首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipid peroxides and human diseases   总被引:10,自引:0,他引:10  
Development of a simple and reliable method to determine the lipid peroxide level in human serum or plasma has made it possible to survey the levels in human diseases. Since in some human diseases lipid peroxides are increased in various organs or tissues and leak into the bloodstream, the increased lipid peroxide level in the blood aids the diagnosis of such diseases. Furthermore, determination of the level provides useful information as to their prognosis, since the increased lipid peroxides in the blood primarily attack the endothelial cells of vessels and then intact organs or tissues as well. The present paper describes a method to determine the lipid peroxide level in human serum or plasma and its profile of change in several human diseases. Intervention of lipid peroxides in the pathogenesis of certain diseases is also mentioned.  相似文献   

2.
In incubation of rabbit platelets with ADF, adrenalin, serotonin and thrombin the level of hydroxyperoxides serotonin and thrombin the level of hydroxyperoxides serotonin and thrombin the level of hydroxyperoxides they show, determined with respect to malonic dialdehyde, rises simultaneously with the enhancement of aggregation activity. Still higher level of malonic dialdehyde can be found in platelets of the animals with thrombosis of pulmonary vessels. The studies performed demonstrate that accumulation of malonic dialdehyde in platelets involves an initial stage of the thromboti process development. This finding can be used in the diagnosis of early stages of intravascular thrombogenesis.  相似文献   

3.
Two methods of the determination of lipid peroxidation products have been compared which are based on Fe(II) oxidation by them at acid pH values in the presence of xylenol orange which binds Fe(III) have been compared. The first method uses cumene hydropeoxide as an internal standard. In the second one, lipid peroxides are previously reduced by triphenylphosphine and these substances content is measured as a difference of the production of complexes with xylenol orange and iron ions in the control (with reduction) and experimental sample (without reduction). The optimization of measurement conditions is described. The levels of lipid peroxides in goldfish tissues assayed simultaneously by two methods were similar. The method with cumene hydroperoxide needs less amounts of biological material; moreover, there is no necessity in a calibration curve. Effects of hyperoxia on lipid peroxide levels in goldfish tissues were studied with the cumene method. Within the first hours of hyperoxia this index increased 13-times in the liver and 2-times in the brain and muscle. The further exposure rebounded this parameter to the initial level. Levels of lipid peroxides positively correlated with levels of end products of lipid peroxidation (thiobarbiturate acid reactive substances) in the goldfish tissues. The method of quantification of lipid peroxides with cumene is recommended for wide using in biological investigations.  相似文献   

4.
5.
Cisplatin (CDDP), an anticancer drug, induces remarkable toxicity in the kidneys of animals and humans and it has been well documented that reactive oxygen species and the renal antioxidant system are strongly involved in acute renal damage induced by CDDP. The aim of the present study was to investigate whether or not the renal antioxidant system plays also an important role in chronic renal damage induced by repeated doses of CDDP (1 mg/kg intraperitoneally twice weekly during 10 weeks in rats). In order to elucidate it, serum creatinine and urea levels, renal glutathione and thiobarbituric acid-reactive substances (TBARS) content, as well as renal superoxide dismutase and glutathione peroxidase activities were measured in the kidney homogenates of chronically CDDP-treated rats and additionally histological studies were performed in the rat kidneys. The chronic treatment with CDDP induced a significant increase in creatinine and urea levels in serum, but the other parameters mentioned above were not significantly modified as compared to the values in nontreated rats. Taking into account these results, we conclude that chronic CDDP administration induces also severe nephrotoxicity, in contrast to CDDP acute application, without any significant modification in the activity of relevant antioxidant enzymes such as superoxide dismutase and glutathione peroxidase, renal glutathione and lipid peroxides, by which the role of the antioxidant system in chronic nephrotoxicity induced by CDDP in rats is uncertain.  相似文献   

6.
Lipid peroxides induce expression of catalase in cultured vascular cells   总被引:3,自引:0,他引:3  
Various forms of oxidized low-density lipoproteins (Ox-LDL) are thought to play a major role in the development of atherosclerosis. The lipid components of Ox-LDL present a plethora of proatherogenic effects in in vitro cell culture systems, suggesting that oxidative stress could be an important risk factor for coronary artery disease. However, buried among these effects are those that could be interpreted as antiatherogenic. The present study demonstrates that various oxidants, including oxidized fatty acids and mildly oxidized forms of LDL (MO-LDL), are able to induce catalase (an antioxidant enzyme) expression in rabbit femoral arterial smooth muscle cells (RFASMC), RAW cells (macrophages), and human umbilical vein endothelial cells (HUVEC). In RFASMC, catalase protein, mRNA, and the enzyme activity are increased in response to oxidized linoleic acid (13-hydroperoxy-9,11-octadecadienoic acid [13-HPODE] and 13-hydroxy-9,11-octadecadienoic acid [13-HODE]), MO-LDL, or hydrogen peroxide (H(2)O(2)). Such an increase in catalase gene expression cannot totally be attributed to the cellular response to an intracellular generation of H(2)O(2) after the addition of 13-HPODE or 13-HODE because these agents induce a further increase of catalase as seen in catalase-transfected RFASMC. Taken together with the induction of heme oxygenase, NO synthase, manganese superoxide dismutase (Mn-SOD), and glutathione synthesis by oxidative stress, our results provide yet more evidence suggesting that a moderate oxidative stress can induce cellular antioxidant response in vascular cells, and thereby could be beneficial for preventing further oxidative stress.  相似文献   

