首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a procedure for the determination of small amounts of lysophosphatidylcholine in cardiac tissue. Lysophosphatidylcholine from canine heart was separated from the major phospholipids by column chromatography, and then acetylated with labeled acetic anhydride. The acetylated lysophosphatidylcholine was isolated by thin-layer chromatography and the lysophosphatidylcholine content was calculated from the radioactivity associated with the acetylated product. Although the sensitivity of the assay depends on the specific radioactivity of the acetic anhydride used, as low as 0.5 nmol of lysophospholipid in tissue samples can be readily quantitated. The results obtained from the control and ischemic canine cardiac tissues by this assay compares favorably with those obtained by lipid-phosphorus assay. The sensitivity and specificity of the present procedure allows us and other investigators to assay for lysophosphatidylcholine content in very small (10 mg wet weight) tissue samples.  相似文献   

2.
The effect of albumin on the release of [3H]lysophosphatidylcholine from cultured rat hepatocytes prelabelled with [Me-3H]choline was studied. In the absence of serum and albumin from the medium, the cells released essentially no [3H]lysophosphatidylcholine. Albumin stimulated this process dramatically, and it reached a plateau at 2 mg/ml. After an initial lag of 30 min, the release of [3H]lysophosphatidylcholine was linear for at least 4 h. At low concentrations, albumin slightly stimulated [3H]phosphatidylcholine release. The albumin had no measurable effect on the metabolism of cellular [3H]phosphatidylcholine, [3H]lysophosphatidylcholine or [3H]glycerophosphocholine. In addition, albumin did not alter the release of 3H-labelled water-soluble compounds, including [3H]glycerophosphocholine, into the medium. The possibility that the [3H]lysophosphatidylcholine was arising from catabolism of [3H]phosphatidylcholine in the medium by secreted enzymes was excluded. The effect on [3H]lysophosphatidylcholine secretion was also observed when the cells were incubated with alpha-cyclodextrin, a cyclic polysaccharide that has the ability to bind lysophosphatidylcholine. The albumin-released lysophosphatidylcholine was enriched in unsaturated fatty acids. Alteration of the fatty acid composition of cellular phosphatidylcholine gave rise to parallel changes in phosphatidylcholine and lysophosphatidylcholine in the medium. It is concluded that phosphatidylcholine is constantly being degraded in the rat hepatocyte to lysophosphatidylcholine which is released into the medium only when a suitable acceptor is present.  相似文献   

3.
1. Adult squirrel monkeys were injected intravenously with doubly labelled lysophosphatidylcholine (a mixture of 1-[1-(14)C]palmitoyl-sn-glycero-3-phosphorylcholine and 1-acyl-sn-glycero-3-phosphoryl[Me-(3)H]choline; (3)H:(14)Cratio 3.75) complexed to albumin, and the incorporation into the brain was studied at times up to 3h. 2. After 20min, 1% of the radioactivity injected as lysophosphatidylcholine had been taken up by the brain. 3. Approx. 70% of the doubly labelled lysophosphatidylcholine taken up by both grey and white matter was converted into phosphatidylcholine, whereas about 30% was hydrolysed. 4. The absence of significant radioactivity in the phosphatidylcholine, free fatty acid and water-soluble fractions of plasma up to 30min after injection of doubly labelled lysophosphatidylcholine rules out the possibility that the rapid labelling of these compounds in brain could be due to uptake from or exchange with their counterparts in plasma. 5. The similarity between the (3)H:(14)C ratios of brain phosphatidylcholine and injected lysophosphatidylcholine demonstrates that formation of the former occurred predominantly via direct acylation. 6. Analysis of the water-soluble products from lysophosphatidylcholine catabolism revealed that appreciable glycerophosphoryl-[Me-(3)H]choline did not accumulate in the brain and that radioactivity was incorporated into choline, acetylcholine, phosphorylcholine and betaine. 7. The role of plasma lysophosphatidylcholine as both a precursor of brain phosphatidylcholine and a source of free choline for the brain is discussed.  相似文献   

