppressed by exenatide [231 +/- 9 to 108 +/- 8 mg/min (54%) vs. 254 +/- 29 to189 +/- 27 mg/min (26%, P < 0.001, EXE vs. CON] and partially reversed by glucagon replacement [247 +/- 15 to 173 +/- 18 mg/min (31%)]. Oral glucose appearance was 39 +/- 4 g in CON vs. 23 +/- 6 g in EXE (P < 0.001) and 15 +/- 5 g in E+G, (P < 0.01 vs. CON). The glucose retained within the splanchnic bed increased from approximately 36g in CON to approximately 52g in EXE and to approximately 60g in E+G (P < 0.001 vs. CON). Acetaminophen((AUC)) was reduced by approximately 80% in EXE vs. CON (P < 0.01). We conclude that exenatide infusion attenuates postprandial hyperglycemia by decreasing EGP (by approximately 50%) and by slowing gastric emptying.  相似文献   

4.
This study was aimed at assessing the role of carotid body function in neuroendocrine and glucoregulatory responses to exercise. The carotid bodies and associated nerves were removed (CBR, n = 6) or left intact (Sham, n = 6) in anesthetized dogs >16 days before experiments, and infusion and sampling catheters were implanted. Conscious dogs were studied at rest and during 150 min of exercise. Isotopic dilution was used to assess glucose production (R(a)) and disappearance (R(d)). Arterial glucagon was reduced in CBR compared with Sham at rest (29 +/- 3 vs. 47 +/- 3 pg/ml). During exercise, glucagon increased more in Sham than in CBR (47 +/- 9 vs. 15 +/- 2 pg/ml). Cortisol and epinephrine levels were similar in the two groups at rest and during exercise. Basal norepinephrine was similar in CBR and Sham. During exercise, norepinephrine increased by 432 +/- 124 pg/ml in Sham, but by only 201 +/- 28 pg/ml in CBR. Basal arterial plasma glucose was 108 +/- 2 and 105 +/- 2 mg/dl in CBR and Sham, respectively. Arterial glucose dropped by 10 +/- 3 mg/dl at onset of exercise in CBR (P < 0.01) but was unchanged in Sham (decrease of 3 +/- 2 mg/dl, not significant). Basal glucose kinetics were equal in Sham and CBR. At onset of exercise, R(a) and R(d) were transiently uncoupled in CBR (i.e., R(d) > R(a)) but were closely matched in Sham. In steady-state exercise, R(a) and R(d) were closely matched in both groups. Insulin was equal in the basal period and decreased similarly during exercise. These studies suggest that input from the carotid bodies, or receptors anatomically close to them, 1) is important in control of basal glucagon and the exercise-induced increment in glucagon, 2) is involved in the sympathetic response to exercise, and 3) participates in the non-steady-state coupling of R(a) to R(d), but 4) is not essential to glucoregulation during sustained exercise.  相似文献   

5.
The effects of glucose ingestion on the changes in blood glucose, FFA, insulin and glucagon levels induced by a prolonged exercise at about 50% of maximal oxygen uptake were investigated. Healthy volunteers were submitted to the following procedures: 1. a control test at rest consisting of the ingestion of 100 g glucose, 2. an exercise test without, or 3. with ingestion of 100 g of glucose. Exercise without glucose induced a progressive decrease in blood glucose and plasma insulin; plasma glucagon rose significantly from the 60th min onward (+45 pg/ml), the maximal increase being recorded during the 4th h of exercise (+135 pg/ml); plasma FFA rose significantly from the 60th min onward and reached their maximal values during the 4th h of exercise (2177 +/- 144 muEq/l, m +/- SE). Exercise with glucose ingestion blunted almost completely the normal insulin response to glucose. Under these conditions, exercise did not increase plasma glucagon before the 210th min; similarly, the exercise-induced increase in plasma FFA was markedly delayed and reduced by about 60%. It is suggested that glucose availability reduces exercise-induced glucagon secretion and, possibly consequently, FFA mobilization.  相似文献   

