首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Octreotide is a potent somatostatin analog that inhibits growth hormone (GH) release and restricts somatotrope cell growth. The long-acting octreotide formulation Sandostatin LAR is effective clinically in approximately 60% of patients with acromegaly. Tumoral GH secretion in this disorder is characterized by increases in pulse amplitude and frequency, nonpulsatile (basal) release, and irregularity. Whether sustained blockade by octreotide can restore physiological secretion patterns in this setting is unknown. To address this question, we studied seven patients with GH-secreting tumors during chronic receptor agonism. Responses were monitored by sampling blood at 10-min intervals for 24 h, followed by analyses of secretion and regularity by multiparameter deconvolution and approximate entropy (ApEn). The somatostatin agonist suppressed GH secretory-burst mass, nonpulsatile (basal) GH release, and pulsatile secretion, thereby decreasing total GH secretion by 86% (range 70-96%). ApEn decreased from 1.203 +/- 0.129 to 0.804 +/- 0.141 (P = 0.032), denoting greater regularity. None of GH pulse frequency, basal GH secretion rates, or ApEn normalized. In summary, chronic somatostatin agonism is able to repress amplitude-dependent measures of excessive GH secretion in acromegaly. Presumptive tumoral autonomy is inferred by continued elevations of event frequency, overall pattern disruption (irregularity), and nonsuppressible basal GH secretion.  相似文献   

2.
The physiological importance of endogenous ghrelin in the regulation of growth hormone (GH) secretion is still unknown. To investigate the regulation of ghrelin secretion and pulsatility, we performed overnight ghrelin and GH sampling every 20 min for 12 h in eight healthy male subjects [age 37 +/- 5 (SD) years old, body mass index 27.2 +/- 2.9 kg/m2]. Simultaneous GH and ghrelin levels were assessed to determine the relatedness and synchronicity between these two hormones in the fasted state during the overnight period of maximal endogenous GH secretion. Pulsatility analyses were performed to determine simultaneous hormonal dynamics and investigate the relationship between GH and ghrelin by use of cross-approximate entropy (X-ApEn) analyses. Subjects demonstrated 3.0 +/- 2.1 ghrelin pulses/12 h and 3.3 +/- 0.9 GH pulses/12 h. The mean normalized ghrelin entropy (ApEn) was 0.93 +/- 0.09, indicating regularity in ghrelin hormone secretion. The mean normalized X-ApEn was significant between ghrelin and GH (0.89 +/- 0.12), demonstrating regularity in cosecretion. In addition, we investigated the ghrelin response to standard GH secretagogues [GH-releasing hormone (GHRH) alone and combined GHRH-arginine] in separate testing sequences separated by 1 wk. Our data demonstrate that, in contrast to GHRH alone, which had little effect on ghrelin, combined GHRH and arginine significantly stimulated ghrelin with a maximal peak at 120 min, representing a change of 66 +/- 14 pg/ml (P = 0.001 by repeated-measures ANOVA and P = 0.02 for GHRH vs. combined GHRH-arginine by MANOVA). We demonstrate relatedness between ghrelin and GH pulsatility, suggesting either that ghrelin participates in the pulsatile regulation of GH or that the two hormones are simultaneously coregulated, e.g., by somatostatin or other stimuli. Furthermore, the differential effects of GHRH alone vs. GHRH-arginine suggest that inhibition of somatostatin tone may increase ghrelin. These data provide further evidence of the physiological regulation of ghrelin in relationship to GH.  相似文献   

3.
The role of androgen in the sexual dimorphism in hypothalamic growth hormone (GH)-releasing hormone (GHRH) and somatostatin (SS) gene expression was examined in rats. In the first study, the SS and GHRH mRNA levels were measured in both male and female rats at 4, 6, 8, and 10 weeks of age. A significant sex-related difference in the SS and GHRH mRNA levels was observed after 8 weeks of age, when sexual maturation is fully attained. Male rats had higher SS and GHRH mRNA levels than the female rats. In the second study, adult ovariectomized rats received daily injection of dihydrotestosterone (DHT), nonaromatizable testosterone, at a dose of 2 mg/rat for 21 days. The DHT treatment masculinized the GH secretory pattern, which was indistinguishable from that of intact male rats, and simultaneously augmented the SS and GHRH mRNA levels. The DHT treatment of ovariectomized rats after hypophysectomy significantly raised the level of SS mRNA, but not that of GHRH mRNA compared to the control animals. These findings suggest that the activation of the SS gene expression through androgen receptor plays an important role in the maintenance of sexual dimorphism in GH secretion in rats.  相似文献   

