首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channelrhodopsin-2 (ChR2) from the green alga Chlamydomonas reinhardtii functions as a light-gated cation channel that has been developed as an optogenetic tool to stimulate specific nerve cells in animals and control their behavior by illumination. The molecular mechanism of ChR2 has been extensively studied by a variety of spectroscopic methods, including light-induced difference Fourier transform infrared (FTIR) spectroscopy, which is sensitive to structural changes in the protein upon light activation. An atomic structure of channelrhodopsin was recently determined by x-ray crystallography using a chimera of channelrhodopsin-1 (ChR1) and ChR2. Electrophysiological studies have shown that ChR1/ChR2 chimeras are less desensitized upon continuous illumination than native ChR2, implying that there are some structural differences between ChR2 and chimeras. In this study, we applied light-induced difference FTIR spectroscopy to ChR2 and ChR1/ChR2 chimeras to determine the molecular basis underlying these functional differences. Upon continuous illumination, ChR1/ChR2 chimeras exhibited structural changes distinct from those in ChR2. In particular, the protonation state of a glutamate residue, Glu-129 (Glu-90 in ChR2 numbering), in the ChR chimeras is not changed as dramatically as in ChR2. Moreover, using mutants stabilizing particular photointermediates as well as time-resolved measurements, we identified some differences between the major photointermediates of ChR2 and ChR1/ChR2 chimeras. Taken together, our data indicate that the gating and desensitizing processes in ChR1/ChR2 chimeras are different from those in ChR2 and that these differences should be considered in the rational design of new optogenetic tools based on channelrhodopsins.  相似文献   

2.
In order to generate neural stem cells with increased ability to survive after transplantation in brain parenchyma we developed a chimeric receptor (ChR) that binds to myelin oligodendrocyte glycoprotein (MOG) via its ectodomain and activates the insulin-like growth factor receptor type 1 ‎‎(IGF1R) signalling cascade. Activation of this pro-survival pathway in response to ligand broadly available in the brain might increase neuroregenerative potential of transplanted precursors. The ChR was produced by fusing a MOG-specific single ‎chain antibody with the extracellular boundary of the IGF1R transmembrane segment. The ChR is expressed on the cellular surface, predominantly as a monomer, and is not N-glycosylated. To show MOG-dependent functionality of the ChR, neuroblastoma cells B104 expressing this ChR were stimulated with monolayers of cells expressing recombinant MOG. The ChR undergoes MOG-dependent tyrosine phosphorylation and homodimerisation. It promotes insulin and IGF-independent growth of the oligodendrocyte progenitor cell line CG4. The proposed mode of the ChR activation is by MOG-induced dimerisation which promotes kinase domain transphosphorylation, by-passing the requirement of conformation changes known to be important for IGF1R activation. Another ChR, which contains a segment of the β-chain ectodomain, was produced in an attempt to recapitulate some of these conformational changes, but proved non-functional.  相似文献   

3.
An electrophysiological and morphometric study of effects of cholinergic substances on orthodromic potential (OP), induction of long-term post-tetanic potentiation (PTP), and potentiated OP in olfactory bulb (OB) of intact pike was carried out. The final effect of endogenous ACh on relay neurons of the OB was found to be inhibitory. Activation of M1-like cholinoreceptors (ChR) was shown to play the key role in induction of long-term PTP. In response to tetanization of olfactory nerve (ON) after pirenzepine-induced inhibition of M1-like ChR, no potentiation appears and the length of cross-section of axo-dendritic synapse active zone (AZ) does not change in the OB glomerular neuropil. Tetanization of ON after inhibition of M2-like ChR by gallamine leads to the appearance of short-term PTP transformed later into long-term PTP accompanied by a significant decrease of length of cross-sections of axo-dendritic synapse AZ. Effects of both increase of endogenous ACh concentration by eserine (0.1 μM) and blockade of M2-like ChR by gallamine (10 μM) on potentiated OP were manifested as a decrease of its amplitude to control level. The obtained data allow considering that endogenous ACh in the pike OB has a pronounced effect on induction, development, and stabilization of the long-term PTP. This holds equally true to both functional and morphological manifestations of plasticity of axo-dendritic synapses of the glomerular neuropil.  相似文献   