4.
A modified procedure for the quantitative estimation of choline acetyltransferase activity in brain tissue based upon the formation of [3H]-ACh from [3H]-acetyl-CoA is described. The labelled ACh is isolated by a modification of Fonnum's procedure using sodium tetraphenyl borate in ketonic solution. The ChAc-activity is independent on the specific activity of the [3H]-acetyl-CoA used. The substrate blank is higher than with [14C]-labelled substrate but highly stable and reproducible. The method permits the determination of ChAc activity in less than 5 mug of brain tissue. 30-40 samples may be handled by one person per hour easily.  相似文献   

5.
The concentration of unesterified choline in the plasma in the jugular vein of the rat (0.85 nmol/ml) was found to be three times that of the arterial supply to the brain (0.25 nmol/ml), indicating a higher efflux than uptake of unesterified choline by the brain. No such difference was found for the rabbit and no arterio-venous difference for phosphatidylcholine or lysophosphatidylcholine was observed in either species. No arterio-venous difference was found for choline in blood cells. The infusion of [Me-3H]choline into the circulation of the rat or rabbit indicated an uptake of radioactive choline by the brain and an efflux of non-radioactive choline. In the rabbit such an infusion produced a steady rise in the labelling of phosphatidylcholine and lysophosphatidylcholine in the plasma. When [14C2]ethanolamine was injected intraperitoneally into the rat there was a labelling of phosphatidylcholine, lysophosphatidylcholine and sphingomyelin in the plasma and cells of blood from the jugular vein and the arterial supply, as well as in the brain tissue. However, no labelling of unesterified choline in these tissues could be detected. Unesterified choline was shown to be liberated into the plasma when whole blood from the rat or man, but not the rabbit, was incubated for short periods at 30 degrees C.  相似文献   

6.
1. The synthesis and secretion of glycerolipid by monolayer cultures of rat hepatocytes was measured by determining the incorporations of [3H]glycerol, [3H]oleate and [14C]choline and by the absolute concentration of triacylglycerol. 2. The presence of albumin in the medium stimulated the accumulation of lysophosphatidylcholine in the medium by 11-13-fold. 3. Cycloheximide did not significantly alter the accumulation of lysophosphatidylcholine. 4. This process was particularly sensitive to inhibition by chlorpromazine and verapamil, compared with the secretion of triacylglycerol and phosphatidylcholine. By contrast, it was relatively less sensitive to EGTA. 5. It is suggested that intracellular Ca2+ may be important in the production of lysophosphatidylcholine, which then accumulates in the medium by binding to albumin. In vivo this lysophosphatidycholine may be a means of delivering choline and polyunsaturated fatty acids to other organs.  相似文献   

7.
1. The turnover of synaptosomal (vesicular-cytoplasmic) and stable-bound (vesicular) acetylcholine isolated from cortical tissue was investigated after the administration, under local anaesthesia, of [N-Me-(3)H]choline into the lateral ventricles of guinea pigs. 2. Radioactive acetylcholine and choline present in acid extracts of subcellular fractions were separated by a combination of liquid and column ion-exchange and thin-layer chromatography. 3. The specific radioactivity and pattern of labelling of acetylcholine present in a fraction of monodisperse synaptic vesicles was found to be essentially the same as that of synaptosomal acetylcholine. 4. The specific radioactivity of stable-bound acetylcholine present in partially disrupted synaptosomes (fraction H) at short times (10-20min) after the injection of [N-Me-(3)H]choline was very variable and inversely related to the yield of acetylcholine in that fraction. 5. Evidence was found for the existence of two small, but highly labelled pools of acetylcholine, one which could be isolated in fraction H and the other which was lost when synaptosomes, after isolation by gradient centrifugation, were left at 0 degrees C or pelleted. 6. It is concluded that the results are best explained by metabolic differences among the nerve-ending compartments (thought to be vesicles) which contain stable-bound acetylcholine. Computer simulation of our experiments supports this possibility and suggests that the highly labelled pool in fraction H is present in vesicles close to the external membrane.  相似文献   