6.
To determine the influence of a diuretic-induced reduction in plasma volume (PV) on substrate turnover and oxidation, 10 healthy young males were studied during 60 min of cycling exercise at 61% peak oxygen uptake on two separate occasions > or =1 wk apart. Exercise was performed under control conditions (CON; placebo), and after 4 days of diuretic administration (DIU; Novotriamazide; 100 mg triamterene and 50 mg hydrochlorothiazide). DIU resulted in a calculated reduction of PV by 14.6 +/- 3.3% (P < 0.05). Rates of glucose appearance (R(a)) and disappearance (R(d)) and glycerol R(a) were determined by using primed constant infusions of [6,6-(2)H]glucose and [(2)H(5)]glycerol, respectively. No differences in oxygen uptake during exercise were observed between trials. Main effects for condition (P < 0.05) were observed for plasma glucose and glycerol, such that the values observed for DIU were higher than for CON. No differences were observed in plasma lactate and serum free fatty acid concentrations either at rest or during exercise. Hypohydration led to lower (P < 0.05) glucose R(a) and R(d) at rest and at 15 and 30 min of exercise, but by 60 min, the effects were reversed (P < 0. 05). Hypohydration had no effect on rates of whole body lipolysis or total carbohydrate or fat oxidation. A main effect for condition (P < 0.05) was observed for plasma glucagon concentrations such that larger values were observed for DIU than for CON. A similar decline in plasma insulin occurred with exercise in both conditions. These results indicate that diuretic-induced reductions in PV decreases glucose kinetics during moderate-intensity dynamic exercise in the absence of changes in total carbohydrate and fat oxidation. The specific effect on glucose kinetics depends on the duration of the exercise.  相似文献   

7.
Related to hepatic autoregulation we evaluated hypotheses that 1) glucose production would be altered as a result of a glycerol load, 2) decreased glucose recycling rate (Rr) would result from increased glycerol uptake, and 3) the absolute rate of gluconeogenesis (GNG) from glycerol would be positively correlated to glycerol rate of disappearance (R(d)) during a glycerol load. For these purposes, glucose and glycerol kinetics were determined in eight men during rest and during 90 min of leg cycle ergometry at 45 and 65% of peak O2 consumption (.VO2 (peak)). Trials were conducted after an overnight fast, with exercise commencing 12 h after the last meal. Subjects received a continuous infusion of [6,6-(2)H(2)]glucose, [1-(13)C]glucose, and [1,1,2,3,3-(2)H(5)]glycerol without (CON) or with an additional 1,000 mg (rest: 20 mg/min; exercise: 40 mg/min) of [2-(13)C]- or unlabeled glycerol added to the infusate (GLY). Infusion of glycerol dampened glucose Rr, calculated as the difference between [6,6-(2)H(2)]- and [1-(13)C]glucose rates of appearance (R(a)), at rest [0.35 +/- 0.12 (CON) vs. 0.12 +/- 0.10 mg. kg(-1). min(-1) (GLY), P < 0.05] and during exercise at both intensities [45%: 0.63 +/- 0.14 (CON) vs. 0.04 +/- 0.12 (GLY); 65%: 0.73 +/- 0.14 (CON) vs. 0.04 +/- 0.17 mg. kg(-1). min(-1) (GLY), P < 0.05]. Glucose R(a) and oxidation were not affected by glycerol infusion at rest or during exercise. Throughout rest and both exercise intensities, glycerol R(d) was greater in GLY vs. CON conditions (rest: 0.30 +/- 0.04 vs. 0.58 +/- 0.04; 45%: 0.57 +/- 0.07 vs. 1.19 +/- 0.04; 65%: 0.73 +/- 0.06 vs. 1.27 +/- 0.05 mg. kg(-1). min(-1), CON vs. GLY, respectively). Differences in glycerol R(d) (DeltaR(d)) between protocols equaled the unlabeled glycerol infusion rate and correlated with plasma glycerol concentration (r = 0.97). We conclude that infusion of a glycerol load during rest and exercise at 45 and 65% of .VO2(peak) 1) does not affect glucose R(a) or R(d), 2) blocks glucose Rr, 3) increases whole body glycerol R(d) in a dose-dependent manner, and 4) results in gluconeogenic rates from glycerol equivalent to CON glucose recycling rates.  相似文献   