4.
Two rhodopsins with intrinsic ion conductance have been identified recently in Chlamydomonas reinhardtii. They were named "channelrhodopsins" ChR1 and ChR2. Both were expressed in Xenopus laevis oocytes, and their properties were studied qualitatively by two electrode voltage clamp techniques. ChR1 is specific for H+, whereas ChR2 conducts Na+, K+, Ca2+, and guanidinium. ChR2 responds to the onset of light with a peak conductance, followed by a smaller steady-state conductance. Upon a second stimulation, the peak is smaller and recovers to full size faster at high external pH. ChR1 was reported to respond with a steady-state conductance only but is demonstrated here to have a peak conductance at high light intensities too. We analyzed quantitatively the light-induced conductance of ChR1 and developed a reaction scheme that describes the photocurrent kinetics at various light conditions. ChR1 exists in two dark states, D1 and D2, that photoisomerize to the conducting states M1 and M2, respectively. Dark-adapted ChR1 is completely arrested in D1. M1 converts into D1 within milliseconds but, in addition, equilibrates with the second conducting state M2 that decays to the second dark state D2. Thus, light-adapted ChR1 represents a mixture of D1 and D2. D2 thermally reconverts to D1 in minutes, i.e., much slower than any reaction of the two photocycles.  相似文献   

5.
Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.  相似文献   

6.
Channelrhodopsin-2 (ChR2) is a microbial-type rhodopsin found in the green algae Chlamydomonas reinhardtii. Under physiological conditions, ChR2 is an inwardly rectifying cation channel that permeates a wide range of mono- and divalent cations. Although this protein shares a high sequence homology with other microbial-type rhodopsins, which are ion pumps, ChR2 is an ion channel. A sequence alignment of ChR2 with bacteriorhodopsin, a proton pump, reveals that ChR2 lacks specific motifs and residues, such as serine and threonine, known to contribute to non-covalent interactions within transmembrane domains. We hypothesized that reintroduction of the eight transmembrane serine residues present in bacteriorhodopsin, but not in ChR2, will restrict the conformational flexibility and reduce the pore diameter of ChR2. In this work, eight single serine mutations were created at homologous positions in ChR2. Additionally, an endogenous transmembrane serine was replaced with alanine. We measured kinetics, changes in reversal potential, and permeability ratios in different alkali metal solutions using two-electrode voltage clamp. Applying excluded volume theory, we calculated the minimum pore diameter of ChR2 constructs. An analysis of the results from our experiments show that reintroducing serine residues into the transmembrane domain of ChR2 can restrict the minimum pore diameter through inter- and intrahelical hydrogen bonds while the removal of a transmembrane serine results in a larger pore diameter. Therefore, multiple positions along the intracellular side of the transmembrane domains contribute to the cation permeability of ChR2.  相似文献   

7.
Channelrhodospin-2 (ChR2), a light-sensitive ion channel, and its variants have emerged as new excitatory optogenetic tools not only in neuroscience, but also in other areas, including cardiac electrophysiology. An accurate quantitative model of ChR2 is necessary for in silico prediction of the response to optical stimulation in realistic tissue/organ settings. Such a model can guide the rational design of new ion channel functionality tailored to different cell types/tissues. Focusing on one of the most widely used ChR2 mutants (H134R) with enhanced current, we collected a comprehensive experimental data set of the response of this ion channel to different irradiances and voltages, and used these data to develop a model of ChR2 with empirically-derived voltage- and irradiance- dependence, where parameters were fine-tuned via simulated annealing optimization. This ChR2 model offers: 1) accurate inward rectification in the current-voltage response across irradiances; 2) empirically-derived voltage- and light-dependent kinetics (activation, deactivation and recovery from inactivation); and 3) accurate amplitude and morphology of the response across voltage and irradiance settings. Temperature-scaling factors (Q10) were derived and model kinetics was adjusted to physiological temperatures. Using optical action potential clamp, we experimentally validated model-predicted ChR2 behavior in guinea pig ventricular myocytes. The model was then incorporated in a variety of cardiac myocytes, including human ventricular, atrial and Purkinje cell models. We demonstrate the ability of ChR2 to trigger action potentials in human cardiomyocytes at relatively low light levels, as well as the differential response of these cells to light, with the Purkinje cells being most easily excitable and ventricular cells requiring the highest irradiance at all pulse durations. This new experimentally-validated ChR2 model will facilitate virtual experimentation in neural and cardiac optogenetics at the cell and organ level and provide guidance for the development of in vivo tools.  相似文献   