8.
We studied the effects of platelet-activating factor (PAF-acether) on phospholipase activity in renal epithelial cells. When platelet-activating factor was added to renal cells prelabeled with [3H]arachidonic acid, it induced the rapid hydrolysis of phospholipids. Up to 26% of incorporated [3H]arachidonic acid was released into the medium from renal cells. After the addition of PAF-acether, the degradation of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine were observed. The amount of [3H]arachidonic acid released were comparable to the losses of phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine. In renal cells biosynthetically labeled by incorporation of [3H]choline into cellular phosphatidylcholine, lysophosphatidylcholine and sphingomyelin, the range of concentrations of PAF-acether-induced hydrolysis of labeled phosphatidylcholine were approximately equal to the amounts of lysophosphatidylcholine produced. We also observed a transient rise of diacylglycerol after the addition of platelet-activating factor to these cells. To test for action of phospholipase C, the accumulations of [3H]choline, [3H]inositol and [3H]ethanolamine were determined. The radioactivities in choline and ethanolamine showed little or no change. An increase in inositol was detectable within 1 min and it peaked at 3 min. These results indicate that platelet-activating factor stimulates phospholipase A2 and phosphatidylinositol-specific phospholipase C activity in renal epithelial cells. These phospholipase activities were Ca2+ dependent. Moreover, PAF-acether enhanced changes in cell-associated Ca2+. These results suggest that the increased Ca2+ permeability of cell membrane stimulates phospholipases A2 and C in renal epithelial cells. Prostaglandin biosynthesis was also enhanced in these cells by platelet-activating factor.  相似文献   

9.
One of the unique features of the chromaffin granule membrane is the presence of about 17 mol% lysophosphatidylcholine. Lysophosphatidylcholine isolated from the granules could be degraded by approx. 94% by lysophospholipase. This result is consistent with chemical analyses data showing that about 9% of this lysophospholipid is 1'-alkenyl glycerophosphocholine. The localization of the acylglycerophosphocholine in the chromaffin granule membrane was studied by using pure bovine liver lysophospholipases. In intact granules only about 10% of the total lysophosphatidylcholine was directly available for enzymic hydrolysis. In contrast, when granule membranes (ghosts) were treated with lysophospholipases approx. 60% of the lysophosphatidylcholine was deacylated. These values did not increase after pre-treatment of intact granules or ghosts with trypsin. Added 1-[1-14C]palmitoyl-sn-glycero-3-phosphocholine did not mix with the endogenous lysophosphatidylcholine pool(s) and remained completely accessible to added lysophospholipases.  相似文献   

10.
1. The methods for the assay of choline acetyltransferase were based on the reaction between labelled acetyl-CoA and unlabelled choline to give labelled acetylcholine. 2. Both synthetic acetyl-CoA and acetyl-CoA formed from sodium [1-(14)C]acetate or sodium [(3)H]acetate by incubation with CoA, ATP, Mg(2+) and extract from acetone-dried pigeon liver were used. 3. [1-(14)C]Acetylcholine was isolated by extraction with ketonic sodium tetraphenylboron. 4. [(3)H]Acetylcholine was precipitated with sodium tetraphenylboron to remove a ketone-soluble contaminant in sodium [(3)H]acetate and then extracted with ketonic sodium tetraphenylboron. 5. The values of choline acetyltransferase activity obtained in the presence of sodium cyanide or EDTA and synthetic acetyl-CoA were similar to those obtained with acetyl-CoA synthesized in situ. 6. The assay of acetylcholinesterase was based on the formation of labelled acetate from labelled acetylcholine. The labelled acetylcholine could be quantitatively removed from the acetate by extraction with ketonic sodium tetraphenylboron. 7. The methods were tested with samples from central and peripheral nervous tissues and purified enzymes. 8. The blank values for choline acetyltransferase and acetylcholinesterase corresponded to the activities in 20ng. and 5ng. of brain tissue respectively.  相似文献   