8.
We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O(2) uptake, seven subjects received, in random order, either a sodium lactate infusion (60 micromol x kg(-1) x min(-1)) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring (2)H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (R(a)) was measured by [6,6-(2)H(2)]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 +/- 0.6 mM (mean +/- SE). Exercise induced a decrease in blood glucose concentration from 5.0 +/- 0.2 to 4.2 +/- 0.3 mM (P < 0.05); lactate infusion abolished this decrease (5.0 +/- 0.3 mM; P < 0.001) and increased glucose R(a) compared with bicarbonate infusion (P < 0.05). Lactate infusion increased both GNG from lactate (29 +/- 4 to 46 +/- 4% of glucose R(a), P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1). increased GNG from lactate and 2). increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.  相似文献   

9.
Prior exercise decreases postprandial plasma triacylglycerol (TG) concentrations, possibly through changes to skeletal muscle TG extraction. We measured postprandial substrate extraction across the leg in eight normolipidemic men aged 21-46 yr. On the afternoon preceding one trial, subjects ran for 2 h at 64 +/- 1% of maximal oxygen uptake (exercise); before the control trial, subjects had refrained from exercise. Samples of femoral arterial and venous blood were obtained, and leg blood flow was measured in the fasting state and for 6 h after a meal (1.2 g fat, 1.2 g carbohydrate/kg body mass). Prior exercise increased time averaged postprandial TG clearance across the leg (total TG: control, 0.079 +/- 0.014 ml.100 ml tissue(-1).min(-1) ; exercise, 0.158 +/- 0.023 ml.100 ml tissue(-1).min(-1), P <0.01), particularly in the chylomicron fraction, so that absolute TG uptake was maintained despite lower plasma TG concentrations (control, 1.53 +/- 0.13 mmol/l; exercise, 1.01 +/- 0.16 mmol/l, P < 0.001). Prior exercise increased postprandial leg blood flow and glucose uptake (both P < 0.05). Mechanisms other than increased leg TG uptake must account for the effect of prior exercise on postprandial lipemia.  相似文献   

10.
Nine endurance-trained men exercised on a cycle ergometer at approximately 68% peak O2 uptake to the point of volitional fatigue [232 +/- 14 (SE) min] while ingesting an 8% carbohydrate solution to determine how high glucose disposal could increase under physiological conditions. Plasma glucose kinetics were measured using a primed, continuous infusion of [6,6-2H]glucose and the appearance of ingested glucose, assessed from [3-3H]glucose that had been added to the carbohydrate drink. Plasma glucose was increased (P < 0.05) after 30 min of exercise but thereafter remained at the preexercise level. Glucose appearance rate (R(a)) increased throughout exercise, reaching its peak value of 118 +/- 7 micromol. kg(-1). min(-1) at fatigue, whereas gut R(a) increased continuously during exercise, peaking at 105 +/- 10 micromol. kg(-1). min(-1) at the point of fatigue. In contrast, liver glucose output never rose above resting levels at any time during exercise. Glucose disposal (R(d)) increased throughout exercise, reaching a peak value of 118 +/- 7 micromol. kg(-1). min(-1) at fatigue. If we assume 95% oxidation of glucose R(d), estimated exogenous glucose oxidation at fatigue was 1.36 +/- 0.08 g/min. The results of this study demonstrate that glucose uptake increases continuously during prolonged, strenuous exercise when carbohydrate is ingested and does not appear to limit exercise performance.  相似文献   