4.
Ghrelin is a native ligand for the growth hormone secretagogue (GHS) receptor that stimulates pulsatile GH secretion markedly. At present, no formal construct exists to unify ensemble effects of ghrelin, GH-releasing hormone (GHRH), somatostatin (SRIF), and GH feedback. To model such interactions, we have assumed that ghrelin can stimulate pituitary GH secretion directly, antagonize inhibition of pituitary GH release by SRIF, oppose suppression of GHRH neurons in the arcuate nucleus (ArC) by SRIF, and induce GHRH secretion from ArC. The dynamics of such connectivity yield self-renewable GH pulse patterns mirroring those in the adult male and female rat and explicate the following key experimental observations. 1) Constant GHS infusion stimulates pulsatile GH secretion. 2) GHS and GHRH display synergy in vivo. 3) A systemic pulse of GHS stimulates GH secretion in the female rat at any time and in the male more during a spontaneous peak than during a trough. 4) Transgenetic silencing of the neuronal GHS receptor blunts GH pulses in the female. 5) Intracerebroventricular administration of GHS induces GH secretion. The minimal construct of GHS-GHRH-SRIF-GH interactions should aid in integrating physiological data, testing regulatory hypotheses, and forecasting innovative experiments.  相似文献   

5.
Growth hormone (GH) pulsatility requires periventricular-nuclear somatostatin(SRIF(PeV)), arcuate-nuclear (ArC) GH-releasing hormone (GHRH), and systemic GH autofeedback. However, no current formalism interlinks these regulatory loci in a manner that generates self-renewable GH dynamics. The latter must include in the adult rat 1) infrequent volleys of high-amplitude GH peaks in the male, 2) frequent discrete low-amplitude GH pulses in the female, 3) disruption of the male pattern by severing SRIF(PeV) outflow to ArC, 4) stimulation of GHRH and GH secretion by central nervous system delivery of SRIF, 5) inhibition of GH release by central exposure to GHRH, and 6) a reboundlike burst of GHRH secretion induced by stopping peripheral infusion of SRIF. The present study validates by computer-assisted simulations a simplified ensemble formulation that predicts each of the foregoing six outcomes, wherein 1) blood-borne GH stimulates SRIF(PeV) secretion after a long time latency, 2) SRIF(PeV) inhibits both pituitary GH and ArC GHRH release, 3) ArC GHRH and SRIF(ArC) oscillate reciprocally with brief time delay, and 4) SRIF(PeV) represses and disinhibits the putative GHRH-SRIF(ArC) oscillator. According to the present analytic construction, time-delayed feedforward and feedback signaling among SRIF(PeV), ArC GHRH, and SRIF(ArC) could endow the complex physiological patterns of GH secretion in the male and female.  相似文献   

6.
Growth hormone (GH) secretion is controlled by GH-releasing hormone (GHRH), the GH release-inhibiting hormone somatostatin (SRIF), and autofeedback connections. The ensemble network produces sexually dimorphic patterns of GH secretion. In an effort to formalize this system, we implemented a deterministically based autonomous feedback-driven construct of five principal dose-responsive regulatory interactions: GHRH drive of GH pituitary release, competitive inhibition of GH release by SRIF, GH autofeedback via SRIF with a time delay, delayed GH autonegative feedback on GHRH, and SRIF inhibition of GHRH secretion. This formulation engenders a malelike pattern of successive GH volleys due jointly to positive time-delayed feedback of GH on SRIF and negative feedback of SRIF on GH and GHRH. The multipeak volley is explicated as arising from a reciprocal interaction between GH and GHRH during periods of low SRIF secretion. The applicability of this formalism to neuroendocrine control is explored by initial parameter sensitivity analysis and is illustrated for selected feedback-dependent experimental paradigms. The present construct is not overparameterized and does not require an ad hoc pulse generator to achieve pulsatile GH output. Further evolution of interactive constructs could aid in exploring more complex feedback postulates that confer the vivid sexual dimorphism of female GH profiles.  相似文献   

