首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adoptive transfer of bone marrow cells to syngeneic lethally irradiated C57BL/6 mice was used to study the maturation of natural killer (NK) cells from their progenitors. The NK progenitor cell was found to be asialomonoganglioside-negative, (aGM1-) Thy-1-, NK-1-, Ly-1-, Ly-2-, and L3T4-. The NK cells emerging from the bone marrow grafts were aGM1+, NK-1+, Thy-1+/-, Ly-1-, Ly-2-, and L3T4- and to have a target specter similar to that of NK cells isolated from the spleen of normal mice. The regulatory role of interleukin 2 (IL-2) and interleukin 3 (IL-3) for the maturation of NK cells was examined by exposure of the bone marrow cells to the lymphokines in vitro before bone marrow grafting or by treatment of bone marrow-grafted mice with lymphokines through s.c. implanted miniosmotic pumps. IL-3 antagonized the IL-2-induced maturation of NK cells in vitro and strongly inhibited the generation of NK cells after adoptive transfer of bone marrow cells in vivo. The suppressive effect of IL-3 was evident throughout the treatment period (8 or 16 days) but was apparently reversible because NK activity returned to control levels within 8 days after cessation of treatment. The inhibition of cytotoxic activity was accompanied by a reduced appearance of cells with the NK phenotypic markers aGM1 or NK-1, indicating that not only the cytotoxic activity of NK cells but also their actual formation was inhibited. Concomitantly, a moderate increase in cells expressing the T cell marker L3T4 and an increased proliferative response to the T cell mitogen concanavalin A was observed. A direct estimate of the effect of IL-3 on the frequency of NK cell progenitors was obtained by limiting dilution analysis of bone marrow cells at day 8 after bone marrow transplantation. The estimated minimal frequency of NK cell progenitors was reduced from 1/11,800 in control to 1/41,900 in IL-3-exposed mice. IL-3 may take part in the homeostasis of NK cells by the down-regulation of their progenitors.  相似文献   

2.
Glucocorticoids have been shown to induce the differentiation of bone marrow stromal osteoprogenitor cells into osteoblasts and the mineralization of the matrix. Since the expression of bone matrix proteins is closely related to the differentiation status of osteoblasts and because matrix proteins may play important roles in the mineralization process, we investigated the effects of dexamethasone (Dex) on the expression of bone matrix proteins in cultured normal human bone marrow stromal cells (HBMSC). Treatment of HBMSC with Dex for 23 days resulted in a significant increase in alkaline phosphatase activity with maximum values attained on day 20 at which time the cell matrix was mineralized. Northern blot analysis revealed an increase in the steady-state mRNA level of alkaline phosphatase over 4 weeks of Dex exposure period. The observed increase in the alkaline phosphatase mRNA was effective at a Dex concentration as low as 10−10 M with maximum values achieved at 10−8 M. In contrast, Dex decreased the steady-state mRNA levels of both bone sialoprotein (BSP) and osteopontin (OPN) over a 4 week observation period when compared to the corresponding control values. The relative BSP and OPN mRNA levels among the Dex treated cultures, however, showed a steady increase after more than 1 week exposure. The expression of osteocalcin mRNA which was decreased after 1 day Dex exposure was undetectable 4 days later. Neither control nor Dex-treated HBMSC secreted osteocalcin into the conditioned media in the absence of 1,25(OH)2D3 during a 25-day observation period. The accumulated data indicate that Dex has profound and varied effects on the expression of matrix proteins produced by human bone marrow stromal cells. With the induced increment in alkaline phosphatase correlating with the mineralization effects of Dex, the observed concomitant decrease in osteopontin and bone sialoprotein mRNA levels and the associated decline of osteocalcin are consistent with the hypothesis that the regulation of the expression of these highly negatively charged proteins is essential in order to maximize the Dex-induced mineralization process conditioned by normal human bone marrow stromal osteoprogenitor cells. © 1996 Wiley-Liss, Inc.  相似文献   