8.
The photocycle kinetics of Platymonas subcordiformis channelrhodopsin-2 (PsChR2), among the most highly efficient light-gated cation channels and the most blue-shifted channelrhodopsin, was studied by time-resolved absorption spectroscopy in the 340–650-nm range and in the 100-ns to 3-s time window. Global exponential fitting of the time dependence of spectral changes revealed six lifetimes: 0.60 μs, 5.3 μs, 170 μs, 1.4 ms, 6.7 ms, and 1.4 s. The sequential intermediates derived for a single unidirectional cycle scheme based on these lifetimes were found to contain mixtures of K, L, M, O, and P molecular states, named in analogy to photointermediates in the bacteriorhodopsin photocycle. The photochemistry is described by the superposition of two independent parallel photocycles. The analysis revealed that 30% of the photoexcited receptor molecules followed Cycle 1 through the K, M, O, and P states, whereas 70% followed Cycle 2 through the K, L, M, and O states. The recovered state, R, is spectrally close, but not identical, to the dark state on the seconds time scale. The two-cycle model of this high efficiency channelrhodopsin-2 (ChR) opens new perspectives in understanding the mechanism of channelrhodopsin function.  相似文献   

9.
Channelrhodopsin-1 and 2 (ChR1 and ChR2) form cation channels that are gated by light through an unknown mechanism. We tested the DC-gate hypothesis that C167 and D195 are involved in the stabilization of the cation-permeable state of ChRWR/C1C2 which consists of TM1-5 of ChR1 and TM6-7 of ChR2 and ChRFR which consists of TM1-2 of ChR1 and TM3-7 of ChR2. The cation permeable state of each ChRWR and ChRFR was markedly prolonged in the order of several tens of seconds when either C167 or D195 position was mutated to alanine (A). Therefore, the DC-gate function was conserved among these chimeric ChRs. We next investigated the kinetic properties of the ON/OFF response of these bi-stable ChR mutants as they are important in designing the photostimulation protocols for the optogenetic manipulation of neuronal activities. The turning-on rate constant of each photocurrent followed a linear relationship to 0–0.12 mWmm−2 of blue LED light or to 0–0.33 mWmm−2 of cyan LED light. Each photocurrent of bi-stable ChR was shut off to the non-conducting state by yellow or orange LED light in a manner dependent on the irradiance. As the magnitude of the photocurrent was mostly determined by the turning-on rate constant and the irradiation time, the minimal irradiance that effectively evoked an action potential (threshold irradiance) was decreased with time only if the neuron, which expresses bi-stable ChRs, has a certain large membrane time constant (eg. τm > 20 ms). On the other hand, in another group of neurons, the threshold irradiance was not dependent on the irradiation time. Based on these quantitative data, we would propose that these bi-stable ChRs would be most suitable for enhancing the intrinsic activity of excitatory pyramidal neurons at a minimal magnitude of irradiance.  相似文献   

10.
Channelrhodopsin 2 (ChR2) is a microbial-type rhodopsin with a putative heptahelical structure that binds all-trans-retinal. Blue light illumination of ChR2 activates an intrinsic leak channel conductive for cations. Sequence comparison of ChR2 with the related ChR1 protein revealed a cluster of charged amino acids within the predicted transmembrane domain 2 (TM2), which includes glutamates E90, E97 and E101. Charge inversion substitutions of these residues significantly altered ChR2 function as revealed by two-electrode voltage-clamp recordings of light-induced currents from Xenopus laevis oocytes expressing the respective mutant proteins. Specifically, replacement of E90 by lysine or alanine resulted in differential effects on H+- and Na+-mediated currents. Our results are consistent with this glutamate side chain within the proposed TM2 contributing to ion flux through and the cation selectivity of ChR2.  相似文献   

