首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Cell autophagy and cell apoptosis are both observed in the process of hypoxia-induced ischemic cerebral infarction (ICI). Unc-51 like autophagy activating kinase 1 (Ulk1) and FUN14 Domain-containing Protein 1 (FUNDC1) are both involved in the regulation of cell autophagy. This study aimed to investigate the regulatory effects of Ulk1 and FUNDC1 on hypoxia-induced nerve cell autophagy and apoptosis. Cell viability was measured using cell counting kit-8 (CCK-8) assay. Cell apoptosis was detected using Annexin V-PE/7-ADD staining assay. qRT-PCR was used to quantify the mRNA levels of Ulk1 and FUNDC1 in PC-12 cells. Cell transfection was performed to up-regulate the expression of Ulk1. 3-Methyladenine (3-MA) was used as autophagy inhibitor and rapamycin was used as autophagy activator in our experiments. SP600125 was used as c-Jun N-terminal kinase (JNK) inhibitor. Western blotting was performed to analyze the expression levels of key factors that are related to cell autophagy, apoptosis and JNK pathway. We found that hypoxia simultaneously induced apoptosis and autophagy of PC-12 cells. The activation of Ulk1 and FUNDC1 were also found in PC-12 cells after hypoxia induction. Overexpression of Ulk1 promoted the activation of FUNDC1 and prevented PC-12 cells from hypoxia-induced apoptosis. Suppression of Ulk1 had opposite effects. Furthermore, we also found that JNK pathway participated in the effects of Ulk1 overexpression on PC-12 cell apoptosis reduction. To conclude, Ulk1/FUNDC1 played critical regulatory roles in hypoxia-induced nerve cell autophagy and apoptosis. Overexpression of Ulk1 prevented nerve cells from hypoxia-induced apoptosis by promoting cell autophagy.  相似文献   

2.
Mammalian Ste20-like protein kinase 3 (Mst3) is a key player in inducing apoptosis in a variety of cell types and has recently been shown to participate in the signaling pathway of hypoxia-induced apoptosis of human trophoblast cell line 3A-sub-E (3A). It is believed that oxidative stress may occur during hypoxia and induce the expression of Mst3 in 3A cells via the activation of c-Jun N-terminal protein kinase 1 (JNK1). This hypothesis was demonstrated by the suppressive effect of dl-α-lipoic acid, a reactive oxygen species scavenger, in hypoxia-induced responses of 3A cells such as Mst3 expression, nitrotyrosine formation, JNK1 activation and apoptosis. Similar results were also observed in trophoblasts of human placental explants in both immunohistochemical studies and immunoblot analyses. These suggested that the activation of Mst3 might trigger the apoptotic process in trophoblasts by activating caspase 3 and possibly other apoptotic pathways. The role of nitric oxide synthase (NOS) and NADPH oxidase (NOX) in hypoxia-induced Mst3 up-regulation was also demonstrated by the inhibitory effect of N(G)-nitro-l-arginine and apocynin, which inhibits NOS and NOX, respectively. Oxidative stress was postulated to be induced by NOS and NOX in 3A cells during hypoxia. In conclusion, hypoxia induces oxidative stress in human trophoblasts by activating NOS and NOX. Subsequently, Mst3 is up-regulated and plays an important role in hypoxia-induced apoptosis of human trophoblasts.  相似文献   

3.
Mitogen-activated protein kinase (MAPK) signaling was examined in malignant melanoma cells exposed to hypoxia. Here we demonstrate that hypoxia induced a strong activation of the c-Jun NH2-terminal kinase (JNK), also termed stress-activated protein kinase (SAPK), in the melanoma cell line 530 in vitro. Other members of the MAPK family, e.g., extracellular signal-regulated kinase and p38, remained unaffected by the hypoxic stimulus. Activated JNK/SAPK could also be observed in the vicinity of hypoxic tumor areas in melanoma metastases as detected by immunohistochemistry. Functional analysis of JNK/SAPK activation in the melanoma cell line 530 revealed that activation of JNK/SAPK is involved in hypoxia-mediated tumor cell apoptosis. Both a dominant negative mutant of JNK/SAPK (SAPKbeta K-->R) and a dominant negative mutant of the immediate upstream activator of JNK/SAPK, SEK1 (SEK1 K-->R), inhibited hypoxia-induced apoptosis in transient transfection studies. In contrast, overexpression of the wild-type kinases had a slight proapoptotic effect. Inhibition of extracellular signal-regulated kinase and p38 pathways by the chemical inhibitors PD98058 and SB203580, respectively, had no effect on hypoxiainduced apoptosis. Under normoxic conditions, no influence on apoptosis regulation was observed after inhibition of all three MAPK pathways. In contrast to recent findings, JNK/SAPK activation did not correlate with Fas or Fas ligand (FasL) expression, suggesting that the Fas/FasL system is not involved in hypoxia-induced apoptosis in melanoma cells. Taken together, our data demonstrate that hypoxia-induced JNK/SAPK activation appears to play a critical role in apoptosis regulation of melanoma cells in vitro and in vivo, independent of the Fas/FasL system.  相似文献   