3.
In therapeutic bone repairs, autologous bone grafts, conventional or vascularized allografts, and biocompatible artificial bone substitutes all have their shortcomings. The bone formed from peptides [recombinant human bone morphogenetic proteins (BMPs)], demineralized bone powder, or a combination of both is small in size. Tissue engineering may be an alternative for cranial bone repair. In this study, the authors developed an animal model to test the hypothesis that replication-defective, adenovirus-mediated human BMP-2 gene transfer to bone marrow stromal cells enhances the autologous bone formation for repairing a critical-size craniofacial defect. The mesenchymal stromal cells of miniature swine were separated from the iliac crest aspirate and expanded in monolayer culture 1 month before implantation. The cultured mesenchymal stromal cells were infected with recombinant, replication-defective human adenovirus BMP-2, 7 days before implantation. Bilateral 2 x 5-cm2 cranial defects were created, leaving no osteogenic periosteum and dura behind. Mesenchymal stromal cells at 5 x 10(7)/ml were mixed with collagen type I to form mesenchymal stromal cell/polymer constructs. Mesenchymal stromal cells used for the control site were infected with adenovirus beta-Gal under the same conditions. After 6 weeks and 3 months, 10 miniature swine were euthanized and the cranium repair was examined. Near-complete repair of the critical-size cranial defect by tissue-engineered mesenchymal stromal cell/collagen type I construct was observed. The new bone formation area (in square centimeters) measured by three-dimensional computed tomography demonstrated that the improvement from 6 weeks to 3 months was significantly greater on the experimental side than on the control side (2.15 cm2 versus 0.54 cm2, p < 0.001) and significantly greater at 3 months than at 6 weeks (2.13 cm2 versus 0.52 cm2, p < 0.001). The difference between the experimental and control groups was significant at 3 months (mean difference, 2.13 cm2; p < 0.001). The maximal compressive strength of the new bone was similar to that of the normal cranial bone when evaluated by biomechanical testing (cranium bone versus tissue-engineered bone, 88.646 +/- 5.121 MPa versus 80.536 +/- 19.302 MPa; p = 0.227). Adenovirus was absent from all constructs by immunochemical staining at 6 weeks and 3 months after implantation. The successful repair of cranial defects in this experiment demonstrates the efficacy of the integration of the autologous stem cell concept, gene medicine, and polymers in producing tissue-engineered bone.  相似文献   

4.

Purpose

Ablative bone marrow irradiation is an integral part of hematopoietic stem cell transplantation. These treatment regimens are based on classically held models of radiation dose and the bone marrow response. Flt-3 ligand (FL) has been suggested as a marker of hematopoiesis and bone marrow status but the kinetics of its response to bone marrow irradiation has yet to be fully characterized. In the current study, we examine plasma FL response to total body and partial body irradiation in mice and its relationship with irradiation dose, time of collection and pattern of bone marrow exposure.

Materials/Methods

C57BL6 mice received a single whole body or partial body irradiation dose of 1–8 Gy. Plasma was collected by mandibular or cardiac puncture at 24, 48 and 72 hr post-irradiation as well as 1–3 weeks post-irradiation. FL levels were determined via ELISA assay and used to generate two models: a linear regression model and a gated values model correlating plasma FL levels with radiation dose.

Results

At all doses between 1–8 Gy, plasma FL levels were greater than control and the level of FL increased proportionally to the total body irradiation dose. Differences in FL levels were statistically significant at each dose and at all time points. Partial body irradiation of the trunk areas, encompassing the bulk of the hematopoietically active bone marrow, resulted in significantly increased FL levels over control but irradiation of only the head or extremities did not. FL levels were used to generate a dose prediction model for total body irradiation. In a blinded study, the model differentiated mice into dose received cohorts of 1, 4 or 8 Gy based on plasma FL levels at 24 or 72 hrs post-irradiation.