11.
The purpose of this study was to determine the role of direct hepatic adrenergic stimulation in the control of endogenous glucose production (R(a)) during moderate exercise in poorly controlled alloxan-diabetic dogs. Chronically catheterized and instrumented (flow probes on hepatic artery and portal vein) dogs were made diabetic by administration of alloxan. Each study consisted of a 120-min equilibration, 30-min basal, 150-min moderate exercise, 30-min recovery, and 30-min blockade test period. Either vehicle (control; n = 6) or alpha (phentolamine)- and beta (propranolol)-adrenergic blockers (HAB; n = 6) were infused in the portal vein. In both groups, epinephrine (Epi) and norepinephrine (NE) were infused in the portal vein during the blockade test period to create suprapharmacological levels at the liver. Isotopic ([3-(3)H]glucose, [U-(14)C]alanine) and arteriovenous difference methods were used to assess hepatic function. Arterial plasma glucose was similar in controls (345 +/- 24 mg/dl) and HAB (336 +/- 23 mg/dl) and was unchanged by exercise. Basal arterial insulin was 5 +/- 1 mU/ml in controls and 4 +/- 1 mU/ml in HAB and fell by approximately 50% during exercise in both groups. Basal arterial glucagon was similar in controls (56 +/- 10 pg/ml) and HAB (55 +/- 7 pg/ml) and rose similarly, by approximately 1.4-fold, with exercise in both groups. Despite greater arterial Epi and NE levels in HAB compared with controls during the basal and exercise periods, exercise-induced increases in catecholamines from basal were similar in both groups. Gluconeogenic conversion from alanine and lactate and the intrahepatic efficiency of this process were increased by twofold during exercise in both groups. R(a) rose similarly by 2.9 +/- 0.7 and 2.7 +/- 1.0 mg. kg(-1). min(-1) at time = 150 min during exercise in controls and HAB. During the blockade test period, arterial plasma glucose and R(a) rose to 454 +/- 43 mg/dl and 11.3 mg. kg(-1). min(-1) in controls, respectively, but were essentially unchanged in HAB. The attenuated response to the blockade test in HAB substantiates the effectiveness of the hepatic adrenergic blockade. In conclusion, these results demonstrate that direct hepatic adrenergic stimulation does not play a role in the stimulation of R(a) during exercise in poorly controlled diabetes.  相似文献   

12.
This study examined the effect of epinephrine on glucose disposal during moderate exercise when glycogenolytic flux was limited by low preexercise skeletal muscle glycogen availability. Six male subjects cycled for 40 min at 59 +/- 1% peak pulmonary O2 uptake on two occasions, either without (CON) or with (EPI) epinephrine infusion starting after 20 min of exercise. On the day before each experimental trial, subjects completed fatiguing exercise and then maintained a low carbohydrate diet to lower muscle glycogen. Muscle samples were obtained after 20 and 40 min of exercise, and glucose kinetics were measured using [6,6-2H]glucose. Exercise increased plasma epinephrine above resting concentrations in both trials, and plasma epinephrine was higher (P < 0.05) during the final 20 min in EPI compared with CON. Muscle glycogen levels were low after 20 min of exercise (CON, 117 +/- 25; EPI, 122 +/- 20 mmol/kg dry matter), and net muscle glycogen breakdown and muscle glucose 6-phosphate levels during the subsequent 20 min of exercise were unaffected by epinephrine infusion. Plasma glucose increased with epinephrine infusion (i.e., 20-40 min), and this was due to a decrease in glucose disposal (R(d)) (40 min: CON, 33.8 +/- 3; EPI, 20.9 +/- 4.9 micromol. kg(-1). min(-1), P < 0.05), because the exercise-induced rise in glucose rate of appearance was similar in the trials. These results show that glucose R(d) during exercise is reduced by elevated plasma epinephrine, even when muscle glycogen availability and utilization are low. This suggests that the effect of epinephrine does not appear to be mediated by increased glucose 6-phosphate, secondary to enhanced muscle glycogenolysis, but may be linked to a direct effect of epinephrine on sarcolemmal glucose transport.  相似文献   