7.
Growth hormone (GH) secretion, controlled principally by a GH-releasing hormone (GHRH) and GH release-inhibiting hormone [somatostatin (SRIF)] displays vivid sexual dimorphism in many species. We hypothesized that relatively small differences within a dynamic core GH network driven by regulatory interactions among GH, GHRH, and SRIF explain the gender contrast. To investigate this notion, we implemented a minimal biomathematical model based on two coupled oscillators: time-delayed reciprocal interactions between GH and GHRH, which endow high-frequency (40-60 min) GH oscillations, and time-lagged bidirectional GH-SRIF interactions, which mediate low-frequency (occurring every 3.3 h) GH volleys. We show that this basic formulation, sufficient to explain GH dynamics in the male rat [Farhy LS, Straume M, Johnson ML, Kovatchev BP, and Veldhuis JD. Am J Physiol Regulatory Integrative Comp Physiol 281: R38-R51, 2001], emulates the female pattern of GH release, if autofeedback of GH on SRIF is relaxed. Relief of GH-stimulated SRIF release damps the slower volleylike oscillator, allowing emergence of the underlying high-frequency oscillations that are sustained by the GH-GHRH interactions. Concurrently, increasing variability of basal somatostatin outflow introduces quantifiable, sex-specific disorderliness of the release process typical of female GH dynamics. Accordingly, modulation of GH autofeedback on SRIF within the interactive GH-GHRH-SRIF ensemble and heightened basal SRIF variability are sufficient to transform the well-ordered, 3.3-h-interval, multiphasic, volleylike male GH pattern into a femalelike profile with irregular pulses of higher frequency.  相似文献   

8.
Growth hormone (GH) secretion is decreased during aging in humans and in rodents. This decrease may be due to increased hypothalamic somatostatin release, which is inhibited by cholinergic agonists, or to decreased secretion of GHRH. Alpha-glyceryl-phosphorylcholine (alpha-GFC) is a putative acetylcholine precursor used in the treatment of cognitive disorders in the elderly. In order to learn what effect alpha-GFC had on GH secretion, GH-release hormone (GHRH) was given to young and old human volunteers, with or without the addition of alpha-GFC. GH secretion was greater in the younger subjects than in the old individuals, and both groups had a greater GH response to the GHRH+alpha-GFC than to GHRH alone. The potentiating effect of alpha-GFC on GH secretion was more pronounced in the elderly subjects. These findings confirm the observation that aged individuals respond less well to GHRH than younger subjects, and provides further evidence that increased cholinergic tone enhances GH release.  相似文献   

9.
The dimorphic pattern of growth hormone (GH) secretion and somatic growth in male and female mammals is attributable to the gonadal steroids. Whether these hormones mediate their effects solely on hypothalamic neurons, on somatotropes or on both to evoke the gender-specific GH secretory patterns has not been fully elucidated. The purpose of this study was to determine the effects of 17beta-estradiol, testosterone and its metabolites on release of GH, GH-releasing hormone (GHRH) and somatostatin (SRIF) from bovine anterior pituitary cells and hypothalamic slices in an in vitro perifusion system. Physiological concentrations of testosterone and estradiol perifused directly to anterior pituitary cells did not affect GH releases; whereas, dihydrotestosterone and 5alpha-androstane-3alpha, 17beta-diol increased GH. Perifusion of testosterone at a pulsatile rate, and its metabolites and estradiol at a constant rate to hypothalamic slices in series with anterior pituitary cells increased GH release. The androgenic hormones increased GHRH and SRIF release from hypothalamus; whereas, estradiol increased GHRH but decreased SRIF release. Our data show that estradiol and the androgens generated distinctly different patterns of GHRH and SRIF release, which in turn established gender-specific GH patterns.  相似文献   

10.
In order to find a chronic GHRH administration capable of stimulating growth rate without depleting pituitary GH content, prepubertal female rats were subcutaneously (sc) treated with GHRH (1-29)-NH2 and somatostatin (SS). In experiment 1, the rats received sc injections of GHRH and cyclic natural SS for 19 days. In the second study, female rats were continuously treated during 21 days with GHRH, using a slow release pellet, alone or combined with one daily injection of long acting SS (octreotide). In experiment 1, body weight was significantly increased when GHRH was administered at the highest daily dosage (1200 microg/day), accompanied by an slight increment in pituitary GH content. Hypothalamic SS concentrations decreased when GHRH or SS were administered alone whereas the combined treatment with both peptides did not modify this parameter, which suggests the existence of a balance between the chronic actions of both peptides on hypothalamus. In experiment 2, the continuous infusion of GHRH increased plasma GH levels and tended to enhance pituitary GH content. Nevertheless, GHRH effect was not effective enough to increase body weight. By adding one daily injection of SS both GHRH effects on the pituitary gland were abolished. Our study indicates that female rats retain responsiveness to chronic GHRH and SS treatments at both pituitary and hypothalamic levels.  相似文献   

