首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study examined how competitive interactions and environmental conditions generate species boundaries and determine species distributions. A spatially explicit, quantitative genetic, two-species competition model was used to manipulate the strengths of competition, gene flow and local adaptation along environmental gradients. This allowed us to assess the long-term persistence of each species and whether the ranges they inhabited had boundaries in space or were unlimited. We found that a species boundary arises along less steep environmental gradients when the strength of stabilizing selection and diversifying selection are similar. We also found that a species boundary may arise along shallow environmental gradients if interspecific competition is more intense than intraspecific, which relaxes previous requirements for steep gradients for generating range limits. We determined an analytical form for the critical environmental gradient as a function of ecological and genetic parameters at which a species boundary is expected to arise by competition. Results suggest an alternative to resource competition as an explanation for phenotypic divergence between sympatric competitors. Competitors sharing a trait that is under stabilizing selection along an environmental gradient may segregate spatially and evolve in different regions, with phenotypic sympatric divergence reflecting the resulting clines. Along various types of environmental gradients, variation in stabilizing selection intensities could lead to contrasting patterns in the distribution of species. For stabilizing selection strengths in accord with field data estimates, this study predicts that the level of sympatric character divergence would be limited along environmental gradients.  相似文献   

2.
Species distributional limits may coincide with hard dispersal barriers or physiological thresholds along environmental gradients, but they may also be influenced by species interactions. We explore a number of models of interspecific interactions that lead to (sometimes abrupt) distribution limits in the presence and absence of environmental gradients. We find that gradients in competitive ability can lead to spatial segregation of competitors into distinct ranges, but that spatial movement tends to broaden the region of sympatry between the two species, and that Allee effects tend to sharpen these boundaries. We generalize these simple models to include metapopulation dynamics and other types of interactions including predator–prey and host–parasite interactions. We derive conditions for range limits in each case. We also consider models that include coevolution and gene flow and find that character displacement along environmental gradients can lead to stable parapatric distributions. We conclude that it is essential to consider coevolved species interactions as a potential mechanism limiting species distributions, particularly when barriers to dispersal are weak and environmental gradients are gradual.  相似文献   

3.
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient.  相似文献   

4.
Range limits of species are determined by combined effects of physical, historical, ecological, and evolutionary forces. We consider a subset of these factors by using spatial models of competition, hybridization, and local adaptation to examine the effects of partial dispersal barriers on the locations of borders between similar species. Prompted by results from population genetic models and biogeographic observations, we investigate the conditions under which species' borders are attracted to regions of reduced dispersal. For borders maintained by competition or hybridization, we find that dispersal barriers can attract borders whose positions would otherwise be either neutrally stable or moving across space. Borders affected strongly by local adaptation and gene flow, however, are repelled from dispersal barriers. These models illustrate how particular biotic and abiotic factors may combine to limit species' ranges, and they help to elucidate mechanisms by which range limits of many species may coincide.  相似文献   

5.
Understanding the boundaries of species' ranges and the variations in population dynamics from the centre to margin of a species' range is critical. This study simulated spatial-temporal patterns of birth and death rates and migration across a species' range in different seasons. Our results demonstrated the importance of dispersal and migration in altering birth and death rates, balancing source and sink habitats, and governing expansion or contraction of species' ranges in changing environments. We also showed that the multiple equilibria of metapopulations across a species' range could be easily broken following climatic changes or physical disturbances either local or regional. Although we refer to our models as describing the population dynamics across whole species' range, they should also apply to small-scale habitats (metapopulations) in which species abundance follows a humped pattern or to any ecosystem or landscape where strong central-marginal (C-M) environmental gradients exist. Conservation of both central and marginal populations would therefore be equally important considerations in making management decisions.  相似文献   

6.
Gene flow that hampers local adaptation can constrain species distributions and slow invasions. Predation as an ecological factor mainly limits prey species ranges, but a richer array of possibilities arises once one accounts for how predation alters the interplay of gene flow and selection. We extend previous single-species theory on the interplay of demography, gene flow, and selection by investigating how predation modifies the coupled demographic-evolutionary dynamics of the range and habitat use of prey. We consider a model for two discrete patches and a complementary model for species along continuous environmental gradients. We show that predation can strongly influence the evolutionary stability of prey habitat specialization and range limits. Predators can permit prey to expand in habitat or geographical range or, conversely, cause range collapses. Transient increases in predation can induce shifts in prey ranges that persist even if the predator itself later becomes extinct. Whether a predator tightens or loosens evolutionary constraints on the invasion speed and ultimate size of a prey range depends on the predator effectiveness, its mobility relative to its prey, and the prey's intraspecific density dependence, as well as the magnitude of environmental heterogeneity. Our results potentially provide a novel explanation for lags and reversals in invasions.  相似文献   