Conclusion

Our findings indicate that plasma FL levels might be used as a marker of hematopoietically active bone marrow and radiation exposure in mice.  相似文献   

5.
Macrophage inflammatory protein-1α (CCL3) plays a well-known role in infectious and viral diseases; however, its contribution to atherosclerotic lesion formation and lipid metabolism has not been determined. Low density lipoprotein receptor deficient (LDLR(-/-)) mice were transplanted with bone marrow from CCL3(-/-) or C57BL/6 wild type donors. After 6 and 12 weeks on western diet (WD), recipients of CCL3(-/-) marrow demonstrated lower plasma cholesterol and triglyceride concentrations compared to recipients of C57BL/6 marrow. Atherosclerotic lesion area was significantly lower in female CCL3(-/-) recipients after 6 weeks and in male CCL3(-/-) recipients after 12 weeks of WD feeding (P<0.05). Surprisingly, male CCL3(-/-) recipients had a 50% decrease in adipose tissue mass after WD-feeding, and plasma insulin, and leptin levels were also significantly lower. These results were specific to CCL3, as LDLR(-/-) recipients of monocyte chemoattractant protein(-/-) (CCL2) marrow were not protected from the metabolic consequences of high fat feeding. Despite these improvements in LDLR(-/-) recipients of CCL3(-/-) marrow in the bone marrow transplantation (BMT) model, double knockout mice, globally deficient in both proteins, did not have decreased body weight, plasma lipids, or atherosclerosis compared with LDLR(-/-) controls. Finally, there were no differences in myeloid progenitors or leukocyte populations, indicating that changes in body weight and plasma lipids in CCL3(-/-) recipients was not due to differences in hematopoiesis. Taken together, these data implicate a role for CCL3 in lipid metabolism in hyperlipidemic mice following hematopoietic reconstitution.  相似文献   

6.
A blood group A1Le(a-b+) individual with chronic myeloid leukaemia had received a bone marrow graft from an HLA-identical OLe(a+b-) donor. Twelve months after bone marrow transplantation (BMT), the red blood cells of the patient became agglutinable with anti-A blood group reagents. To elucidate whether the blood group A antigen expression was of plasma or of bone marrow origin, total non-acid glycosphingolipid fractions were prepared from red blood cells and plasma collected 17 months after BMT, and from plasma collected 13, 15 and 19 weeks after BMT. The glycolipid fractions were analysed by thin-layer chromatography and immunostained with monoclonal A-antibodies, and permethylated and permethylated-reduced derivatives of selected plasma samples were analysed by mass spectrometry. The results strongly indicate the presence of host bone marrow-produced blood group A red blood cells. Furthermore, the presence of a blood group H active pentaglycosylceramide type 1 (H-5-1) (Table I), characteristic for an OLe(a-b-) secretor, was seen in plasma 3-4 weeks before clinical chronic graft versus host disease (GVHD). After treatment of chronic GVHD, this expression disappeared. The blood group ALeb (A-7-1) antigen produced by the recipient seems to be present and to increase with time in all plasma samples. This also seems to be the case for the Leb and A-6-1 antigens.  相似文献   

7.
The response of bone marrow cells of CBA mice injected with 22.2, 222 and 592 kBq/animal to additional gamma-irradiation (3 Gy) for testing purposes was evaluated using SCG (Comet assay). A decrease in induction of DNA damage right after additional gamma-irradiation was determined. It correlated with bone marrow cell quantity and the tail length before additional gamma-irradiation. The results support the suggestion about the activation of DNA repair in bone marrow cells under exposure to 90Sr in vivo.  相似文献   

8.
By employing a distinctive feature of natural killer (NK) cells, i.e., spontaneous target cell binding, the present study aimed to follow a relatively large cohort of target-binding cells (TBC), subdivided according to size and the presence of the radioautographically labelled nucleotide, tritiated thymidine, incorporated during a 1- or 6-hour exposure period. Labelling among all TBC in the spleen was 5% by 1 h after a single injection of the isotope and this value did not change significantly after 6 h of isotope exposure. There was an insignificant increase in the labelling index of spleen-localized, labelled, large TBC throughout and beyond the isotope exposure period for at least 48 h, concomitant with a significant increase in the labelling index of spleen-localized, small TBC during the same period. In the bone marrow, small TBC showed only 2% labelling by 1 h after a single injection of isotope, while 21% of large TBC in that organ were synthesizing DNA during the same period. The results are consistent with a precursor-product relationship between large and small TBC within the bone marrow but not the spleen, and with a bone marrow-to-spleen migration of small (+/- large) TBC. Moreover, a minor population of large TBC was detected in the spleen with kinetic characteristics distinct from those of the bone marrow.  相似文献   