4.
The mechanisms by which cells undergo proliferation arrest or cell death in response to hypoxia are still not completely understood. Originally, we showed that HeLa and Hep3B carcinoma cells undergo different proliferation responses in hypoxia. We now show that these 2 cell lines also have different cell death responses to severe hypoxia, with HeLa showing both cell cycle arrest and apoptosis (as early as 12 h after hypoxia treatment), and Hep3B showing resistance to both. Hypoxia-induced apoptosis in Hela was associated with decreases of both phospho-S473- and -T308-AKT and loss of AKT function, whereas Hep3B cells were resistant to hypoxia-induced apoptosis and did not lose phospho-AKT or AKT function. We then decided to test if our observations were confirmed using a hypoxia mimic, desferoxamine. Desferoxamine treatment yielded cell cycle arrest in HeLa and moderate arrest in Hep3B but, surprisingly, did not induce notable apoptosis of either cell line with up to 24 h of treatment. Hypoxia-treated normal human mammary epithelial cells also showed hypoxia-induced apoptosis. Interestingly, in these cell lines, there was a complete correlation between loss of phospho-AKT and (or) total AKT, and susceptibility to hypoxia-induced apoptosis. Our data suggests a model in which regulated loss of active AKT at a precise time point in hypoxia may be associated with apoptosis in susceptible cells.  相似文献   

5.
6.
Park HJ  Shin DH  Chung WJ  Leem K  Yoon SH  Hong MS  Chung JH  Bae JH  Hwang JS 《Life sciences》2006,78(24):2826-2832
Cell detachment from extracellular matrix is closely related to induction of apoptosis. Epigallocatechin gallate (EGCG) has been shown to have antioxidant effect and to protect hypoxia-induced damage. We investigated whether EGCG reduced hypoxia-induced apoptosis and cell detachment in HepG2 cells. EGCG prevented cell death by hypoxia (0.5% O2) in a dose-dependent manner (hypoxic cell viability, 54.67%). RT-PCR and caspase3 activity assay showed that the hypoxia-induced cell death was caused by apoptosis increasing mRNA level of BAX, CASP3, and caspase3 activity. EGCG reduced increase of these mRNA and caspase3 activity. Western blot analysis and immunocytochemistry showed that EGCG increased cell adhesion proteins including E-cadherin (CDH1), tumor-associated calcium signal transducer 1 (TACSTD1), and protein tyrosine kinase 2 (PTK2) decreased by hypoxia. Hypoxia-induced apoptosis in HepG2 cells, and EGCG contributed to the HepG2 cell survival by attenuating the apoptosis.  相似文献   

7.
This study investigated the signal molecules linking the alteration in 2-dexoyglucose (2-DG) uptake and DNA synthesis in mouse embryonic stem (ES) cells under hypoxia. Hypoxia increased the 2-DG uptake and GLUT-1 protein expression level while the undifferentiated state of ES cells and cell viability were not affected by the hypoxia (1 - 48h). Subsequently, [(3)H] thymidine incorporation was significantly increased at 12 hours of hypoxic exposure. Hypoxia increased the Ca(2+) uptake and PKC beta (I), epsilon, and zeta translocation from the cytosol to the membrane fraction. Moreover, hypoxia increased the level of p44/42 mitogen-activated protein kinases (MAPKs) phosphorylation and hypoxia inducible factor-1alpha (HIF-1alpha) in a time-dependent manner. On the other hand, inhibition of these pathways blocked the hypoxia-induced increase in the 2-DG uptake and GLUT-1 protein expression level. Under hypoxia, cell cycle regulatory protein expression [cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK 4] were increased in a time-dependent manner, which were blocked by PD 98059. pRB protein was also increased in a time-dependent manner. In conclusion, under hypoxia, there might be a parallel relationship between the expression of GLUT1 and DNA synthesis, which is mediated by the Ca(2+) /PKC, MAPK, and the HIF-1alpha signal pathways in mouse ES cells.  相似文献   

