首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone is maintained by continuous bone formation by osteoblasts provided by proliferation and differentiation of osteoprogenitors. Parathyroid hormone (PTH) activates bone formation, but because of the complexity of cells in the osteoblast lineage, how these osteoprogenitors are regulated by PTH in vivo is incompletely understood. To elucidate how signals by PTH in differentiated osteoblasts regulate osteoprogenitors in vivo, we conducted bone marrow ablation using Col1a1‐constitutively active PTH/PTHrP receptor (caPPR) transgenic mice. These mice express caPPR specifically in osteoblasts by using 2.3 kb Col1a1 promoter and showed higher trabecular bone volume under steady‐state conditions. In contrast, after bone marrow ablation, stromal cells recruited from bone surface extensively proliferated in the marrow cavity in transgenic mice, compared to limited proliferation in wild‐type mice. Whereas de novo bone formation was restricted to the ablated area in wild‐type mice, the entire marrow cavity, including not only ablated area but also outside the ablated area, was filled with newly formed bone in transgenic mice. Bone mineral density was significantly increased after ablation in transgenic mice. Bone marrow cell culture in osteogenic medium revealed that alkaline phosphatase‐positive area was markedly increased in the cells obtained from transgenic mice. Furthermore, mRNA expression of Wnt‐signaling molecules such as LRP5, Wnt7b, and Wnt10b were upregulated after marrow ablation in bone marrow cells of transgenic mice. These results indicate that constitutive activation of PTH/PTHrP receptor in differentiated osteoblasts enhances bone marrow ablation‐induced recruitment, proliferation, and differentiation of osteoprogenitors. J. Cell. Physiol. 227: 408–415, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
In this study, cells isolated from hen medullary bone were cultured to examine their matrix formation. Furthermore, we compared medullary bone cells with rat bone marrow cells regarding the temporal changes in osteoblast developmental markers. Medullary bone cells were positive for alkaline phosphatase (ALP) activity and formed bone nodules, apparent with Alcian blue and von Kossa staining. The intensity of these stains became stronger with the maturation of those bone nodules. In this developmental process, the expression patterns of osteoblast phenotypes of medullary bone cells differed from those of rat bone marrow cells. ALP mRNA was expressed at the maximum level in the proliferation stage and gradually decreased in medullary bone cells, but that expression showed the opposite pattern in rat bone marrow cells. Medullary bone cells strongly expressed two non-collagenous protein mRNAs from the early stages, but the expression of these mRNAs in rat bone marrow cells increased only in the later stages. These results suggest that the features of medullary bone osteoblasts differ from those of mammalian osteoblasts and are reflected in the characteristics of medullary bone in vivo.  相似文献   