11.
Ohne Zusammenfassungde|Zeichenerklärungen zu den Tafel- und Textabbildungen AM abschließende Membran. - Ch Fühlerchitin. - ChR Chitinring. - G Grube. - KM Kuppelmembran. - M Mulde. - OL obere Versteifungsleiste. - PK Porenkanal. - SL seitliche Versteifungsleiste. - UV untere Verdickung.  相似文献   

12.
Summary Slices from the kidneys of the rainbow trout which were exposed to 10-6 or 10-5 M angiotensin II (AII) and isolated glomeruli exposed to 10-7 or 10-5 M AII showed ultrastructural changes compared to control tissues incubated without AII. The studies indicate that angiotensin II has a direct action on glomerular ultrastructure, flattening the epithelial podocytes and broadening the primary processes with fusion of pedicels in extreme cases. These changes suggest a probable effect of AII on water permeability of the trout glomerulus, an intrarenal action which is believed to form an essential part of the antidiuretic adaptation to increased environmental salinities.  相似文献   

13.
Lungs from fetal guinea pigs (62 +/- 2 days of gestation) were supported in vitro for 3 h, and lung liquid production was measured by dye dilution. Eighteen untreated preparations produced fluid at 1.76 +/- 0.30 mL.kg-1 body weight.h-1 during the first hour, with no significant changes in later hours. When inhibitors of respiratory processes were placed in the outer saline during the middle hour, production changed significantly, as follows: (a) sodium iodoacetate at 10(-3) M stopped production (87.2 +/- 10.3 and 100% reductions, successive hours; n = 6), at 10(-4) M it reduced production (60.0 +/- 10.3 and 63.4 +/- 9.3% reduction, successive hours; n = 12); (b) sodium fluoride, 10(-3) M, almost stopped production (93.2 +/- 12.1 and 89.5 +/- 9.3% reductions, successive hours; n = 6); (c) sodium cyanide at high concentration (10(-3) M) reduced production slowly (35.5 +/- 12.3 and 73.1 +/- 22.4%; successive hours; n = 6); (d) sodium azide, 10(-3) M, also reduced production (67.6 +/- 14.2 and 59.7 +/- 14.0%, successive hours; n = 6); total lactate lost rose 1.8 +/- 0.5 fold; (e) dinitrophenol produced strong reabsorptions; at 10(-3) M, production fell 115.4 +/- 15.9 and 113.1 +/- 47.3%, successive hours (n = 4), and at 2 x 10(-4) M it fell 143.8 +/- 33.8 and 153.4 +/- 26.7%, successive hours (n = 6); total lactate lost rose 2- to 3-fold. Control preparations showed no significant changes. The results suggest that lung liquid production requires glycolysis and aerobic metabolism. However, reabsorption appears to continue on glycolysis alone, a particularly useful situation for neonates suffering respiratory distress.  相似文献   

14.
In the modern view of synaptic transmission, astrocytes are no longer confined to the role of merely supportive cells. Although they do not generate action potentials, they nonetheless exhibit electrical activity and can influence surrounding neurons through gliotransmitter release. In this work, we explored whether optogenetic activation of glial cells could act as an amplification mechanism to optical neural stimulation via gliotransmission to the neural network. We studied the modulation of gliotransmission by selective photo-activation of channelrhodopsin-2 (ChR2) and by means of a matrix of individually addressable super-bright microLEDs (μLEDs) with an excitation peak at 470 nm. We combined Ca2+ imaging techniques and concurrent patch-clamp electrophysiology to obtain subsequent glia/neural activity. First, we tested the μLEDs efficacy in stimulating ChR2-transfected astrocyte. ChR2-induced astrocytic current did not desensitize overtime, and was linearly increased and prolonged by increasing μLED irradiance in terms of intensity and surface illumination. Subsequently, ChR2 astrocytic stimulation by broad-field LED illumination with the same spectral profile, increased both glial cells and neuronal calcium transient frequency and sEPSCs suggesting that few ChR2-transfected astrocytes were able to excite surrounding not-ChR2-transfected astrocytes and neurons. Finally, by using the μLEDs array to selectively light stimulate ChR2 positive astrocytes we were able to increase the synaptic activity of single neurons surrounding it. In conclusion, ChR2-transfected astrocytes and μLEDs system were shown to be an amplifier of synaptic activity in mixed corticalneuronal and glial cells culture.  相似文献   