11.
Growth hormone (GH) secretion is vividly pulsatile in all mammalian species studied. In a simplified model, self-renewable GH pulsatility can be reproduced by assuming individual, reversible, time-delayed, and threshold-sensitive hypothalamic outflow of GH-releasing hormone (GHRH) and GH release-inhibiting hormone (somatostatin; SRIF). However, this basic concept fails to explicate an array of new experimental observations. Accordingly, here we formulate and implement a novel fourfold ensemble construct, wherein 1) systemic GH pulses stimulate long-latency, concentration-dependent secretion of periventricular-nuclear SRIF, thereby initially quenching and then releasing multiphasic GH volleys (recurrent every 3-3.5 h); 2) SRIF delivered to the anterior pituitary gland competitively antagonizes exocytotic release, but not synthesis, of GH during intervolley intervals; 3) arcuate-nucleus GHRH pulses drive the synthesis and accumulation of GH in saturable somatotrope stores; and 4) a purely intrahypothalamic mechanism sustains high-frequency GH pulses (intervals of 30-60 min) within a volley, assuming short-latency reciprocal coupling between GHRH and SRIF neurons (stimulatory direction) and SRIF and GHRH neurons (inhibitory direction). This two-oscillator formulation explicates (but does not prove) 1) the GHRH-sensitizing action of prior SRIF exposure; 2) a three-site (intrahypothalamic, hypothalamo-pituitary, and somatotrope GH store dependent) mechanism driving rebound-like GH secretion after SRIF withdrawal in the male; 3) an obligatory role for pituitary GH stores in representing rebound GH release in the female; 4) greater irregularity of SRIF than GH release profiles; and 5) a basis for the paradoxical GH-inhibiting action of centrally delivered GHRH.  相似文献   

12.
Glucocorticoids are thought to inhibit growth hormone (GH) secretion through an enhancement of endogenous somatostatin tone. The aim of our study was to evaluate the effects of GH-releasing hormone (GHRH) and clonidine, an alpha-2-adrenergic agonist which increases GH secretion acting at the hypothalamic level with an unknown mechanism, on GH secretion in seven adult patients (3M, 4F) with non endocrine diseases and on daily immunosuppressive glucocorticoid therapy. Eleven normal subjects (7M, 4F) served as controls. Steroid-treated patients showed a blunted GH response to GHRH (GH peak 8.3 +/- 3 micrograms/L) with respect to normal subjects (GH peak 19.3 +/- 2.4 micrograms/L). The GH responses to clonidine were also blunted (p less than 0.05) in steroid-treated patients (GH peak 5.8 +/- 2.8 micrograms/L) with respect to normal subjects (GH peak 17.6 +/- 2.3 micrograms/L). No significant differences between the GH responses to GHRH and clonidine were observed either in steroid-treated or in normal subjects. Clonidine is not able to enhance GH secretion similar to GHRH in patients chronically treated with steroids. It can be hypothesized that clonidine does not elicit GH secretion decreasing hypothalamic somatostatin tone.  相似文献   

13.
R F Walker  S W Yang  B B Bercu 《Life sciences》1991,49(20):1499-1504
Aging is associated with a blunted growth hormone (GH) secretory response to GH-releasing hormone (GHRH), in vivo. The objective of the present study was to assess the effects of aging on the GH secretory response to GH-releasing hexapeptide (GHRP-6), a synthetic GH secretagogue. GHRP-6 (30 micrograms/kg) was administered alone or in combination with GHRH (2 micrograms/kg) to anesthetized female Fischer 344 rats, 3 or 19 months of age. The peptides were co-administered to determine the effect of aging upon the potentiating effect of GHRP-6 on GHRH activity. The increase in plasma GH as a function of time following administration of GHRP-6 was lower (p less than 0.001) in old rats than in young rats; whereas the increase in plasma GH secretion as a function of time following co-administration of GHRP-6 and GHRH was higher (p less than 0.001) in old rats than in young rats (mean Cmax = 8539 +/- 790.6 micrograms/l vs. 2970 +/- 866 micrograms/l, respectively; p less than 0.01). Since pituitary GH concentrations in old rats were lower than in young rats (257.0 +/- 59.8 micrograms/mg wet wt. vs. 639.7 +/- 149.2 micrograms/mg wet wt., respectively; p less than 0.03), the results suggested that GH functional reserve in old female rats was not linked to pituitary GH concentration. The differential responses of old rats to individually administered and co-administered GHRP-6 are important because they demonstrate that robust and immediate GH secretion can occur in old rats that are appropriately stimulated. The data further suggest that the cellular processes subserving GH secretion are intact in old rats, and that age-related decrements in GH secretion result from inadequate stimulation, rather than to maladaptive changes in the mechanism of GH release.  相似文献   