9.
目的研究自体骨髓干细胞动员对兔动脉粥样硬化(AS)破裂斑块的稳定与修复作用。方法用液氮冻伤术创建兔AS破裂斑块模型,动员组注射重组人粒细胞刺激因子(rhG-CSF)动员自体骨髓干细胞,对照组注射等量生理盐水,连续5 d。动员第5天抽血分离获取单个核细胞,BrdU标记后经静脉注入动物体内;分别于动员后3d和4周末抽血,ELISA法检测兔血清MMP-9、hsC-RP及PAI-1水平;动员后4周处死兔,HE染色和Masson三色染色观察斑块病理形态,免疫组化染色观察BrdU在斑块区表达情况。结果动员5 d后,动员组兔外周血有核细胞计数及单核细胞比例明显增高;动员后4周,动员组新生内皮细胞及胶原纤维明显增多,在斑块区发现有BrdU标记的阳性细胞,动员组血清MMP-9、hsC-RP及PAI-1水平明显降低。结论应用rhG-CSF动员自体骨髓干细胞能通过促进血管内皮细胞和胶原纤维再生,降低炎症因子及凝血纤溶因子而稳定与修复AS破裂斑块。  相似文献   

10.
1,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the biologically active form of vitamin D3, has been shown to inhibit proliferation and promote monocytic differentiation of leukemic cell lines. In the present communication, we extend these observations to normal bone marrow macrophage precursors, and 1) identify the stage of monocytic maturation wherein the steroid exerts its antiproliferative effect, and 2) demonstrate that 1,25-(OH)2D3 promotes bone marrow macrophage differentiation as manifest by specific up-regulation of the lineage-specific membrane protein, the mannose-fucose receptor. In these experiments, the 1,25-(OH)2D3-mediated inhibitory effect on colony formation was shown to be independent of attendant levels of colony stimulating factor-1 and targeted through the adherent bone marrow macrophage precursor. Examination of this steroid-sensitive adherent precursor population demonstrates that its specific binding of 125I-mannose bovine serum albumin spontaneously and progressively increases with time in culture. Whereas adherent bone marrow macrophages cultured for 2 days express 3 X 10(4) mannose receptors/cell, the number of binding sites increases to 7 X 10(4)/cell by day 4. When bone marrow macrophage precursors are exposed to 1,25-(OH)2D3, an additional stepwise enhancement of 125I-mannose bovine serum albumin obtains with time. Four days of culture with the steroid results in 1.6 X 10(5) mannose receptors/cell, a 100% increase as compared to control cells. Neither duration of culture nor exposure to 1,25-(OH)2D3 alters the KD of 125I-mannose bovine serum albumin which approximates 3-5 X 10(-9) ml-1. Finally, the "specificity" of vitamin D-mediated up-regulation of the mannose receptor was established by demonstrating that the steroid does not alter binding of 125I-alpha-thrombin by bone marrow-derived macrophage precursors.  相似文献   

11.
Protective circulating Abs originate primarily from long-lived plasma cells in the bone marrow. However, the molecular and cellular basis of plasma cell longevity is unknown. We investigated the capacity of primary bone marrow-derived stromal cells to maintain plasma cell viability in vitro. Plasma cells purified from the bone marrow or lymph nodes died rapidly when plated in media, but a subpopulation of plasma cells survived and secreted high levels of Ab for up to 4 wk when cocultured with stromal cells. Ab secretion was inhibited by the addition of anti-very late Ag-4 to plasma cell/stromal cell cocultures indicating that direct interactions occur and are necessary between stromal cells and plasma cells. The addition of rIL-6 to plasma cells cultured in media alone partially relieved the sharp decline in Ab secretion observed in the absence of stromal cells. Moreover, when stromal cells from IL-6(-/-) mice were used in plasma cell/stromal cell cocultures, Ab levels decreased 80% after 7 days as compared with wild-type stromal cells. Further, IL-6 mRNA message was induced in stromal cells by coculture with plasma cells. These data indicate that bone marrow plasma cells are not intrinsically long-lived, but rather that plasma cells contact and modify bone marrow stromal cells to provide survival factors.  相似文献   

12.
The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01), 1.23-fold (p < 0.01), and 2.13-fold (p < 0.001), respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01) in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia.  相似文献   

13.