7.
All species' ranges are the result of successful past invasions. Thus, models of species' invasions and their failure can provide insight into the formation of a species' geographic range. Here, we study the properties of invasion models when a species cannot persist below a critical population density known as an "Allee threshold." In both spatially continuous reaction-diffusion models and spatially discrete coupled ordinary-differential-equation models, the Allee effect can cause an invasion to fail. In patchy landscapes (with dynamics described by the spatially discrete model), range limits caused by propagation failure (pinning) are stable over a wide range of parameters, whereas, in an uninterrupted habitat (with dynamics described by a spatially continuous model), the zero velocity solution is structurally unstable and thus unlikely to persist in nature. We derive conditions under which invasion waves are pinned in the discrete space model and discuss their implications for spatially complex dynamics, including critical phenomena, in ecological landscapes. Our results suggest caution when interpreting abrupt range limits as stemming either from competition between species or a hard environmental limit that cannot be crossed: under a wide range of plausible ecological conditions, species' ranges may be limited by an Allee effect. Several example systems appear to fit our general model.  相似文献   

8.
Prior studies of the evolution of species' niches and ranges have identified the importance of within-population genetic variance, migration rate, and environmental heterogeneity in determining evolutionarily stable patterns of species' range and habitat use. Different combinations of these variables can produce either habitat specialists or generalists and cause either stable range limits or unbounded expansion. We examine the effect of density regulation on a species' range and habitat use within a landscape comprised of two discrete habitats and along continuous environmental gradients. Using the theta-logistic formulation, we demonstrate the following. (1) Spatially uniform density regulation generally weakens gene swamping and opposes habitat specialization and range limitation. (2) The form of density regulation should play an important role in determining whether the equilibrium species' range is limited by gene flow. (3) Even when no long-term limited-range equilibrium occurs, quasi-stable (or even contracting) range limits may be maintained for a long period during the initial phases of an invasion; the length of this period depends on the form of density regulation. (4) The steady state invasion speed in heterogeneous environments depends on the form of density regulation. Implications for the study of biological invasions are discussed, and directions for further exploration are sketched.  相似文献   

9.
A combination of abiotic and biotic factors probably restricts the range of many species. Recent evolutionary models and tests of those models have asked how a gradual change in environmental conditions can set the range limit, with a prominent idea being that gene flow disrupts local adaptation. We investigate how biotic factors, explicitly competition for limited resources, result in evolutionarily stable range limits even in the absence of the disruptive effect of gene flow. We model two competing species occupying different segments of the resource spectrum. If one segment of the resource spectrum declines across space, a species that specializes on that segment can be driven to extinction, even though in the absence of competition it would evolve to exploit other abundant resources and so be saved. The result is that a species range limit is set in both evolutionary and ecological time, as the resources associated with its niche decline. Factors promoting this outcome include: (i) inherent gaps in the resource distribution, (ii) relatively high fitness of the species when in its own niche, and low fitness in the alternative niche, even when resource abundances are similar in each niche, (iii) strong interspecific competition, and (iv) asymmetric interspecific competition. We suggest that these features are likely to be common in multispecies communities, thereby setting evolutionarily stable range limits.  相似文献   

10.
Evolution of a species' range   总被引:19,自引:0,他引:19  
Gene flow from the center of a species' range can stymie adaptation at the periphery and prevent the range from expanding outward. We study this process using simple models that track both demography and the evolution of a quantitative trait in a population that is continuously distributed in space. Stabilizing selection acts on the trait and favors an optimum phenotype that changes linearly across the habitat. One of three outcomes is possible: the species will become extinct, expand to fill all of the available habitat, or be confined to a limited range in which it is sufficiently adapted to allow population growth. When the environment changes rapidly in space, increased migration inhibits local adaptation and so decreases the species' total population size. Gene flow can cause enough maladaptation that the peripheral half of a species' range acts as a demographic sink. The trait's genetic variance has little effect on species persistence or the size of the range when gene flow is sufficiently strong to keep population densities far below the carrying capacity throughout the range, but it can increase the range width and population size of an abundant species. Under some conditions, a small parameter change can dramatically shift the balance between gene flow and local adaptation, allowing a species with a limited range to suddenly expand to fill all the available habitat.  相似文献   