15.
Standard slice electrophysiology has allowed researchers to probe individual components of neural circuitry by recording electrical responses of single cells in response to electrical or pharmacological manipulations1,2. With the invention of methods to optically control genetically targeted neurons (optogenetics), researchers now have an unprecedented level of control over specific groups of neurons in the standard slice preparation. In particular, photosensitive channelrhodopsin-2 (ChR2) allows researchers to activate neurons with light3,4. By combining careful calibration of LED-based photostimulation of ChR2 with standard slice electrophysiology, we are able to probe with greater detail the role of adult-born interneurons in the olfactory bulb, the first central relay of the olfactory system. Using viral expression of ChR2-YFP specifically in adult-born neurons, we can selectively control young adult-born neurons in a milieu of older and mature neurons. Our optical control uses a simple and inexpensive LED system, and we show how this system can be calibrated to understand how much light is needed to evoke spiking activity in single neurons. Hence, brief flashes of blue light can remotely control the firing pattern of ChR2-transduced newborn cells.Download video file.(48M, mov)  相似文献   

16.
Channelrhodopsin (ChR) is a light-gated cation channel that responds to blue light. Since ChR can be readily expressed in specific neurons to precisely control their activities by light, it has become a powerful tool in neuroscience. Although the recently solved crystal structure of a chimeric ChR, C1C2, provided the structural basis for ChR, our understanding of the molecular mechanism of ChR still remains limited. Here we performed electrophysiological analyses and all-atom molecular dynamics (MD) simulations, to investigate the importance of the intracellular and central constrictions of the ion conducting pore observed in the crystal structure of C1C2. Our electrophysiological analysis revealed that two glutamate residues, Glu122 and Glu129, in the intracellular and central constrictions, respectively, should be deprotonated in the photocycle. The simulation results suggested that the deprotonation of Glu129 in the central constriction leads to ion leakage in the ground state, and implied that the protonation of Glu129 is important for preventing ion leakage in the ground state. Moreover, we modeled the 13-cis retinal bound; i.e., activated C1C2, and performed MD simulations to investigate the conformational changes in the early stage of the photocycle. Our simulations suggested that retinal photoisomerization induces the conformational change toward channel opening, including the movements of TM6, TM7 and TM2. These insights into the dynamics of the ground states and the early photocycle stages enhance our understanding of the channel function of ChR.  相似文献   

17.
Rapamycin (RAP), tacrolimus (FK506), cyclosporin A, and glucocorticoids represent modern and classic immunosuppressive agents being used clinically. Although these agents have distinct molecular mechanisms of action and exhibit different immunoregulatory profiles, their direct influences on Ag presentation processes remain relatively unknown. Here we report quantitative and qualitative differences among the above four immunosuppressants in their impact on Ag-specific, bidirectional interaction between dendritic cells (DC) and CD4(+) T cells. In the presence of relevant Ag, bone marrow-derived DC delivered activation signals to CD4(+) T cells isolated from the DO11.10 TCR transgenic mice, leading to clonal expansion; secretion of IFN-gamma, IL-2, and IL-4; and surface expression of CD69. Conversely, DO11.10 T cells delivered maturation signals to DC, leading to IL-6 and IL-12 production and CD40 up-regulation. FK506 (10(-10)-10(-8) M) and cyclosporin A (10(-9)-10(-7) M) each blocked efficiently and uniformly all the changes resulting from intercellular signaling in both DC-->T cell and T cell-->DC directions. Dexamethasone (10(-9)-10(-6) M) suppressed all changes, except for CD69 up-regulation, rather incompletely. Remarkably, RAP (10(-10)-10(-8) M) efficiently inhibited DC-induced T cell proliferation and T cell-mediated CD40 up-regulation by DC without abrogating other changes. Interestingly, T cell-independent DC maturation triggered by LPS stimulation was inhibited by dexamethasone, but not by other agents. Our results demonstrate contrasting pharmacological effects of RAP vs calcineurin inhibitors on Ag presentation, thus forming a conceptual framework for rationale-based selection (and combination) of immunosuppressive agents for clinical application.  相似文献   