Background

Articular cartilage has been the focus of multiple strategies to improve its regenerative/ repair capacity. The Murphy Roths Large (MRL/MpJ) “super-healer” mouse demonstrates an unusual enhanced regenerative capacity in many tissues and provides an opportunity to further study endogenous cartilage repair. The objective of this study was to test whether the super-healer phenotype could be transferred from MRL/MpJ to non-healer C57Bl/6 mice by allogeneic bone marrow transplant.

Methodology

The healing of 2mm ear punches and full thickness cartilage defects was measured 4 and 8 weeks after injury in control C57Bl/6 and MRL/MpJ “super-healer” mice, and in radiation chimeras reconstituted with bone marrow from the other mouse strain. Healing was assessed using ear hole diameter measurement, a 14 point histological scoring scale for the cartilage defect and an adapted version of the Osteoarthritis Research Society International scale for assessment of osteoarthritis in mouse knee joints.

Principal Findings

Normal and chimeric MRL mice showed significantly better healing of articular cartilage and ear wounds along with less severe signs of osteoarthritis after cartilage injury than the control strain. Contrary to our hypothesis, however, bone marrow transplant from MRL mice did not confer improved healing on the C57Bl/6 chimeras, either in regards to ear wound healing or cartilage repair.

Conclusion and Significance

The elusive cellular basis for the MRL regenerative phenotype still requires additional study and may possibly be dependent on additional cell types external to the bone marrow.  相似文献   

14.
1. Male Wistar rats were exposed to fluoride (F) at concentrations of 100- and 200 ppm in their drinking water for 6- and 16 weeks.2. The high F intake caused several-fold increase in the F concentrations in the testes and bone as compared with control rats, both after the 6- and 16wk exposure; the bone F, but not testicular F, appeared to increase with dose and time.3. F exposure (100- and 200 ppm) decreased significantly the concentrations of zinc (Zn) in the testes, plasma, liver and kidneys particularly in the 16 wk groups; in the bone Zn tended to increase, however.4. The iron concentrations of the testes and plasma were not affected by F, whereas those of the liver, kidneys and bone appeared to increase under the influence of F.5. The concentrations of copper and manganese in the testes, liver and kidneys were not changed by F exposure.6. Fifty percent of the 100- and 200 ppm F rats after 16 weeks exhibited histopathologic changes in the germinal epithelium of the testes, which resembled those in Zn-deficient rats.7. The data suggest that a deprivation of testicular Zn due to a high F intake may be directly responsible for the injury of testicular tubules.  相似文献   

15.
The cell surface exposure of phosphatidylserine (PS) and the plasma membrane impairment were assessed in the bone marrow of adult male Swiss mice exposed to a single 6 Gy dose of 60 Co gamma-rays, and treated intraperitoneally with the aminothiol WR-2721 (Amifostine, S-2-/3-aminopropylamino/ethyl phosphorothioic acid), at a dose of 400 mg/kg body weight, 30 min prior to gamma-irradiation. The bone marrow cells were stained with a combination of fluoresceinated annexin V (annexin V--FITC) and propidium iodide (PI) at 3 h, 7 h, and 24 h after treatment of mice with WR-2721 and 60Co gamma-irradiation. The number of early apoptotic cells (annexin V--FITC positive/PI negative), and late apoptotic and necrotic cells (annexin V--FITC positive/PI positive), was increased at 3 h after exposure of mice to 60Co gamma-rays and thereafter declined with the frequency of apoptotic and necrotic cells remaining lower in WR-2721 pre-treated mice. Using the annexin V--FITC flow cytometric assay, the radioprotective effect of WR-2721 against induction of apoptosis and necrosis in normal cells of the haematopoietic system was shown.  相似文献   