11.
During a search for cDNAs encoding plant sterol acyltransferases, we isolated four full-length cDNAs from Arabidopsis thaliana that encode proteins with substantial identity with animal lecithin : cholesterol acyltransferases (LCATs). The expression of one of these cDNAs, AtLCAT3 (At3g03310), in various yeast strains resulted in the doubling of the triacylglycerol content. Furthermore, a complete lipid analysis of the transformed wild-type yeast showed that its phospholipid content was lower than that of the control (void plasmid-transformed) yeast whereas lysophospholipids and free fatty acids increased. When microsomes from the AtLCAT3-transformed yeast were incubated with di-[1-14C]oleyl phosphatidylcholine, both the lysophospholipid and free fatty acid fractions were highly and similarly labelled, whereas the same incubation with microsomes from the control yeast produced a negligible labelling of these fractions. Moreover when microsomes from AtLCAT3-transformed yeast were incubated with either sn-1- or sn-2-[1-14C]acyl phosphatidylcholine, the distribution of the labelling between the free fatty acid and the lysophosphatidylcholine fractions strongly suggested a phospholipase A1 activity for AtLCAT3. The sn-1 specificity of this phospholipase was confirmed by gas chromatography analysis of the hydrolysis of 1-myristoyl, 2-oleyl phosphatidylcholine. Phosphatidylethanolamine and phosphatidic acid were shown to be also hydrolysed by AtLCAT3, although less efficiently than phosphatidylcholine. Lysophospatidylcholine was a weak substrate whereas tripalmitoylglycerol and cholesteryl oleate were not hydrolysed at all. This novel A. thaliana phospholipase A1 shows optimal activity at pH 6-6.5 and 60-65 degrees C and appears to be unaffected by Ca2+. Its sequence is unrelated to all other known phospholipases. Further studies are in progress to elucidate its physiological role.  相似文献   

12.
We have developed small-scale methods for the isolation and biochemical characterization of subcellular fractions from single guinea-pig posterior-pituitary glands. Secretory vesicles and coated microvesicles produced in this way were of similar purity to those isolated from large amounts of tissue by conventional ultracentrifugation. [35S]Cysteine injected into the hypothalamus was found in the soluble contents of secretory vesicles isolated from the neural lobes 24 h later. High-pressure liquid-chromatographic analysis revealed that the radiolabel was incorporated into the expected neurosecretory products (oxytocin, vasopressin and neurophysin) and also into a biosynthetic intermediate in the vasopressin system. The membranes of secretory vesicles were labelled with [3H]choline 24 h after its hypothalamic injection. Little or no [3H]choline could be demonstrated in coated microvesicles at this time, although these structures were labelled 5 days after injection. Stimulating hormone secretion by chronic dehydration produced a significant fall in [3H]choline content of the secretory-vesicle membranes without any transfer of label into coated microvesicles, suggesting that coated microvesicles are not involved in membrane retrieval in the neurohypophysis.  相似文献   

13.
[(3)H]4-Benzoylbenzoylcholine (Bz(2)choline) was synthesized as a photoaffinity probe for the Torpedo nicotinic acetylcholine receptor (nAChR). [(3)H]Bz(2)choline acts as an nAChR competitive antagonist and binds at equilibrium with the same affinity (K(D) = 1.4 microm) to both agonist sites. Irradiation at 320 nm of nAChR-rich membranes equilibrated with [(3)H]Bz(2)choline results in the covalent incorporation of [(3)H]Bz(2)choline into the nAChR gamma- and delta-subunits that is inhibitable by agonist, with little specific incorporation in the alpha-subunits. To identify the sites of photoincorporation, gamma- and delta-subunits, isolated from nAChR-rich membranes photolabeled with [(3)H]Bz(2)choline, were digested enzymatically, and the labeled fragments were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high performance liquid chromatography. For the gamma-subunit, Staphylococcus aureus V8 protease produced a specifically labeled peptide beginning at gammaVal-102, whereas for the delta-subunit, endoproteinase Asp-N produced a labeled peptide beginning at deltaAsp-99. Amino-terminal sequence analysis identified the homologous residues gammaLeu-109 and deltaLeu-111 as the primary sites of [(3)H]Bz(2)choline photoincorporation. This is the first identification by affinity labeling of non-reactive amino acids within the acetylcholine-binding sites, and these results establish that when choline esters of benzoic acid are bound to the nAChR agonist sites, the para substituent is selectively oriented toward and in proximity to amino acids gammaLeu-109/deltaLeu-111.  相似文献   