13.
We examined the effect of exercise on postprandial hypertriglyceridemia (PHTG) and insulin resistance in individuals with metabolic syndrome. Subjects were 10 hypertriglyceridemic men with insulin resistance [age = 35.0 +/- 1.8 yr, body weight = 90.7 +/- 3.3 kg, fasting triglyceride (TG) = 2.6 +/- 0.4 mmol/l, peak oxygen consumption ((.)Vo(2peak)) = 36.0 +/- 1.3 ml(-1).kg(-1).min(-1), and homeostatic model assessment of insulin resistance (HOMA-IR)= 3.1 +/- 0.3]. Each participant performed a control trial (Ctr; no exercise) and three exercise trials at 60% of their (.)Vo(2peak) for 30 min (30 min-Ex), 45 min (45 min-Ex) and 60 min (60 min-Ex). All subjects had a fat meal in each trial. In the exercise trials, the subject jogged on a treadmill for a designated duration of 12 h before ingestion of a fat meal. Blood samples were taken at 0 h (before the meal) and at 2, 4, 6, and 8 h after the meal. The plasma TG, area score under TG concentration curve over an 8-h period (TG AUC) after the meal, and HOMA-IR were analyzed. The TG AUC scores in both the 45 min-Ex and 60 min-Ex were 31 and 33% lower, respectively, than Ctr (P < 0.02). There were no significant differences in TG AUC scores between the 30 min-Ex and the Ctr (P > 0.05). There were no trial differences in the fasting plasma glucose concentration (P > 0.05). HOMA-IR values in the 30 min-Ex, 45 min-Ex, and 60 min-Ex trials were lower than the Ctr (P < 0.03), but no significant differences were found in HOMA-IR among the exercise trials. The results suggest that for physically inactive individuals with metabolic syndrome, exercising at moderate intensity for 45 min effectively attenuates PHTG while exercise for 30 min is sufficient to improve insulin action.  相似文献   

14.
Postprandial blood glucose and insulin levels are both risk factors for developing obesity, type-2 diabetes, and coronary heart diseases. To date, research has shown that a single bout of moderate- to high-intensity aerobic exercise performed 相似文献   

15.
We examined the effects of increased glucose availability on glucose kinetics and substrate utilization in horses during exercise. Six conditioned horses ran on a treadmill for 90 min at 34 +/- 1% of maximum oxygen uptake. In one trial [glucose (Glu)], glucose was infused at a mean rate of 34.9 +/- 1.1 micromol. kg(-1). min(-1), whereas in the other trial [control (Con)] an equivalent volume of isotonic saline was infused. Plasma glucose increased during exercise in Glu (90 min: 8.3 +/- 1.7 mM) but was largely unchanged in Con (90 min: 5.1 +/- 0.4 mM). In Con, hepatic glucose production (HGP) increased during exercise, reaching a peak of 38.6 +/- 2.7 micromol. kg(-1). min(-1) after 90 min. Glucose infusion partially suppressed (P < 0.05) the rise in HGP (peak value 25.8 +/- 3.3 micromol. kg(-1). min(-1)). In Con, glucose rate of disappearance (R(d)) rose to a peak of 40.4 +/- 2.9 micromol. kg(-1). min(-1) after 90 min; in Glu, augmented glucose utilization was reflected by values for glucose R(d) that were twofold higher (P < 0.001) than in Con between 30 and 90 min. Total carbohydrate oxidation was higher (P < 0.05) in Glu (187.5 +/- 8.5 micromol. kg(-1). min(-1)) than in Con (159.2 +/- 7.3 micromol. kg(-1).min(-1)), but muscle glycogen utilization was similar between trials. We conclude that an increase in glucose availability in horses during low-intensity exercise 1) only partially suppresses HGP, 2) attenuates the decrease in carbohydrate oxidation during such exercise, but 3) does not affect muscle glycogen utilization.  相似文献   