16.
To investigate the effect of Trp53 (formerly known as p53) on stromal cells of the hematopoietic microenvironment, long-term bone marrow cultures were established from mice in which the Trp53 gene had been inactivated by homologous recombination (Trp53(-/-)) or their wild-type littermates (Trp53(+/+)). Long-term bone marrow cultures from Trp53(-/-) mice continued to produce nonadherent cells for 22 weeks, while Trp53(+/+) cultures ceased production after 15 weeks. There was a significant increase in the number of nonadherent cells produced in Trp53(-/-) long-term bone marrow cultures beginning at week 9 and continuing to week 22 (P < 0.02). The Trp53(-/-) cultures also showed significantly increased cobblestone island formation indicative of early hematopoietic stem cell-containing colonies beginning at week 10 (P < 0.01). Cobblestone islands persisted until weeks 15 and 22 in Trp53(+/+) and Trp53(-/-) cultures, respectively. Co-cultivation experiments in which Trp53(+/+) Sca1(+)lin- enriched hematopoietic stem cells were plated on Trp53(-/-) stromal cells showed increased cobblestone island formation compared to Trp53(-/-) Scal+lin- cells plated on Trp53(+/+) or Trp53(-/-) stromal cells. Radiation survival curves for clonal bone marrow stromal cells revealed a similar D0 for the Trp53(+/+) and Trp53(-/-) cell lines (1.62 +/- 0.16 and 1.49 +/- 0. 08 Gy, respectively; P = 0.408), and similar n (8.60 +/- 3.23 and 10.71 +/- 0.78, respectively) (P = 0.491). Cell cycle analysis demonstrated a G2/M-phase arrest that occurred 6 h after irradiation for both Trp53(+/+) and Trp53(-/-) stromal cell lines. After 10 Gy irradiation, there was no significant increase in the frequency of apoptosis detected in Trp53(+/+) compared to Trp53(-/-) marrow stromal cell lines. In the stromal cell lines, ICAM-1 was constitutively expressed on Trp53(+/+) but not Trp53(-/-) cells; however, a 24-h exposure to TNF-alpha induced detectable ICAM-1 on Trp53(-/-) cells and increased expression on Trp53(+/+) cells. To test the effect of Trp53 on the radiation biology of hematopoietic progenitor cells, the 32D cl 3 cell line was compared with a subclone in which expression of an E6 inserted transgene accelerates ubiquitin-dependent degradation of Trp53, thus preventing accumulation of Trp53 after genotoxic stress. The radiation survival curves were similar with no significant difference in the D0 or n, or in the percentage of cells undergoing apoptosis after 10 Gy irradiation between the two cell lines. Cells of the 32D-E6 cell line displayed a G2/M-phase arrest 6 h after 10 Gy, while cells of the parent line exhibited both a G2/M-phase arrest and a G1-phase arrest at 24 and 48 h. The results suggest a complex mechanism of action of Trp53 on the interactions between stromal and hematopoietic cells in long-term bone marrow cultures.  相似文献   

17.
To investigate the regulatory effect of carbohydrate sulfotransferase 3 (CHST3) in cartilage endplate-derived stem cells (CESCs) on the molecular mechanism of intervertebral disc degeneration after nucleus pulposus repair in rats. We performed GO and KEGG analysis of GSE15227 database to select the differential genes CHST3 and CSPG4 in grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration, IHC and WB to detect the protein profile of CHST3 and CSPG4, Co-IP for the interaction between CHST3 and CSPG4. Then, immunofluorescence was applied to measure the level of CD90 and CD105, and flow cytometry indicated the level of CD73, CD90 and CD105 in CESCs. Next, Alizarin red staining, Alcian blue staining and TEM were performed to evaluate the effects of CESCs into osteoblasts and chondroblasts, respectively, CCK8 for the cell proliferation of osteoblasts and chondroblasts after induction for different times; cell cycle of osteoblasts or chondroblasts was measured by flow cytometry after induction, and WB for the measurement of specific biomarkers of OC and RUNX in osteoblasts and aggrecan, collagen II in chondroblasts. Finally, colony formation was applied to measure the cell proliferation of CESCs transfected with ov-CHST3 or sh-CHST3 when cocultured with bone marrow cells, WB for the protein expression of CHST3, CSPG4 and ELAVL1 in CSECs, transwell assay for the migration of CESCs to bone marrow cells, TEM image for the cellular characteristics of bone marrow cells, and WB for the protein profile of VCAN, VASP, NCAN and OFD1 in bone marrow cells. CHST3 and CSPG4 were differentially expressed and interacted in grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration; CD73, CD90 and CD105 were lowly expressed in CESCs, osteogenic or chondroblastic induction changed the characteristics, proliferation, cell cycle and specific biomarkers of osteoblasts and chondroblasts after 14 or 21 days,; CHST3 affected the cell proliferation, protein profile, migration and cellular features of cocultured CESCs or bone marrow cells. CHST3 overexpression promoted CESCs to regulate bone marrow cells through interaction with CSPG4 to repair the grade Ⅱ, Ⅲ and Ⅳ intervertebral disc degeneration.  相似文献   