14.
Pulsatile GH secretion decreases during food-deprivation in the rat. It has been hypothesized that this decrease is due to elevated hypothalamic somatostatin secretion. This is based on the observation that GH increases in food-deprived rats following removal of endogenous somatostatin using passive immunization techniques. Cognizant of the important stimulatory effects of growth hormone-releasing hormone (GHRH) on GH secretion, we sought to determine if this neuropeptide plays any role in mediating GH secretion in food-deprived rats. Male rats were prepared with indwelling venous catheters using sodium pentobarbital anesthesia seven days prior to experimentation. Animals were food-deprived for 72 h, after which control blood samples were drawn from -60 to 0 min. One group was then treated with normal rabbit serum (NRS), while a second group was treated with GHRH antiserum (GHRHab). At 55 min all animals received somatostatin antiserum (SSab). No animal exhibited any spontaneous GH peak during the one hour control period or in the subsequent one hour period following the administration of GHRHab or NRS. Absence of GH pulsatility during food-deprivation, coupled with no decrease in GH levels in food-deprived rats treated with GHRHab suggest that diminished GHRH pulsatility is likely during food-deprivation. Subsequent treatment of these animals with SSab resulted in an identical 2.5 fold increase in GH concentrations. This result suggests that GHRH is not involved in the GH rebound following somatostatin withdrawal in food-deprived rats.  相似文献   

15.
We sought to clarify the mechanisms of growth hormone (GH) secretion induced by insulin hypoglycemia, L-dopa, and arginine in man. The secretion of GH as measured by increased plasma level, in response to oral administration of 500 mg L-dopa or 30 min-infusion of arginine, was not modified by prior intravenous administration of 200 micrograms GH-releasing hormone (GHRH). It was, however, completely blocked by preadministered 50 micrograms SMS201-995, a long-acting somatostatin (SRIH) analog. GH release with 200 micrograms GHRH was completely blocked by 100 micrograms SMS201-995. GH secretion caused by insulin-induced hypoglycemia was significantly reduced but still present after administration of 100 micrograms of the analog. These results suggest that a suppression of SRIH release may be partially involved in the stimulatory mechanism of GH secretion by L-dopa. Coadministration of GHRH accentuated the stimulatory effect of arginine on GH secretion. Arginine significantly raised plasma TSH levels. These findings suggest that arginine suppresses SRIH release from the hypothalamus to cause GH secretion because SRIH suppresses TSH secretion. It is also suggested that some factor (or factors) other than GHRH and SRIH are involved in the mechanism by which insulin-induced hypoglycemia stimulates GH secretion, because the effect of insulin was not fully blocked in the presence of SRIH analog. Thus all the tests for GH release appear to act via different mechanisms.  相似文献   

16.
The central control of growth hormone (GH) secretion from the pituitary gland is ultimately achieved by the interaction between two hypothalamic neurohormones, somatostatin which inhibits and growth hormone-releasing hormone (GHRH) which stimulates GH release. The regulation of the somatostatin and GHRH release from the hypothalamus is regulated by a range of other neuropeptides, neurotransmitters, neurohormones. In this mini review we attempt to provide a short summary covering the anatomy and chemical characteristics of the various cell populations regulating GH secretion as a tribute to Miklós Palkovits who pioneered the field of functional neuroanatomy of hypothalamic networks.Special Issue Dedicated to Miklós Palkovits.  相似文献   