8.
Because survival and growth of human hepatoma cells are maintained by nutrient, especially glucose, glucose starvation induces acute cell death. The cell death is markedly suppressed by hypoxia, and we have reported involvement of AMP-activated protein kinase-alpha (AMPK-alpha), Akt, and ARK5 in hypoxia-induced tolerance. In the current study we investigated the mechanism of hypoxia-induced tolerance in human hepatoma cell line HepG2. ARK5 expression was induced in HepG2 cells when they were subjected to glucose starvation, and we found that glucose starvation transiently induced Akt and AMPK-alpha phosphorylation and that hypoxia prolonged phosphorylation of both protein kinases. We also found that hypoxia-induced tolerance was partially abrogated by blocking the Akt/ARK5 system or by suppressing AMPK-alpha expression and that suppression of both completely abolished the tolerance, suggesting that AMPK-alpha activation signaling and the Akt/ARK5 system play independent essential roles in hypoxia-induced tolerance. By using chemical compounds that specifically inhibit kinase activity of type I-transforming growth factor-beta (TGF-beta) receptor, we showed an involvement of TGF-beta in hypoxia-induced tolerance. TGF-beta1 mRNA expression was induced by hypoxia in an hypoxia-inducible factor-1alpha-independent manner, and addition of recombinant TGF-beta suppressed cell death during glucose starvation even under normoxic condition. AMPK-alpha, Akt, and ARK5 were activated by TGF-beta1, and Akt and AMPK-alpha phosphorylation, which was prolonged by hypoxia, was suppressed by an inhibitor of type I TGF-beta receptor. Based on these findings, we propose that hypoxia-induced tumor cell tolerance to glucose starvation is caused by hypoxia-induced TGF-beta1 through AMPK-alpha activation and the Akt/ARK5 system.  相似文献   

9.
Hypoxia/reoxygenation stress induces the activation of specific signaling proteins and activator protein 1 (AP-1) to regulate cell cycle regression and apoptosis. In the present study, we report that hypoxia/reoxygenation stress activates AP-1 by increasing c-Jun phosphorylation and DNA binding activity through activation of Polo-like-kinase 3 (Plk3) resulting in apoptosis. The specific effect of hypoxia/reoxygenation stress on Plk3 activation resulting in c-Jun phosphorylation was the opposite of UV irradiation-induced responses that are meanly independent on activation of the stress-induced JNK signaling pathway in human corneal epithelial (HCE) cells. The effect of hypoxia/reoxygenation stress-induced Plk3 activation on increased c-Jun phosphorylation and apoptosis was also mimicked by exposure of cells to CoCl(2). Hypoxia/reoxygenation activated Plk3 in HCE cells to directly phosphorylate c-Jun proteins at phosphorylation sites Ser-63 and Ser-73, and to increase DNA binding activity of c-Jun, detected by EMSA. Further evidence demonstrated that Plk3 and phospho-c-Jun were immunocolocalized in the nuclear compartment of hypoxia/reoxygenation stress-induced cells. Increased Plk3 activity by overexpression of wild-type and dominantly positive Plk3 enhanced the effect of hypoxia/reoxygenation on c-Jun phosphorylation and cell death. In contrast, knocking-down Plk3 mRNA suppressed hypoxia-induced c-Jun phosphorylation. Our results provide a new mechanism indicating that hypoxia/reoxygenation induces Plk3 activation instead of the JNK effect to directly phosphorylate and activate c-Jun, subsequently contributing to apoptosis in HCE cells.  相似文献   