16.
Plasma glucagon and catecholamines during exhaustive short-term exercise   总被引:1,自引:0,他引:1  
Plasma glucagon and catecholamine levels were measured in male athletes before and after exhaustive 15 min continuous running and strenuous intermittent short-term exercise (3 X 300 m). Blood lactate levels were higher after the intermittent exercise (mean 16.7 mmol X 1(-1)) than after the continuous running (mean 7.1 mmol X 1(-1)). Plasma glucagon concentration increased during continuous running and intermittent exercise by 41% and 55%, respectively, and the increases in plasma noradrenaline concentration were 7.7- and 9.1-fold compared with the respective pre-exercise values. Immediately after the exercises plasma cyclic AMP, blood glucose and alanine levels were elevated significantly. The data suggest that the sympathoadrenal system is of major importance for liver glucose production during high-intensity exercises. Catecholamines directly stimulate liver glucose production and may indirectly stimulate it by enhancing the secretion of glucagon.  相似文献   

17.
We wished to determine the effect of a 25% hematocrit reduction on glucoregulatory hormone release and glucose fluxes during exercise. In five anemic dogs, plasma glucose fell by 21 mg/dl and in five controls by 7 mg/dl by the end of the 90-min exercise period. After 50 min of exercise, hepatic glucose production (Ra) and glucose metabolic clearance rate (MCR) began to rise disproportionately in anemics compared with controls. By the end of exercise, the increase in Ra was almost threefold higher (delta 15.1 +/- 3.4 vs. delta 5.2 +/- 1.3 mg X kg-1 X min-1) and MCR nearly fourfold (delta 24.6 +/- 8.8 vs. delta 6.5 +/- 1.3 ml X kg-1 X min-1). Exercise with anemia, in relation to controls resulted in elevated levels of glucagon [immunoreactive glucagon (IRG) delta 1,283 +/- 507 vs delta 514 +/- 99 pg/ml], norepinephrine (delta 1,592 +/- 280 vs. delta 590 +/- 155 pg/ml), epinephrine (delta 2,293 +/- 994 vs. delta 385 +/- 186 pg/ml), cortisol (delta 6.7 +/- 2.2 vs. delta 2.1 +/- 1.0 micrograms/dl) and lactate (delta 12.1 +/- 2.2 vs. delta 4.2 +/- 1.8 mg/dl) after 90 min. Immunoreactive insulin and free fatty acids were similar in both groups. In conclusion, exercise with a 25% hematocrit reduction results in 1) elevated lactate, norepinephrine, epinephrine, cortisol, and IRG levels, 2) an increased Ra which is likely related to the increased counterregulatory response, and 3) we speculate that a near fourfold increase in MCR is related to metabolic changes due to hypoxia in working muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To test the hypothesis that intrahepatic availability of fatty acid could modify the rate of suppression of endogenous glucose production (EGP), acipimox or placebo was administered before and during a test meal. We used a modified isotopic methodology to measure EGP in 11 healthy subjects, and (1)H magnetic resonance spectroscopic measurement of hepatic triglyceride stores was also undertaken. Acipimox suppressed plasma free fatty acids markedly before the meal (0.05 +/- 0.01 mmol/l at -10 min, P = 0) and throughout the postprandial period (0.03 +/- 0.01 mmol/l at 150 min). Mean peak plasma glucose was significantly lower after the meal on acipimox days (8.9 +/- 0.4 vs. 10.1 +/- 0.5 mmol/l, P < 0.01), as was mean peak serum insulin (653.1 +/- 99.9 vs. 909 +/- 118 pmol/l, P < 0.01). Fasting EGP was similar (11.15 +/- 0.58 micromol.kg(-1).min(-1) placebo vs. 11.17 +/- 0.89 mg.kg(-1).min(-1) acipimox). The rate of suppression of EGP after the meal was almost identical on the 2 test days (4.36 +/- 1.52 vs. 3.69 +/- 1.21 micromol.kg(-1).min(-1) at 40 min). There was a significant negative correlation between the acipimox-induced decrease in peak plasma glucose and liver triglyceride content (r = -0.827, P = 0.002), suggesting that, when levels of liver fat were low, inhibition of lipolysis was able to affect glucose homeostasis. Acute pharmacological sequestration of fatty acids in triglyceride stores improves postprandial glucose homeostasis without effect on the immediate postprandial suppression of EGP.  相似文献   