11.
Species' borders: a unifying theme in ecology   总被引:6,自引:0,他引:6  
Biologists have long been fascinated by species' borders, and with good reason. Understanding the ecological and evolutionary dynamics of species' borders may prove to be the key that unlocks new understanding across a wide range of biological phenomena. After all, geographic range limits are a point of entry into understanding the ecological niche and threshold responses to environmental change. Elucidating patterns of gene flow to, and returning from, peripheral populations can provide important insights into the nature of adaptation, speciation and coevolution. Species' borders form natural laboratories for the study of the spatial structure of species interactions. Comparative studies from the center to the margin of species' ranges allow us to explore species' demographic responses along gradients of increasing environmental stress. Range dynamics further permit investigation into invasion dynamics and represent bellwethers for a changing climate. This set of papers explores ecological and evolutionary dynamics of species' borders from diverse empirical and theoretical perspectives.  相似文献   

12.
Local adaptation and dispersal evolution are key evolutionary processes shaping the invasion dynamics of populations colonizing new environments. Yet their interaction is largely unresolved. Using a single‐species population model along a one‐dimensional environmental gradient, we show how local competition and dispersal jointly shape the eco‐evolutionary dynamics and speed of invasion. From a focal introduction site, the generic pattern predicted by our model features a temporal transition from wave‐like to pulsed invasion. Each regime is driven primarily by local adaptation, while the transition is caused by eco‐evolutionary feedbacks mediated by dispersal. The interaction range and cost of dispersal arise as key factors of the duration and speed of each phase. Our results demonstrate that spatial eco‐evolutionary feedbacks along environmental gradients can drive strong temporal variation in the rate and structure of population spread, and must be considered to better understand and forecast invasion rates and range dynamics.  相似文献   

13.
Alternative causes for range limits: a metapopulation perspective   总被引:1,自引:1,他引:0  
All species have limited distributions at broad geographical scales. At local scales, the distribution of many species is influenced by the interplay of the three factors of habitat availability, local extinctions and colonization dynamics. We use the standard Levins metapopulation model to illustrate how gradients in these three factors can generate species' range limits. We suggest that the three routes to range limits have radically different evolutionary implications. Because the Levins model makes simplifying assumptions about the spatial coupling of local populations, we present numerical studies of spatially explicit metapopulation models that complement the analytical model. The three routes to range limits give rise to distinct spatiotemporal patterns. Range limits in one species can also arise because of environmental gradients impinging upon other species. We briefly discuss a predator–prey example, which illustrates indirect routes to range limits in a metacommunity context.  相似文献   

14.
Zapata FA  Gaston KJ  Chown SL 《The American naturalist》2005,166(5):E144-8; discussion E149-54
We revisit the proposition that boundary constraints on species' ranges cause species richness gradients (the mid-domain effect [MDE] hypothesis). In the absence of environmental gradients, species should not retain their observed range sizes as assumed by MDE models. Debate remains regarding the definition of domain limits, valid predictions for testing the models, and their statistical assessment. Empirical support for the MDE is varied but often weak, suggesting that geometric constraints on species' ranges do not provide a general explanation for richness gradients. Criticism of MDE model assumptions does not, however, imply opposition to the use of null models in ecology.  相似文献   

15.
When species' elevational ranges are wider where putative competitors are absent, researchers have concluded that interspecific competition influences elevational distributions. This overlooks the distinction between factors that limit distributions directly and factors that only influence organisms indirectly through covarying regulators or resources. Because elevation affects organisms indirectly, testing whether competition influences elevational ranges relies on the heretofore untested assumption that the relationship between elevation and factors influencing organisms directly is similar across geography. Focusing on Buarremon brush-finches (Aves: Emberizidae), a group in which distributions represent one of the best examples of the potential role of competition limiting elevational ranges, we show that when distributions are compared along axes of climatic variation, some patterns of elevational range variation do appear to be consistent with predictions of the hypothesis that release from competition underlies expanded elevational ranges in allopatry. However, other patterns of expanded elevational ranges in the absence of putative competitors are better explained by hypothesis related to species' autoecology and geographic variation in the environment. This latter finding cautions against using elevation uncritically as a dimension of ecological niches, and suggests that classical examples of interspecific competition may need re-evaluation.  相似文献   

16.
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition‐induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high‐emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high‐emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.  相似文献   