10.
The pathogenesis of many lung diseases involves neutrophilic inflammation. Neutrophil functions, in turn, are critically dependent on glucose uptake and glycolysis to supply the necessary energy to meet these functions. In this study, we determined the effects of p38 mitogen-activated protein kinase and hypoxia-inducible factor (HIF)-1, as well as their potential interaction, on the expression of membrane glucose transporters and on glucose uptake in murine neutrophils. Neutrophils were harvested and purified from C57BL/6 mice and stimulated with lipopolysaccharide (LPS) in the presence or absence of specific p38 and HIF-1 inhibitors. Glucose uptake was measured as the rate of [3H]deoxyglucose (DG) uptake. We identified GLUT-1 in mouse neutrophils, but neither GLUT-3 nor GLUT-4 were detected using Western blot analysis, even after LPS stimulation. LPS stimulation did not increase GLUT-1 protein levels but did cause translocation of GLUT-1 from the cell interior to the cell surface, together with a dose-dependent increase in [3H]DG uptake, indicating that glucose uptake is regulated in these cells. LPS also activated both p38 and the HIF-1 pathway. Inhibitors of p38 and HIF-1 blocked GLUT-1 translocation and [3H]DG uptake. These data suggest that LPS-induced increases in neutrophil glucose uptake are mediated by GLUT-1 translocation to the cell surface in response to sequential activation of neutrophil p38 and HIF-1alpha in neutrophils. Given that neutrophil function and glucose metabolism are closely linked, control of the latter may represent a new target to ameliorate the deleterious effects of neutrophils on the lungs.  相似文献   

11.
We previously found that prenatal hypoxia induces a significant increase in the levels of active Caspase 3 at 60 min post-hypoxia (p-h) and in the number of TUNEL-positive pyknotic cells, which peaks at 6h p-h. The aim of this work was to study alterations in MAPKs pathways and the effect of specific inhibitors of the JNK (SP600125) and p38 (SB203580) pathways following acute hypoxia in chick optic lobe at embryonic day (ED) 12. To this end, JNK, p38 and ERK1-2 protein kinase expression levels were determined by Western blot in both their active and inactive forms, evaluated at successive p-h times. At 10 and 30 min p-h the P-JNK/JNK ratio was 1.912+/-0.341 and 1.920+/-0.304, respectively. Concomitantly, at 0 min p-h the P-p38/p38 ratio was 1.657+/-0.203. Lastly, the P-ERK/ERK ratio proving non-significant throughout. When inhibitors for JNK and p38 were used, we observed a decrease in the values of active Caspase 3 at 60 min p-h, which correlated with the control values in the parameters of TUNEL-positive cells at 6h p-h. Analysis for P-ATF-2 demonstrated an increase in hypoxic embryos compared to control ones which was reverted in a dose-dependent manner with the use of both inhibitors. All these results indicate that at ED 12, acute hypoxia might be differentially activating JNK and p38 pathways, without affecting the ERK pathway, which in turn would be activating Caspase 3, thus leading to cell death by apoptosis. Furthermore, JNK and p38 activation precede in time the programmed cell death induced by hypoxia.  相似文献   

12.
Although Jun amino-terminal kinase (JNK) is known to mediate a physiological stress signal that leads to cell death, the exact role of the JNK pathway in the mechanisms underlying intrinsic cell death is largely unknown. Here we show through a genetic screen that a mutant of Drosophila melanogaster tumour-necrosis factor receptor-associated factor 1 (DTRAF1) is a dominant suppressor of Reaper-induced cell death. We show that Reaper modulates the JNK pathway through Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), which negatively regulates DTRAF1 by proteasome-mediated degradation. Reduction of JNK signals rescues the Reaper-induced small eye phenotype, and overexpression of DTRAF1 activates the Drosophila ASK1 (apoptosis signal-regulating kinase 1; a mitogen-activated protein kinase kinase kinase) and JNK pathway, thereby inducing cell death. Overexpresson of DIAP1 facilitates degradation of DTRAF1 in a ubiquitin-dependent manner and simultaneously inhibits activation of JNK. Expression of Reaper leads to a loss of DIAP1 inhibition of DTRAF1-mediated JNK activation in Drosophila cells. Taken together, our results indicate that DIAP1 may modulate cell death by regulating JNK activation through a ubiquitin#150;proteasome pathway.  相似文献   