3.
4.
5.
At least some cells within bone marrow stromal populations are multipotential (i.e., differentiate in vitro into osteoblasts, chondrocytes, and adipocytes) and thus designated skeletal stem cells (SSCs) or mesenchymal stem cells (MSCs) amongst other names. Recently, a subpopulation of stromal cells, notably osteoblasts or their progenitors, has been identified as a definitive regulatory component of the hematopoietic stem cell (HSC) niche. Thus, the development of methods for purifying not only SSCs but cells comprising the HSC niche is of interest. Here, we report a method for purifying a novel bone marrow‐derived population with a high frequency of osteoprogenitors and high expression levels of osteoblast differentiation markers (highly purified osteoprogenitors (HipOPs)) as well as markers of the bone niche for HSCs. In vivo transplantation experiments demonstrated that donor HipOPs differentiated into not only osteoblasts, osteocytes and cells around sinusoids but also hematopoietic cells. Thus, HipOPs represent a novel population for simultaneous reconstruction of bone and bone marrow microenvironments. J. Cell. Biochem. 108: 368–377, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
Fetal rat calvaria cells plated at very low density generate discrete colonies, some of which are bone colonies (nodules) from individual osteoprogenitors that divide and differentiate. We have analyzed the relationship between cell proliferation and acquisition of tissue-specific differentiation markers in bone colonies followed individually from the original single cell to the fully mineralized state. The size distribution of fully formed nodules is unimodal, suggesting that the coupling between proliferation and differentiation of osteoprogenitor cells is governed by a stochastic element, but distributed around an optimum, corresponding to the peak colony size/division potential. Kinetic analysis of colony growth showed that osteoprogenitors undergo 9-10 population doublings before the appearance of the first morphologically differentiated osteoblasts in the developing colony. Double immunolabeling showed that these proliferating cells express a gradient of bone markers, from proliferative alkaline phosphatase-negative cells at the periphery of colonies, to postmitotic, osteocalcin-producing osteoblasts at the centers. An inverse relationship exists between cell division and expression of osteocalcin, the latter being restricted to late-stage, BrdU-negative osteoblasts, while the expression of all other markers is acquired before the cessation of proliferation, but not concomitantly. Bone sialoprotein expression is biphasic, detectable in some of the early, alkaline phosphatase-negative cells, and again later in both late preosteoblast (BrdU-positive) and osteoblast (BrdU-negative, osteocalcin-positive) cells. In late-stage, heavily mineralized nodules, staining for osteocalcin and bone sialoprotein is not detectable in the oldest/most mature cells. Our observations support the view that the bone nodule "tissue-like" structure, originating from a single osteoprogenitor and finally encompassing mineralized matrix production, recapitulates successive stages of the osteoblast differentiation pathway, in a proliferation/maturation sequence. Understanding the complexity of the proliferation/differentiation kinetics that occurs within bone nodules will aid in the qualitative and/or quantitative interpretation of tissue-specific marker expression during osteoblastic differentiation.  相似文献   

8.
The activity of human osteoblast-like cells cultured in vitro is regulated by a number of factors, which include systemic hormones as well as agents that can be produced locally within bone. Several cytokines and growth factors have been demonstrated to be produced by osteoblasts themselves, and this includes granulocyte-macrophage colony-stimulating factor (GM-CSF). In this report we show that recombinant human GM-CSF (rhGM-CSF) modulates the activities of osteoblast-like cells derived from human trabecular bone in vitro. rhGM-CSF stimulated the proliferation of the cultured human osteoblast-like cells, but antagonised the induction by 1,25(OH)2D3 of osteocalcin synthesis and alkaline phosphatase activity, two characteristic products of osteoblasts. rhGM-CSF however, had no appreciable effect on the production of prostaglandin E2, or on the plasminogen activator activity associated with human osteoblast-like cells. These results are the first report of which we are aware of an apparently direct action of GM-CSF on cells of the osteoblast phenotype. These studies indicate that GM-CSF represents another haematological factor that can potentially exert regulatory actions on human osteoblast-like cells. GM-CSF may therefore be a potential paracrine/autocrine regulator of osteoblast activity.  相似文献   

9.
Advances in the osteoblast lineage.   总被引:16,自引:0,他引:16  
Osteoblasts are the skeletal cells responsible for synthesis, deposition and mineralization of the extracellular matrix of bone. By mechanisms that are only beginning to be understood, stem and primitive osteoprogenitors and related mesenchymal precursors arise in the embryo and at least some appear to persist in the adult organism, where they contribute to replacement of osteoblasts in bone turnover and in fracture healing. In this review, we describe the morphological, molecular, and biochemical criteria by which osteoblasts are defined and cell culture approaches that have helped to clarify transitional stages in osteoblast differentiation. Current understanding of differential expression of osteoblast-associated genes during osteoprogenitor proliferation and differentiation to mature matrix synthesizing osteoblasts is summarized. Evidence is provided to support the hypothesis that the mature osteoblast phenotype is heterogeneous with subpopulations of osteoblasts expressing only subsets of the known osteoblast markers. Throughout this paper, outstanding uncertainties and areas for future investigation are also identified.  相似文献   