19.
Intraportal serotonin infusion enhances net hepatic glucose uptake (NHGU) during glucose infusion but blunts nonhepatic glucose uptake and can cause gastrointestinal discomfort and diarrhea at high doses. Whether the serotonin precursor 5-hydroxytryptophan (5-HTP) could enhance NHGU without gastrointestinal side effects during glucose infusion was examined in conscious 42-h-fasted dogs, using arteriovenous difference and tracer ([3-3H]glucose) techniques. Experiments consisted of equilibration (-120 to -30 min), basal (-30 to 0 min), and experimental (EXP; 0-270 min) periods. During EXP, somatostatin, fourfold basal intraportal insulin, basal intraportal glucagon, and peripheral glucose (to double the hepatic glucose load) were infused. In one group of dogs (HTP, n = 6), saline was infused intraportally from 0 to 90 min (P1), and 5-HTP was infused intraportally at 10, 20, and 40 microg x kg(-1) x min(-1) from 90 to 150 (P2), 150 to 210 (P3), and 210 to 270 (P4) min, respectively. In the other group (SAL, n = 7), saline was infused intraportally from 0 to 270 min. NHGU in SAL was 14.8 +/- 1.9, 18.5 +/- 2.3, 16.3 +/- 1.4, and 19.7 +/- 1.6 micromol x kg(-1) x min(-1) in P1-P4, whereas NHGU in 5-HTP averaged 16.4 +/- 2.6, 18.5 +/- 1.4, 20.8 +/- 2.0, and 27.6 +/- 2.6 micromol x kg(-1) x min(-1) (P < 0.05 vs. SAL). Nonhepatic glucose uptake (micromol x kg(-1) x min(-1)) in SAL was 30.2 +/- 4.3, 36.8 +/- 5.8, 44.3 +/- 5.8, and 54.6 +/- 11.8 during P1-P4, respectively, whereas in HTP the corresponding values were 26.3 +/- 6.8, 44.9 +/- 10.1, 47.5 +/- 11.7, and 51.4 +/- 13.2 (not significant between groups). Intraportal 5-HTP enhances NHGU without significantly altering nonhepatic glucose uptake or causing gastrointestinal side effects, raising the possibility that a related agent might have a role in reducing postprandial hyperglycemia.  相似文献   

20.
Numerous studies have used the dual-tracer method to assess postprandial glucose metabolism. The present experiments were undertaken to determine whether the marked tracer nonsteady state that occurs with the dual-tracer approach after food ingestion introduces error when it is used to simultaneously measure both meal glucose appearance (R(a meal)) and endogenous glucose production (EGP). To do so, a novel triple-tracer approach was designed: 12 subjects ingested a mixed meal containing [1-(13)C]glucose while [6-(3)H]glucose and [6,6-(2)H(2)]glucose were infused intravenously in patterns that minimized the change in the plasma ratios of [6-(3)H]glucose to [1-(13)C]glucose and of [6,6-(2)H(2)]glucose to endogenous glucose, respectively. R(a meal) and EGP measured with this approach were essentially model independent, since non-steady-state error was minimized by the protocol. Initial splanchnic glucose extraction (ISE) was 12.9% +/- 3.4%, and suppression of EGP (EGPS) was 40.3% +/- 4.1%. In contrast, when calculated with the dual-tracer one-compartment model, ISE was higher (P < 0.05) and EGPS was lower (P < 0.005) than observed with the triple-tracer approach. These errors could only be prevented by using time-varying volumes different for R(a meal) and EGP. Analysis of the dual-tracer data with a two-compartment model reduced but did not totally avoid the problems associated with marked postprandial changes in the tracer-to-tracee ratios. We conclude that results from previous studies that have used the dual-tracer one-compartment model to measure postprandial carbohydrate metabolism need to be reevaluated and that the triple-tracer technique may provide a useful approach for doing so.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号