7.
8.
Osteoarthritis (OA) is an age-related degenerative disease comprising the main reason of handicap in the Western world. Interestingly, to date, there are neither available biomarkers for early diagnosis of the disease nor any effective therapy other than symptomatic treatment and joint replacement surgery. OA has long been associated with obesity, mainly due to mechanical overload exerted on the joints. Recent studies however, point to the direction that OA is a metabolic disease, as it also involves non-weight bearing joints. In fact, altered lipid metabolism may be the underlying cause. First, adipokines have been shown to be key regulators of OA pathogenesis. Second, epidemiological studies have shown serum cholesterol to be a risk factor for OA development. Third, lipid deposition in the joint is observed at the early stages of OA before the occurrence of histological changes. Fourth, proteomic analyses have shown an important connection between OA and lipid metabolism. Finally, recent gene expression studies reveal a deregulation of cholesterol influx and efflux and in the expression of lipid metabolism-related genes. Interestingly, lipids and lipid metabolism are known to be implicated in the development and progression of another age-related degenerative disease, atherosclerosis (ATH). Thus, although it is tempting to speculate that the osteoarthritic chondrocyte has been transformed to foam cell, it has not been proven yet. However, this may be an intriguing theory linking ATH and OA, which may open new avenues to novel therapeutic interventions for OA taking advantage of previous knowledge from ATH.  相似文献   

9.
10.
In bull semen spontaneous lipid peroxidation measured by the level of endogenous lipid peroxides and the consequences of this process for morphological and biochemical changes was studied. Glutathione peroxidase activity as protective enzyme against peroxidative damage was also determined. Obtained results showed that approximately two thirds of GSH-Px activity in bull semen was non Se-dependent glutathione peroxidase activity. Malonaldehyde (MDA) level was negative correlated with selenium-dependent GSH-Px activity (r = = -0.38, P less than 0.01). Spermatozoa with acrosome entirely lost appeared to increase as the MDA level increased (r = 0.18, P less than 0.05). The negative correlation between Se GSH-Px activity and spermatozoa with acrosome separation from head (r = -0.28, P less than 0.01) and entirely lost (r = -0.21, P less than 0.05) suggest that selenium-dependent GSH-Px plays role in protecting the acrosome against disruption of the acrosomal membrane. The total glutathione peroxidase activity was unrelated to studied variables of bull semen.  相似文献   

11.
Lipid glycation and protein glycation in diabetes and atherosclerosis   总被引:1,自引:0,他引:1  
Recent instrumental analyses using a hybrid quadrupole/linear ion trap spectrometer in LC-MS/MS have demonstrated that the Maillard reaction progresses not only on proteins but also on amino residues of membrane lipids such as phosphatidylethanolamine (PE), thus forming Amadori-PE (deoxy-d-fructosyl PE) as the principal products. The plasma Amadori-PE level is 0.08 mol% of the total PE in healthy subjects and 0.15–0.29 mol% in diabetic patients. Pyridoxal 5′-phosphate and pyridoxal are the most effective lipid glycation inhibitors, and the PE-pyridoxal 5′-phosphate adduct is detectable in human red blood cells. These findings are beneficial for developing a potential clinical marker for glycemic control as well as potential compounds to prevent the pathogenesis of diabetic complications and atherosclerosis. Glucose and other aldehydes, such as glyoxal, methylglyoxal, and glycolaldehyde, react with the amino residues of proteins to form Amadori products and Heynes rearrangement products. Because several advanced glycation end-product (AGE) inhibitors such as pyridoxamine and benfotiamine inhibit the development of retinopathy and neuropathy in streptozotocin (STZ)-induced diabetic rats, AGEs may play a role in the development of diabetic complications. In the present review, we describe the recent progress and future applications of the Maillard reaction research regarding lipid and protein modifications in diabetes and atherosclerosis.  相似文献   