10.
Breast cancer cells frequently metastasize to the ends of long bones, ribs and vertebrae, structures which contain a rich microvasculature that is closely juxtaposed to metabolically active trabecular bone surfaces. This study focuses on the effects of osteoblast secretions on the surface presentation of adhesive proteins on skeletal vascular endothelial cells. Vascular endothelial cells were isolated from trabecular bone regions of the long bones of 7-week-old Swiss Webster mice and also from the central marrow cavity where trabecular bone is absent. Both types of endothelial cells were placed in culture for 7 days, then exposed 24 h to conditioned media from MC3T3-E1 osteoblasts. Conditioned medium (CM) from two different stages of osteoblast development were tested: (1) from immature MC3T3-E1 cells cultured for 5-7 days and (2) from mature MC3T3-E1 cells cultured for 28-30 days. The immature osteoblasts were in a stage of rapid proliferation; the mature osteoblasts formed a matrix that mineralized. Following exposure to the conditioned media, the vascular cells were exposed to anti-P-selectin, anti-E-selectin, anti-ICAM-1, and anti-VCAM-1 to detect the corresponding adhesive proteins on their surfaces. Breast cancer cells are known to bind to these adhesive proteins. Of the four proteins evaluated, E-selectin was consistently found on more cell surfaces (approximately 30%) of bone-derived vascular endothelial cells (BVECs) when exposed to the immature CM whereas vascular endothelial cells from marrow (MVECs) did not show this response to either immature CM or mature CM. These studies suggest that the BVEC blood vessels near immature bone cells express more surface adhesive protein that could enhance entrapment and extravasation of breast cancer cells. Once cancer cells have undergone extravasation into marrow adjacent to bone, they could be readily attracted to nearby bone surfaces.  相似文献   

11.
The osteoblast is the bone forming cell and is derived from mesenchymal stem cells (MSC) present among the bone marrow stroma. MSC are capable of multi-lineage differentiation into mesoderm-type cells such as osteoblasts and adipocytes. Understanding the mechanisms underlying osteoblast differentiation from MSC is a central topic in bone biology that can provide insight into mechanisms of bone maintenance and also novel pharmacological targets to increase osteoblast differentiation and consequently bone formation.  相似文献   

12.
13.
Quantitative real-time polymerase chain reaction (qRT-PCR) is a powerful tool to evaluate gene expression, but its accuracy depends on the choice and stability of the reference genes used for normalization. In this study, we aimed to identify reference genes for studies on osteoblasts derived from rat bone marrow mesenchymal stem cells (bone marrow osteoblasts), osteoblasts derived from newborn rat calvarial (calvarial osteoblasts), and rat osteosarcoma cell line UMR-106. The osteoblast phenotype was characterized by ALP activity and extracellular matrix mineralization. Thirty-one candidates for reference genes from a Taqman® array were assessed by qRT-PCR, and their expressions were analyzed by five different approaches. The data showed that several of the most traditional reference genes, such as Actb and Gapdh, were inadequate for normalization and that the experimental conditions may affect gene stability. Eif2b1 was frequently identified among the best reference genes in bone marrow osteoblasts, calvarial osteoblasts, and UMR-106 osteoblasts. Selected stable and unstable reference genes were used to normalize the gene expression of Runx2, Alp, and Oc. The data showed statistically significant differences in the expression of these genes depending on the stability of the reference gene used for normalization, creating a bias that may induce incorrect assumptions in terms of osteoblast characterization of these cells. In conclusion, our study indicates that a rigorous selection of reference genes is a key step in qRT-PCR studies in osteoblasts to generate precise and reliable data.  相似文献   