18.
H L Jenssen  K Redmann  E Mix 《Cytometry》1986,7(4):339-346
Potential-dependent accumulation of the lipophilic cationic dye 3,3' dihexyloxacarbocyanine (DiOC6(3)) in macrophages has been investigated. Resulting fluorescence of cells was measured by flow cytometry. Alterations of membrane potential of macrophages were induced by ionophore treatment (valinomycin and gramicidin) in a dose-dependent (10(-5) M-10(-7) M) and time-dependent (0 min-45 min) manner. Resulting changes in relative fluorescence intensity were compared with changes of transmembrane potential measured by intracellular recordings obtained by applying glass microelectrodes. The comparative studies offer the possibility to calibrate the flow cytometric estimate of membrane potential of suspended cells. Equilibration of dye partition between cells and surrounding medium is strictly potential-dependent at dye concentrations between 5 X 10(-8) M and 10(-7) M and within an incubation interval from 10 min up to 30 min after addition of dye. Conclusions are drawn concerning the field of application of the optical method. Dynamics of electrical processes following ionophore treatment are discussed in terms of molecular mechanisms of altered ionic transport.  相似文献   

19.
The effects of trifluoperazine (TFP) on some membrane processes were studied in the isolated rat brain synaptic vesicles (SV). TFP (10(-5)-10(-4) M) was found to cause a sharp rise in the intensity of light scattering by SV suspension which was due both to an increased vesicle aggregation and to changes in the refraction index of the membrane. In addition, TFP blocked the ATP-dependent proton transport into the vesicles (K0.5 = 10(-6) M) with the concomitant stimulation of the ATPase activity which suggests an uncoupling effect caused by the permeation of this weak base through the membrane and subsequent protonation in an acid interior medium resulting in the elimination of a proton gradient. Thus, the neuroleptic drug--TFP has various effects on membrane processes which are apparently unrelated to its recognized role as a calmodulin antagonist.  相似文献   

20.

Background

Optogenetic manipulation of a neuronal network enables one to reveal how high-order functions emerge in the central nervous system. One of the Chlamydomonas rhodopsins, channelrhodopsin-1 (ChR1), has several advantages over channelrhodopsin-2 (ChR2) in terms of the photocurrent kinetics. Improved temporal resolution would be expected by the optogenetics using the ChR1 variants with enhanced photocurrents.

Methodology/Principal Findings

The photocurrent retardation of ChR1 was overcome by exchanging the sixth helix domain with its counterpart in ChR2 producing Channelrhodopsin-green receiver (ChRGR) with further reform of the molecule. When the ChRGR photocurrent was measured from the expressing HEK293 cells under whole-cell patch clamp, it was preferentially activated by green light and has fast kinetics with minimal desensitization. With its kinetic advantages the use of ChRGR would enable one to inject a current into a neuron by the time course as predicted by the intensity of the shedding light (opto-current clamp). The ChRGR was also expressed in the motor cortical neurons of a mouse using Sindbis pseudovirion vectors. When an oscillatory LED light signal was applied sweeping through frequencies, it robustly evoked action potentials synchronized to the oscillatory light at 5–10 Hz in layer 5 pyramidal cells in the cortical slice. The ChRGR-expressing neurons were also driven in vivo with monitoring local field potentials (LFPs) and the time-frequency energy distribution of the light-evoked response was investigated using wavelet analysis. The oscillatory light enhanced both the in-phase and out-phase responses of LFP at the preferential frequencies of 5–10 Hz. The spread of activity was evidenced by the fact that there were many c-Fos-immunoreactive neurons that were negative for ChRGR in a region of the motor cortex.

Conclusions/Significance

The opto-current-clamp study suggests that the depolarization of a small number of neurons wakes up the motor cortical network over some critical point to the activated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号