13.
Hypoxia (lack of oxygen) is a physiological stress often associated with solid tumors. Hypoxia correlates with poor prognosis since hypoxic regions within tumors are considered apoptosisresistant. Autophagy (cellular "self digestion") has been associated with hypoxia during cardiac ischemia and metabolic stress as a survival mechanism. However, although autophagy is best characterized as a survival response, it can also function as a mechanism of programmed cell death. Our results show that autophagic cell death is induced by hypoxia in cancer cells with intact apoptotic machinery. We have analyzed two glioma cell lines (U87, U373), two breast cancer cell lines (MDA-MB-231, ZR75) and one embryonic cell line (HEK293) for cell death response in hypoxia (<1% O(2)). Under normoxic conditions, all five cell lines undergo etoposide-induced apoptosis whereas hypoxia fails to induce these apoptotic responses. All five cell lines induce an autophagic response and undergo cell death in hypoxia. Hypoxia-induced cell death was reduced upon treatment with the autophagy inhibitor 3-methyladenine, but not with the caspase inhibitor z-VAD-fmk. By knocking down the autophagy proteins Beclin-1 or ATG5, hypoxia-induced cell death was also reduced. The pro-cell death Bcl-2 family member BNIP3 (Bcl-2/adenovirus E1B 19kDainteracting protein 3) is upregulated during hypoxia and is known to induce autophagy and cell death. We found that BNIP3 overexpression induced autophagy, while expression of BNIP3 siRNA or a dominant-negative form of BNIP3 reduced hypoxia-induced autophagy. Taken together, these results suggest that prolonged hypoxia induces autophagic cell death in apoptosis-competent cells, through a mechanism involving BNIP3.  相似文献   

14.
Severe retinal ischemia causes persistent visual impairments in eye diseases. Retinal pigment epithelium (RPE) cells are located near the choroidal capillaries, and are easily affected by ischemic or hypoxia. Ginsenoside Rg-1 has shown significant neuroprotective effects. This study was performed to test the cytoprotective effect of ginsenoside Rg-1 in RPE cells against hypoxia and cobalt chloride (CoCl2) assaults, and to understand the underlying mechanisms. We found that Rg-1 pre-administration significantly inhibited CoCl2- and hypoxia-induced RPE cell death and apoptosis. Reactive oxygen specisis (ROS)-dependent p38 and c-Jun NH(2)-terminal kinases (JNK) MAPK activation was required for CoCl2-induced RPE cell death, and Rg-1 pre-treatment significantly inhibited ROS production and following p38/JNK activation. Further, CoCl2 suppressed pro-survival mTOR complex 1 (mTORC1) activation in RPE cells through activating of AMP-activated protein kinase (AMPK), while Rg-1 restored mTORC1 activity through inhibiting AMPK activation. CoCl2-induced AMPK activation was also dependent on ROS production, and anti-oxidant N-acetylcysteine (NAC) prevented AMPK activation and RPE cell death by CoCl2. Our results indicated that Rg-1 could be further investigated as a novel cell-protective agent for retinal ischemia.  相似文献   

15.
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.  相似文献   

16.
Hypoxia induces apoptosis in primary and transformed cells and in various tumor cell lines in vitro. In contrast, there is little apoptosis and predominant necrosis despite extensive hypoxia in human glioblastomas in vivo. We here characterize ultrastructural and biochemical features of cell death in LN-229, LN-18 and U87MG malignant glioma cells in a paradigm of hypoxia with partial glucose deprivation in vitro. Electron microscopic analysis of hypoxia-challenged glioma cells demonstrated early stages of apoptosis but predominant necrosis. ATP levels declined during hypoxia, but recovered with re-exposure to normoxic conditions unless hypoxia exceeded 8 h. Longer hypoxic exposure resulted in irreversible ATP depletion and delayed cell death. Hypoxia induced mitochondrial release of cytochrome c, but there was no cleavage of caspases 3, 7, 8 or 9, and no DNA fragmentation. Ectopic expression of BCL-XL conferred protection from hypoxia-induced cell death, whereas the overexpression of the antiapoptotic proteins X-linked-inhibitor-of-apoptosis-protein and cytokine response modifier-A had no effect. These findings suggest that glioma cells resist adverse effects of hypoxia until energy stores are depleted and then undergo necrosis rather than apoptosis because of energy deprivation.  相似文献   