14.
Digestion and absorption of phosphatidylcholine by Aeshna cyanea larvae were studied in vivo and in vitro with the isolated digestive juice and isolated midgut. The experiments were performed with stable ether analogues (1-alkyl-2-acyl-,1,2-dialkyl phosphatidylcholine, and 1-monoalkyl-lysophosphati-dylcholine), with radioactive 1,2-diacylphosphatidylcholine alternatively labelled in the acyl- and choline moieties, and with several phosphatidylcholine derivatives (1-[1-14C]acyl- and 1-[3H] alkyl-lysophosphatidylcholine, [1-14C]oleic acid, [2-14C]glycerol, phosphoryl[methyl-14C]choline, and [methyl-14C]choline). Chromatographic analyses of the digestion products revealed that phosphatidylcholine was degraded via two interconnected hydrolytic pathways involving phospholipase C, phospholipase A2, lipase, and alkaline phosphatase. Complete hydrolysis by these pathways yielded the same four end products: free fatty acid, glycerol, choline, and Pi, which were absorbed by the midgut enterocytes. Of the intermediate hydrolysates, lysophosphatidylcholine, monoacylglycerol, and possibly phosphorylcholine were also absorbed. Radiolabelled oleic acid, glycerol, lysophosphatidylcholine and monoacylglycerol (as judged from monoalkylglycerol absorption) were incorporated into phospholipids and acylglycerols of the midgut enterocytes and were released into the haemolymph primarily in the form of diacylglycerols. In the case of glycerol ingestion, a small fraction of haemolymph radioactivity was associated with free glycerol and glycerolphosphate. After absorption by the enterocytes, radiolabelled choline was partly oxidized to betaine, partly phosphorylated, and partly incorporated into lyso- and phosphatidylcholine. It was recovered from the haemolymph predominantly as free choline, phosphorylcholine, and betaine. Arch. Insect Biochem. Physiol. 36:273–293, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
《Life sciences》1996,58(22):1995-2002
Nicotinamide administration can elevate plasma and brain choline levels and produce a marginal increase in striatal acetylcholine levels in the rat. We now report that subcutaneous nicotinamide produces a substantial and long-lasting rise in asternal cerebrospinal fluid (CSF) levels of choline in free-moving rats, possibly through the enzymatic formation of N1-methylnicotinamide (NMN) in brain. CSF choline levels peaked 2 hours after nicotinamide administration and were accompanied by increases in striatal, cortical, hippocampal and plasma choline levels. The enzymatic formation of [3H]NMN in rat brain was evaluated by incubating aliquots of rat brain cytosol with unlabelled nicotinamide and the methyl donor [3H]S-adenosylmethionine. High performance liquid chromatography and radiochemical detection demonstrated that [3H]NMN was specifically formed by a brain cytosolic enzyme. The production of [3H]NMN was dependent on exogenous nicotinamide and could be prevented by denaturing the cytosol. The metabolism of nicotinamide to NMN in rat brain may explain the rise in CSF choline levels since NMN, a quaternary amine, can inhibit choline transport at the choroid villus and reduce choline clearance.  相似文献   

16.
When intact but dispersed neonatal islet cells, prelabelled with [14C-Me]choline, were stimulated with a calcium ionophore, ionomycin alone elicited only small rises in lysophosphatidylcholine; in contrast, pretreatment for 20 min with sodium fluoride (20mM) unmasked a consistent accumulation of lysophospholipid (to 155% of control at 1 min, 162% at 5 min and 212% at 10 min). Fluoride was shown to inhibit (by 40-50%) the reacylation of exogenous acyl- or alkyl-linked lysophosphatidylcholines by a delayed and indirect effect, whereas, in contrast, 12-O-tetradecanoylphorbol-13-acetate or dioctanoylglycerol actually augmented acylation. Thus, increased production of lysophosphatidylcholine in intact islets is obscured by rapid removal mechanisms, one of which might involve protein kinase C (or diglycerides directly). The use of sodium fluoride partially obviates this clearance, but this finding may necessitate a re-interpretation of claims that G protein agonists such as fluoride directly activate phospholipase A2 in some cells.  相似文献   