14.
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation.  相似文献   

15.
Type I diabetes increases an individual's risk for bone loss and fracture, predominantly through suppression of osteoblast activity (bone formation). During diabetes onset, levels of blood glucose and pro‐inflammatory cytokines (including tumor necrosis factor α (TNFα)) increased. At the same time, levels of osteoblast markers are rapidly decreased and stay decreased chronically (i.e., 40 days later) at which point bone loss is clearly evident. We hypothesized that early bone marrow inflammation can promote osteoblast death and hence reduced osteoblast markers. Indeed, examination of type I diabetic mouse bones demonstrates a greater than twofold increase in osteoblast TUNEL staining and increased expression of pro‐apoptotic factors. Osteoblast death was amplified in both pharmacologic and spontaneous diabetic mouse models. Given the known signaling and inter‐relationships between marrow cells and osteoblasts, we examined the role of diabetic marrow in causing the osteoblast death. Co‐culture studies demonstrate that compared to control marrow cells, diabetic bone marrow cells increase osteoblast (MC3T3 and bone marrow derived) caspase 3 activity and the ratio of Bax/Bcl‐2 expression. Mouse blood glucose levels positively correlated with bone marrow induced osteoblast death and negatively correlated with osteocalcin expression in bone, suggesting a relationship between type I diabetes, bone marrow and osteoblast death. TNF expression was elevated in diabetic marrow (but not co‐cultured osteoblasts); therefore, we treated co‐cultures with TNFα neutralizing antibodies. The antibody protected osteoblasts from bone marrow induced death. Taken together, our findings implicate the bone marrow microenvironment and TNFα in mediating osteoblast death and contributing to type I diabetic bone loss. J. Cell. Physiol. 226: 477–483, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Lumican is a major proteoglycan component of the bone matrix.   总被引:2,自引:0,他引:2  
MC3T3-E1 mouse calvaria cells are a clonal population of committed osteoprogenitors that in the presence of appropriate supplements form a mineralized bone matrix. The development of the MC3T3-E1 cells can be divided into three major stages, namely, proliferation, differentiation, and mineralization. Recently, using the cDNA microarray technology we found lumican to be abundantly expressed during the mineralization and differentiation stages of the MC3T3-E1 development and not during the proliferation stage. Lumican has been shown to play essential roles in regulating collagen fibril formation in different extracellular matrices but its expression in the developing bone matrix remains elusive. By examining the expression profile of this gene during the different stages of MC3T3-E1 development, utilizing the 'real-time' PCR technology, we observed that the expression of lumican increases as the osteoblast culture differentiates and matures, suggesting that lumican may be involved in regulating collagen fibrillogenesis in bone matrices. Using immunostaining, we observed that during the early embryonic development of mouse (E11 to E13), lumican is mainly expressed in the cartilaginous matrices. However, in the older embryos (E14 to E16), the expression of lumican is more prominent in the developing bone matrices. Our data suggest that lumican is a significant proteoglycan component of bone matrix, which is secreted by differentiating and mature osteoblasts only and therefore it can be used as a marker to distinguish proliferating pre-osteoblasts from the differentiating osteoblasts.  相似文献   

17.
Numerous studies have demonstrated the critical role of angiogenesis for successful osteogenesis during endochondral ossification and fracture repair. Vascular endothelial growth factor (VEGF), a potent endothelial cell-specific cytokine, has been shown to be mitogenic and chemotactic for endothelial cells in vitro and angiogenic in many in vivo models. Based on previous work that (1) VEGF is up-regulated during membranous fracture healing, (2) the fracture site contains a hypoxic gradient, (3) VEGF is up-regulated in a variety of cells in response to hypoxia, and (4) VEGF is expressed by isolated osteoblasts in vitro stimulated by other fracture cytokines, the hypothesis that hypoxia may regulate the expression of VEGF by osteoblasts was formulated. This hypothesis was tested in a series of in vitro studies in which VEGF mRNA and protein expression was assessed after exposure of osteoblast-like cells to hypoxic stimuli. In addition, the effects of a hypoxic microenvironment on osteoblast proliferation and differentiation in vitro was analyzed. These results demonstrate that hypoxia does, indeed, regulate expression of VEGF in osteoblast-like cells in a dose-dependent fashion. In addition, it is demonstrated that hypoxia results in decreased cellular proliferation, decreased expression of proliferating cell nuclear antigen, and increased alkaline phosphatase (a marker of osteoblast differentiation). Taken together, these data suggest that osteoblasts, through the expression of VEGF, may be in part responsible for angiogenesis and the resultant increased blood flow to fractured bone segments. In addition, these data provide evidence that osteoblasts have oxygen-sensing mechanisms and that decreased oxygen tension can regulate gene expression, cellular proliferation, and cellular differentiation.  相似文献   