12.
13.
14.
Vascular endothelial cells, which play an active role in the physiological processes of vessel tone regulation and vascular permeability, form a border separating deeper layers of the blood vessel wall and cellular interstitial space from the blood and circulating cells. Damage or dysfunction of endothelial cells may reduce the effectiveness of the endothelium to act as a selectively permeable barrier to plasma components, including cholesterol-rich lipoprotein remnants. This may be involved in the etiology of atherosclerosis. Experimental evidence indicates that free radical-mediated lipid peroxidation can induce endothelial cell injury/dysfunction. Reactive oxygen species, including peroxidized lipids capable of initiating cell injury, may be generated within endothelial cells, be present in plasma components, or be derived from neutrophils or other blood-borne cells. Lipid peroxidation could initiate or promote the process of atherosclerotic lesion formation by directly damaging endothelial cells, and by enhancing the adhesion and activation of neutrophils and the susceptibility of platelets to aggregate. Endothelial cell injury by lipid hydroperoxides also could increase the uptake of LDL into the vessel wall. These events and other cellular dysfunctions may individually or collectively initiate and/or help to sustain the development of atherosclerosis.  相似文献   

15.
Long chain polyunsaturated fatty acids derived from essential fatty acids have been shown to be toxic to Plasmodium falciparum both in vitro and in vivo. Here, we present evidence to suggest that in patients with Plasmodium falciparum malaria the levels of lipid peroxides (a marker of free radical generation) nitric oxide (a potent free radical with immunomodulatory actions), and concentrations of linoleic acid (LA) and alpha-linolenic acid (ALA) are low, whereas those of eicosapentaenoic acid (EPA) are high. The ability of the fatty acids to kill P. falciparum is dependent on their capacity to stimulate free radical generation in neutrophils and macrophages. EPA is more potent than LA in killing the parasite. In view of this, the results of the present study suggest that in patients with P. falciparum malaria the decreased levels of lipid peroxides and nitric oxide may contribute to the persistence of the infection, whereas elevated levels of EPA may be a feeble attempt to overcome this defect.  相似文献   

16.
Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.  相似文献   

17.
Leukocytes, containing myeloperoxidase (MPO), produce the reactive chlorinating species, HOCl, and they have important roles in the pathophysiology of cardiovascular disease. Leukocyte-derived HOCl can target primary amines, alkenes and vinyl ethers of lipids, resulting in chlorinated products. Plasmalogens are vinyl ether-containing phospholipids that are abundant in tissues of the cardiovascular system. The HOCl oxidation products derived from plasmalogens are α-chlorofatty aldehyde and unsaturated molecular species of lysophosphatidylcholine. α-chlorofatty aldehyde is the precursor of both α-chlorofatty alcohol and α-chlorofatty acid. Both α-chlorofatty aldehyde and α-chlorofatty acid accumulate in activated neutrophils and have disparate chemotactic properties. In addition, α-chlorofatty aldehyde increases in activated monocytes, human atherosclerotic lesions and rat infarcted myocardium. This article addresses the pathways for the synthesis of these lipids and their biological targets.  相似文献   

18.
Elevated plasma total homocysteine is an independent risk factor for atherosclerotic vascular disease. Risk rises continuously across the spectrum of homocysteine concentrations and may become appreciable at levels greater than 10 mumol/l. A compelling case can be made for screening all individuals with atherosclerotic disease or at high risk. A reasonable, but unproven, goal for treatment is a plasma total homocysteine concentration less than 10 mumol/l. Folic acid is the mainstay of treatment, but vitamins B12 and B6 may have added benefit in selected patients. The results of ongoing randomized placebo-controlled trials will not be available for several years, but will help determine whether homocysteine lowering reduces the risk of cardiovascular disease.  相似文献   

19.
Lipids and atherosclerosis.   总被引:3,自引:0,他引:3  
Atherosclerosis is the leading cause of death in North America and within the next two decades will be the leading cause worldwide. Atherosclerosis is characterized by vascular obstruction from the deposits of plaque, resulting in reduced blood flow. Plaque rupture and the consequent thrombosis may lead to sudden blockage of the arteries and cause heart attack. High serum lipid levels, especially the elevated level of low-density lipoprotein (LDL), have been shown to be strongly related to the development of atherosclerosis. It is generally accepted that atherosclerotic lesions are initiated via an enhancement of LDL uptake by monocytes and macrophages. In the liver, uptake of plasma LDL is mediated via specific LDL receptors, but a scavenger receptor system is employed by macrophages. Plasma LDL must be modified prior to uptake by macrophages. Analysis of the lipid content in the oxidatively modified LDL from hyper lipidemic patients revealed that the level of lysophosphatidylcholine was greatly elevated, and the high level of the lysolipid was shown to impair the endothelium-dependent relaxation of the blood vessels. In a separate study, we showed that a high level of homocysteine caused the increase in cholesterol production and apolipoprotein B-100 secretion in hepatic cells. Statins have been used effectively to control the production of cholesterol in the liver, and recently, ezetimibe has been shown to supplement the efficacy of statins by inhibiting cholesterol absorption. The factor of elevated levels of triglyceride-rich lipoproteins in association with depressed high-density lipoproteins, usually in the context of insulin resistance, is an important contributor to atherosclerosis and can be effectively treated with fibric acid derivatives. In hyperhomocysteinemia, folic acid supplements may have a role in the control of cholesterol by reducing the plasma homocysteine level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号