17.
In physiological conditions, there is a net transport of choline from brain to blood, despite the fact that the choline concentration is higher in plasma than in CSF. Because of the blood-brain barrier characteristics, such passage against the concentration gradient takes place necessarily through endothelial cells. To get a better understanding of this phenomenon, [3H]choline uptake properties have been analyzed in capillaries isolated from bovine brain. [3H]Choline uptake was linear with time for up to 1 h. Nonlinear regression analysis of the uptake rates at different substrate concentrations gave the best fit to a system of two components, one of which was saturable (Km = 17.8 +/- 4.8 microM; Vmax = 11.3 +/- 3.4 pmol/min/mg of protein) and the other of which was nonsaturable at concentrations up to 200 microM. The [3H]choline transport was significantly reduced in the absence of sodium and after incubation with 10(-4) M ouabain for 30 min. Ouabain also inhibited choline uptake in purified cerebral endothelial cells, but not in the endothelium isolated from bovine aorta. Accordingly, cerebral endothelial cells were able to concentrate [3H]choline, with this effect being abolished by ouabain, whereas in aortic endothelial cells the [3H]choline intracellular concentration was never higher than that of the incubation medium. These results suggest that the blood-brain barrier endothelium is specifically provided with an energy-dependent choline transport system, which may explain the choline efflux from the brain and the maintenance of a low choline concentration in the cerebral extracellular space.  相似文献   

18.
The short-term effects of vasopressin on free fatty acids and lysophospholipids were investigated in hepatocytes isolated from fed rats. Over the time period 0.25 to 10 min vasopressin decreased the steady-state concentrations of palmitic, stearic and oleic acids measured by gas liquid chromatography in extracts of cells incubated at 0.1 mM extracellular Ca2+. The concentrations of arachidonic and linoleic acids did not change. In hepatocytes labelled with [3H]arachidonic acid and incubated at 1.3 mM extracellular Ca2+ vasopressin or the Ca2+-selective ionophore A23187 increased the rate of accumulation of radioactivity in the incubation medium by 40%. The action of A23187 was dependent on extracellular Ca2+. When hepatocytes labelled with 32Pi were treated with vasopressin, no change in the amounts of [32P]lysophosphatidylethanolamine or [32P]lysophosphatidylcholine was observed. It is concluded that the action of vasopressin on hepatocytes is associated with the release of arachidonic acid or metabolites of arachidonic acid but is not accompanied by a general increase in the steady-state concentrations of free fatty acids and lysophospholipids.  相似文献   

19.
Utilization of very long chain saturated fatty acids by brain was studied by injecting 20-day-old and adult rats with high-density lipoprotein containing [stearic or lignoceric acid-14C, (methyl-3H)choline]sphingomyelin. Labeling was followed for 24 h. Very small amounts of 14C were recovered in the brain of all rats, and there was no preferential uptake of lignoceric acid. Approximately 20% of the entrapped 14C was located in the form of unchanged sphingomyelin 24 h after injection. This result shows that the rat brain utilizes very little very long chain fatty acids (greater than or equal to 20 C atoms) from high-density lipoprotein sphingomyelin, even during the myelinating period. The [3H]choline moiety from sphingomyelin was recovered in brain phosphatidylcholine in a higher proportion in comparison with the 14C uptake. The brain 3H increased throughout the studied period in all experiments, but was much higher in the myelinating brain than in the mature brain. From the radioactivity distribution in liver and plasma lipids, it is clear that the choline 3H in the brain originates from either double-labeled phosphatidylcholine of lipoproteins or tritiated lysophosphatidylcholine bound to albumin, both synthesized by the liver.  相似文献   

20.
Accumulation of lysophosphatidylcholine in gall-bladder bile is involved in the pathogenesis of acute cholecystitis. [1-14C]oleoyl- or [1-14C]palmitoyl-lysophosphatidylcholine was thus instilled in the in situ guinea pig gall-bladder and the absorption and metabolism of the lipid were determined. We found that, after 6 h instillation, 53% of the oleoyl derivative was adsorbed by the gall-bladder, whereasee only 37% of the palmitoyl derivative was absorbed. Although some differences in the metabolism of these two lipids were observed, a major portion of the absorbed radioactivity was found in the gall-bladder wall as phosphatidylcholine. To determine the mechanism of phosphatidylcholine formation from lysophosphatidylcholine by the gall-bladder mucosa, we used lysophosphatidylcholine which was labelled in the fatty acid moiety with 14C and in the choline moiety with 3H. Our data suggest that the mechanism of phosphatidylcholine formation from lysophosphatidylcholine involved acylation with an acyl donor other than a second molecule of lysophosphatidylcholine. We hypothesize that this mechanism as well as others described serve to prevent accumulation of lysophosphatidylcholine within the gall-bladder lumen and thus prevent damage to the gall-bladder mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号