17.
Growth hormone (GH) secretion is regulated by GH-releasing hormone (GHRH), somatostatin, and possibly ghrelin, but uncertainty remains about the relative contributions of these hypophysiotropic factors to GH pulsatility. Patients with genetic GHRH receptor (GHRH-R) deficiency present an opportunity to examine GH secretory dynamics in the selective absence of GHRH input. We studied circadian GH profiles in four young men homozygous for a null mutation in the GHRH-R gene by use of an ultrasensitive GH assay. Residual GH secretion was pulsatile, with normal pulse frequency, but severely reduced amplitude (<1% normal) and greater than normal process disorder (as assessed by approximate entropy). Nocturnal GH secretion, both basal and pulsatile, was enhanced compared with daytime. We conclude that rhythmic GH secretion persists in an amplitude-miniaturized version in the absence of a GHRH-R signal. The nocturnal enhancement of GH secretion is likely mediated by decreased somatostatin tone. Pulsatility of residual GH secretion may be caused by oscillations in somatostatin and/or ghrelin; it may also reflect intrinsic oscillations in somatotropes.  相似文献   

18.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

19.
Patients with hyperthyroidism have reduced growth hormone (GH) responses to pharmacological stimuli and reduced spontaneous nocturnal GH secretion. The stimulatory effect of clonidine on GH secretion has been suggested to depend on an enhancement of hypothalamic GH-releasing hormone (GHRH) release. The aim of our study was to evaluate the effects of clonidine and GHRH on GH secretion in patients with hyperthyroidism. Eight hyperthyroid females with recent diagnosis of Graves' disease (age range 20-55 years, body mass index range 19.2-26.2 kg/m2) and 6 healthy female volunteers (age range 22-35 years, body mass index range 19-25 kg/m2) underwent two experimental trials at no less than 7-day intervals: (a) an intravenous infusion of clonidine 150 micrograms in 10 ml of saline, or (b) a bolus intravenous injection of human GHRH (1-29)NH2, 100 micrograms in 1 ml of saline. Hyperthyroid patients showed blunted GH peaks after clonidine (7.1 +/- 1.7 micrograms/l) as compared to normal subjects receiving clonidine (28.5 +/- 4.9 micrograms/l, p less than 0.05). GH peaks after GHRH were also significantly lower in hyperthyroid subjects (8.0 +/- 1.7 micrograms/l) as compared to normal subjects receiving GHRH (27.5 +/- 4.4 micrograms/l, p less than 0.05). No significant differences in the GH values either after clonidine or GHRH were observed in the two groups of subjects examined. Our data demonstrate that the GH responses to clonidine as well as to GHRH in patients with hyperthyroidism are inhibited in a similar fashion with respect to normal subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pituitary gland growth hormone (GH) secretion is influenced by two hypothalamic neuropeptides: growth hormone-releasing hormone (GHRH) and somatostatin. Recent data also suggest that estrogen modulates GH release, particularly at the time of the preovulatory luteinizing hormone surge, when a coincident surge of GH is observed in sheep. The GHRH neurons do not possess estrogen receptor alpha (ERalpha), suggesting that estrogen does not act directly on GHRH neurons. Similarly, few somatotropes express ERalpha, suggesting a weak pituitary effect of estradiol on GH. It was hypothesized, therefore, that estradiol may affect somatostatin neurons to modulate GH release from the pituitary. Using immunocytochemical approaches, the present study revealed that although somatostatin neurons were located in several hypothalamic sites, only those in the arcuate nucleus (13% +/- 2%) and ventromedial nucleus (VMN; 29% +/- 1%) expressed ERalpha. In addition, we found that all neurons immunoreactive for somatostatin-14 were also immunoreactive for somatostatin-28(1-12). To determine whether increased GH secretion in response to estradiol is through modulation of GHRH and/or somatostatin neuronal activity, a final study investigated whether c-fos expression increased in somatostatin- and GHRH-immunoreactive cells at the time of the estradiol-induced LH surge in intact anestrous ewes. Estradiol significantly (P < 0.05) increased the percentage of GHRH (estradiol, 75% +/- 3%; no estradiol, 19% +/- 2%) neurons expressing c-fos in the hypothalamus. The percentage of somatostatin-immunoreactive neurons coexpressing c-fos in the estradiol-treated animals was significantly (P < 0.05) higher (periventricular, 44% +/- 3%; arcuate, 72% +/- 5%; VMN, 81% +/- 5%) than in the control animals (periventricular, 22% +/- 1%; arcuate, 29% +/- 3%; VMN, 31% +/- 3%). The present study suggests that estradiol modulates the activity of GHRH and somatostatin neurons but that this effect is most likely mediated through an indirect interneuronal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号