18.
The molecular mechanisms that mediate the transition from an osteoprogenitor cell to a differentiated osteoblast are unknown. We propose that topoisomerase II (topo II) enzymes, nuclear proteins that mediate DNA topology, contribute to coordinating the loss of osteoprogenitor proliferative capacity with the onset of differentiation. The isoforms topo II-α and -β, are differentially expressed in nonosseous tissues. Topo II-α expression is cell cycle-dependent and upregulated during mitogenesis. Topo II-β is expressed throughout the cell cycle and upregulated when cells have plateaued in growth. To determine whether topo II-α and -β are expressed in normal bone, we analyzed rat lumbar vertebrae using immunohistochemical staining. In the tissue sections, topo II-α was expressed in the marrow cavity of the primary spongiosa. Mature osteoblasts along the trabecular surfaces did not express topo II-α, but were immunopositive for topo II-β, as were cells of the marrow cavity. Confocal laser scanning microscopy was used to determine the nuclear distribution of topo II in rat osteoblasts isolated from the metaphyseal distal femur and the rat osteosarcoma cells, ROS 17/2.8. Topo II-α exhibited a punctate nuclear distribution in the bone cells. Topo II-β was dispersed throughout the interior of the nucleus but concentrated at the nuclear envelope. Serum starvation of the cells attenuated topo II-α expression but did not modulate expression of the β-isoform. These results indicate that the loss of osteogenic proliferation correlates with the downregulation of topo II-α expression. J. Cell. Biochem. 67:451–465, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
20.
The in situ localization of osteoblast/osteocyte factor 45 (OF45) mRNA during bone formation has been examined in the rat mandible from embryonic day 14 (E14) up to postnatal 90-day-old Wistar rats. Gene expression was also examined during cell culture not only in primary rat osteoblast-like cells but also in two clonal rat osteoblastic cell lines with different stages of differentiation, ROB-C26 (C26) and ROB-C20 (C20) using Northern blot analysis. The C26 cell is a potential osteoblast precursor cell line, whereas the C20 cell is a more differentiated osteoblastic cell line. At E15 osteoblast precursor cells differentiated into a group of osteoblasts, some of which expressed the majority of non-collagenous proteins, whereas no expression of OF45 was observed in these cells. Intercellular matrices surrounded by osteoblasts were mineralized at E16. Subsequently, the number of osteoblasts differentiated from osteoblast precursor cells was increased in association with bone formation. At E17, the first expression of OF45 mRNA was observed only in a minority of mature osteoblasts attached to the bone matrix, but not in the rest of less mature osteoblasts. At E20, concomitant with the appearance of osteocytes, OF45 mRNA expression was observed not only in more differentiated osteoblasts that were encapsulated partly by bone matrix but also in osteocytes. Subsequently, osteocytes increased progressively in number and sustained OF45 mRNA expression in up to 90-day-old rats. Northern blot analysis of the cultured cells with or without dexamethasone treatment revealed that the gene expression of OF45 correlated well with the increased cell differentiation. These results indicate that OF45 mRNA is transiently expressed by mature osteoblasts and subsequently expressed by osteocytes throughout ossification in the skeleton and this protein represents an important marker of the osteocyte phenotype and most likely participates in regulating osteocyte function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号