18.

Rationale

Stage specific embryonic antigen 1+ (SSEA1+) cells have been described as the most primitive mesenchymal progenitor cell in the bone marrow. Cardiac injury mobilizes SSEA1+ cells into the peripheral blood but their in vivo function has not been characterized.

Objective

We generated animals with chimeric bone marrow to determine the fate and function of bone marrow SSEA1+ cells in response to acute cardiac pressure overload.

Methods and Results

Lethally irradiated mice were transplanted with normal bone marrow where the wild-type SSEA1+ cells were replaced with green fluorescent protein (GFP) SSEA1+ cells. Cardiac injury was induced by trans-aortic constriction (TAC). We identified significant GFP+ cell engraftment into the myocardium after TAC. Bone marrow GFP+ SSEA1 derived cells acquired markers of endothelial lineage, but did not express markers of c-kit+ cardiac progenitor cells. The function of bone marrow SSEA1+ cells after TAC was determined by transplanting lethally irradiated mice with bone marrow depleted of SSEA1+ cells (SSEA1-BM). The cardiac function of SSEA1-BM mice declined at a greater rate after TAC compared to their complete bone marrow transplant counterparts and was associated with decreased bone marrow cell engraftment and greater vessel rarefication in the myocardium.

Conclusions

These results provide evidence for the recruitment of endogenous bone marrow SSEA1+ cells to the myocardium after TAC. We demonstrate that, in vivo, bone marrow SSEA1+ cells have the differentiation potential to acquire endothelial lineage markers. We also show that bone marrow SSEA1+ deficiency is associated with a reduced compensatory capacity to cardiac pressure overload, suggesting their importance in cardiac homeostasis. These data demonstrate that bone marrow SSEA1+ cells are critical for sustaining vascular density and cardiac repair to pressure overload.  相似文献   

19.
Resistance exercise increases heme synthesis in the bone marrow and the hemoglobin in iron-deficient rats. Post-exercise early nutrient provision facilitates skeletal muscle protein synthesis compared to late provision. However, the effects of post-exercise nutrition timing on hemoglobin synthesis are unclear. The current study investigated the effect of post-exercise meal timing on the activity of the key enzyme involved in hemoglobin synthesis, δ-aminolevulinic acid dehydratase (ALAD), in the bone marrow and examined the hemoglobin concentration in iron-deficient rats. Male 4-week-old Sprague-Dawley rats were fed an iron-deficient diet containing 12 mg iron/kg and performed climbing exercise (5 min × 6 sets/day, 3 days/week) for 3 weeks. The rats were divided into a group fed a post-exercise meal early after exercise (E) or a group fed the meal 4 h after exercise (L). A single bout of exercise performed after the 3-week training period increased the bone marrow ALAD activity, plasma iron concentration, and transferrin saturation. Although the plasma iron concentration and transferrin saturation were lower in the E group than the L group after a single bout of exercise, the basal hematocrit, hemoglobin, and TIBC after 3 weeks did not differ between the groups. Therefore, resistance exercise increases the bone marrow ALAD activity, while the post-exercise meal timing has no effect on the hemoglobin concentration in iron-deficient rats.  相似文献   

20.
Faiola B  Fuller ES  Wong VA  Recio L 《Mutation research》2004,549(1-2):195-212
Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号