17.
1. I investigated the effects of dispersal on communities of keystone predators and prey. I obtained two key results. 2. First, a strong trade-off between competitive ability and predator susceptibility allows consumer coexistence over a large resource productivity range, but it also lowers the predator-susceptible superior competitor's abundance and increases its risk of extinction. Thus, unexpectedly, dispersal plays a more important role in coexistence when predator-mediated coexistence is strong rather than weak. The interplay between the trade-off, small population sizes resulting from transient oscillations, and dispersal leads to qualitatively different species distributions depending on the relative mobilities of the consumers and predator. These differences yield comparative predictions that can be tested with data on trade-off strength, dispersal rates, and species distributions across productivity gradients. 3. Second, there is an asymmetry between species in their dispersal effects: the predator-resistant inferior competitor's dispersal has a large effect, but the predator-susceptible superior competitor's dispersal has no effect, on coexistence and species' distributions. The inferior competitor's dispersal also mediates the predator's dispersal effects: the predator's dispersal has no effect when the inferior competitor is immobile, and a large effect when it is mobile. The net outcome of the direct and indirect effects of the inferior competitor's dispersal is a qualitative change in the species' distributions from interspecific segregation to interspecific aggregation. 4. The important point is that differences between species in how they balance resource acquisition and predator avoidance can lead to unexpected differences in their dispersal effects. While consumer coexistence in the absence of dispersal is driven largely by the top predator, consumer coexistence in the presence of dispersal is driven largely by the predator-resistant inferior competitor.  相似文献   

18.
Túngara frogs (Physalaemus pustulosus) are a model system for sexual selection and communication. Population dynamics and gene flow are of major interest in this species because they influence speciation processes and microevolution, and could consequently provide a deeper understanding of the evolutionary processes involved in mate recognition. Although earlier studies have documented genetic variation across the species' range, attempts to investigate dispersal on a local level have been limited to mark-recapture studies. These behavioural studies indicated high mobility at a scale of several hundred metres. In this study we used seven highly polymorphic microsatellite loci to investigate fine-scaled genetic variation in the túngara frog. We analysed the influence of geographical distance on observed genetic patterns, examined the influence of a river on gene flow, and tested for sex-biased dispersal. Data for 668 individuals from 17 populations ranging in distance from 0.26 to 11.8 km revealed significant levels of genetic differentiation among populations. Genetic differentiation was significantly correlated with geographic distance. A river acted as an efficient barrier to gene flow. Several tests of sex-biased dispersal were conducted. Most of them showed no difference between the sexes, but variance of Assignment Indices exhibited a statistically significant male bias in dispersal.  相似文献   

19.
Knowledge about the mechanisms of range formation is crucial for scientifically based species conservation strategies in the face of ongoing global climate change. In recent years an increasing amount of studies have focused on the influences of density‐dependent dispersal on demographic and biogeographical patterns. However, it still remains unclear, to what extent and in what ways this strategy would affect the range formation of species. In order to fill this gap, we present a study using individual‐based simulations of a species with discrete generations living along a dispersal mortality gradient. We compare the evolution of range sizes for species following density‐dependent and density‐independent emigration. Furthermore we assess the influence of environmental stochasticity and Allee effects on range formation, as both processes are known to play an important role for dispersal evolution. We find that density‐dependent dispersal always results in much wider ranges than unconditional dispersal. Increasing environmental stochasticity, a predicted consequence of climate change, can remarkably expand the ranges of species living in such connectivity gradients if dispersal decisions are based on local population density. A strong Allee effect causes range contraction for both strategies, but the effect is considerably less dramatic under density‐dependent compared to density‐independent emigration. We strongly recommend accounting for these findings in future attempts to model species’ range shifts due to climate change.  相似文献   

20.
Mimura M  Aitken SN 《Heredity》2007,99(2):224-232
Fossil pollen records suggest rapid migration of tree species in response to Quaternary climate warming. Long-distance dispersal and high gene flow would facilitate rapid migration, but would initially homogenize variation among populations. However, contemporary clinal variation in adaptive traits along environmental gradients shown in many tree species suggests that local adaptation can occur during rapid migration over just a few generations in interglacial periods. In this study, we compared growth performance and pollen genetic structure among populations to investigate how populations of Sitka spruce (Picea sitchensis) have responded to local selection along the historical migration route. The results suggest strong adaptive divergence among populations (average Q(ST)=0.61), corresponding to climatic gradients. The population genetic structure, determined by microsatellite markers (R(ST)=0.09; F(ST)=0.11), was higher than previous estimates from less polymorphic genetic markers. The significant correlation between geographic and pollen haplotype genetic (R(ST)) distances (r=0.73, P<0.01) indicates that the current genetic structure has been shaped by isolation-by-distance, and has developed in relatively few generations. This suggests relatively limited gene flow among populations on a recent timescale. Gene flow from neighboring populations may have provided genetic diversity to founder populations during rapid migration in the early stages of range expansion. Increased genetic diversity subsequently enhanced the efficiency of local selection, limiting gene flow primarily to among similar environments and facilitating the evolution of adaptive clinal variation along environmental gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号