17.
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15-30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.  相似文献   

18.
The adipocytokine resistin impairs glucose tolerance and insulin sensitivity. Here, we examine the effect of resistin on glucose uptake in human trophoblast cells and we demonstrate that transplacental glucose transport is mediated by glucose transporter (GLUT)-1. Furthermore, we evaluate the type of signal transduction induced by resistin in GLUT-1 regulation. BeWo choriocarcinoma cells and primary cytotrophoblast cells were cultured with increasing resistin concentrations for 24 hrs. The main outcome measures include glucose transport assay using [3H]-2-deoxy glucose, GLUT-1 protein expression by Western blot analysis and GLUT-1 mRNA detection by quantitative real-time RT-PCR. Quantitative determination of phospho(p)-ERK1/2 in cell lysates was performed by an Enzyme Immunometric Assay and Western blot analysis. Our data demonstrate a direct effect of resistin on normal cytotrophoblastic and on BeWo cells: resistin modulates glucose uptake, GLUT-1 messenger ribonucleic acid (mRNA) and protein expression in placental cells. We suggest that ERK1/2 phosphorylation is involved in the GLUT-1 regulation induced by resistin. In conclusion, resistin causes activation of both the ERK1 and 2 pathway in trophoblast cells. ERK1 and 2 activation stimulated GLUT-1 synthesis and resulted in increase of placental glucose uptake. High resistin levels (50–100 ng/ml) seem able to affect glucose-uptake, presumably by decreasing the cell surface glucose transporter.  相似文献   

19.
Although the synthesis of angiogenic factors in hypoxic regions of solid tumors is recognized as one of the critical steps in tumor growth and metastasis, the signal transduction pathway involved in hypoxic induction of basic fibroblast growth factor (bFGF) gene expression is still obscure. In the study described here, we investigated the intracellular responses to hypoxia and the mechanisms triggering the initiation of angiogenic activity in drug-resistant human breast carcinoma MCF-7/ADR cells. Northern blots showed an increase in the level of c-jun, c-fos, and bFGF mRNA during hypoxia. Gel mobility-shift analysis of nuclear extracts from hypoxia-exposed cells showed an increase in AP-1 binding activity. In addition, hypoxic treatment strongly activated c-Jun N-terminal kinase 1 (JNK1), leading to phosphorylation and activation of c-Jun. Expression of a dominant negative mutant of JNK1 suppressed hypoxia-induced JNK1 activation as well as bFGF gene expression. Taken together, hypoxia-induced bFGF gene expression is mediated through the stress-activated protein kinase (SAPK) signal transduction pathway.  相似文献   

20.
Cytotoxic lipid peroxides such as 4-hydroxy-2-nonenal (HNE) are produced when cells are exposed to toxic chemicals. However, the mechanism by which HNE induces cell death has been poorly understood. In this study, we investigated the molecular mechanism of HNE-induced apoptosis in PC12 cells by measuring the activities of the mitogen-activated protein (MAP) kinases involved in early signal transduction pathways. Within 15–30 min after HNE treatment, c-Jun N-terminal protein kinase (JNK) was maximally activated, before returning to control level after 1 h post-treatment. In contrast, activities of extracellular signal regulated kinase (ERK) and p38 MAP kinase remained unchanged from their basal levels. SEK1, an upstream kinase of JNK, was also activated (phosphorylated) within 5 min after HNE treatment and remained activated for up to 60 min. Marked activation of the JNK pathway through SEK1 was demonstrated by the transient transfection of cDNA for wild type SEK1 and JNK into COS-7 cells. Furthermore, significant reductions in JNK activation and HNE-induced cell death were observed when the dominant negative mutant of SEK1 was co-transfected with JNK. Pretreatment of PC12 cells with a survival promoting agent, 8-(4-chlorophenylthio)-cAMP, prevented both the HNE-induced JNK activation and apoptosis. Nonaldehyde, a nontoxic aldehyde, caused neither apoptosis nor JNK activation. Pretreatment of PC12 cells with SB203580, a specific inhibitor of p38 MAP kinase, had no effect on HNE-induced apoptosis. All these data suggest that the HNE-mediated apoptosis of PC12 cells is likely to be mediated through the selective activation of the SEK1-JNK pathway without activation of ERK or p38 MAP kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号