首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Apoptotic caspases, such as caspase-7, are stored as inactive protease zymogens, and when activated, lead to a fate-determining switch to induce cell death. We previously discovered small molecule thiol-containing inhibitors that when tethered revealed an allosteric site and trapped a conformation similar to the zymogen form of the enzyme. We noted three structural transitions that the compounds induced: (i) breaking of an interaction between Tyr-223 and Arg-187 in the allosteric site, which prevents proper ordering of the catalytic cysteine; (ii) pinning the L2′ loop over the allosteric site, which blocks critical interactions for proper ordering of the substrate-binding groove; and (iii) a hinge-like rotation at Gly-188 positioned after the catalytic Cys-186 and Arg-187. Here we report a systematic mutational analysis of these regions to dissect their functional importance to mediate the allosteric transition induced by these compounds. Mutating the hinge Gly-188 to the restrictive proline causes a massive ∼6000-fold reduction in catalytic efficiency. Mutations in the Arg-187–Tyr-223 couple have a far less dramatic effect (3–20-fold reductions). Interestingly, although the allosteric couple mutants still allow binding and allosteric inhibition, they partially relieve the mutual exclusivity of binding between inhibitors at the active and allosteric sites. These data highlight a small set of residues critical for mediating the transition from active to inactive zymogen-like states.Caspases are a family of dimeric cysteine proteases whose members control the ultimate steps for apoptosis (programmed cell death) or innate inflammation among others (for reviews, see Refs. 1 and 2). During apoptosis, the upstream initiator caspases (caspase-8 and -9) activate the downstream executioner caspases (caspase-3, -6, and-7) via zymogen maturation (3). The activated executioner caspases then cleave upwards of 500 key proteins (46) and DNA, leading to cell death. Due to their pivotal role in apoptosis, the caspases are involved both in embryonic development and in dysfunction in diseases including cancer and stroke (7). The 11 human caspases share a common active site cysteine-histidine dyad (8), and derive their name, cysteine aspartate proteases, from their exquisite specificity for cleaving substrate proteins after specific aspartate residues (913). Thus, it has been difficult to develop active site-directed inhibitors with significant specificity for one caspase over the others (14). Despite difficulties in obtaining specificity, there has been a long-standing correlation between efficacy of caspase inhibitors in vitro and their ability to inhibit caspases and apoptosis in vivo (for review, see Ref. 31). Thus, a clear understanding of in vitro inhibitor function is central to the ability control caspase function in vivo.Caspase-7 has been a paradigm for understanding the structure and dynamics of the executioner caspases (1521). The substrate-binding site is composed of four loops; L2, L3, and L4 are contributed from one-half of the caspase dimer, and L2′ is contributed from the other half of the caspase dimer (Fig. 1). These loops appear highly dynamic as they are only observed in x-ray structures when bound to substrate or substrate analogs in the catalytically competent conformation (1719, 22) (Fig. 1B).Open in a separate windowFIGURE 1.Allosteric site and dimeric structure in caspase-7. A, the surface of active site-bound caspase-7 shows a large open allosteric (yellow) site at the dimer interface. This cavity is distinct from the active sites, which are bound with the active site inhibitor DEVD (green sticks). B, large subunits of caspase-7 dimers (dark green and dark purple) contain the active site cysteine-histidine dyad. The small subunits (light green and light purple) contain the allosteric site cysteine 290. The conformation of the substrate-binding loops (L2, L2′, L3, and L4) in active caspase-7 (Protein Data Bank (PDB) number 1f1j) is depicted. The L2′ loop (spheres) from one-half of the dimer interacts with the L2 loop from the other half of the dimer. C, binding of allosteric inhibitors influences the conformation of the L2′ loop (spheres), which folds over the allosteric cavity (PDB number 1shj). Subunit rendering is as in panel A. Panels A, B, and C are in the same orientation.A potential alternative to active site inhibitors are allosteric inhibitors that have been seeded by the discovery of selective cysteine-tethered allosteric inhibitors for either apoptotic executioner caspase-3 or apoptotic executioner caspase-7 (23) as well as the inflammatory caspase-1 (24). These thiol-containing compounds bind to a putative allosteric site through disulfide bond formation with a thiol in the cavity at the dimer interface (Fig. 1A) (23, 24). X-ray structures of caspase-7 bound to allosteric inhibitors FICA3 and DICA (Fig. 2) show that these compounds trigger conformational rearrangements that stabilize the inactive zymogen-like conformation over the substrate-bound, active conformation. The ability of small molecules to hold mature caspase-7 in a conformation that mimics the naturally occurring, inactive zymogen state underscores the utility and biological relevance of the allosteric mechanism of inhibition. Several structural changes are evident between these allosterically inhibited and active states. (i) The allosteric inhibitors directly disrupt an interaction between Arg-187 (next to the catalytic Cys-186) and Tyr-223 that springs the Arg-187 into the active site (Fig. 3), (ii) this conformational change appears to be facilitated by a hinge-like movement about Gly-188, and (iii) the L2′ loop folds down to cover the allosteric inhibitor and assumes a zymogen-like conformation (Fig. 1C) (23).Open in a separate windowFIGURE 2.Structure of allosteric inhibitors DICA and FICA. DICA and FICA are hydrophobic small molecules that bind to an allosteric site at the dimer interface of caspase-7. Binding of DICA/FICA is mediated by a disulfide between the compound thiol and Cys-290 in caspase-7.Open in a separate windowFIGURE 3.Movement of L2′ blocking arm. The region of caspase-7 encompassing the allosteric couple Arg-187 and Tyr-223 is boxed. The inset shows the down orientation of Arg-187 and Tyr-223 in the active conformation with DEVD substrate mimic (orange spheres) in the active site. In the allosteric/zymogen conformation, Arg-187 and Tyr-223 are pushed up by DICA (blue spheres).Here, using mutational analysis and small molecule inhibitors, we assess the importance of these three structural units to modulate both the inhibition of the enzyme and the coupling between allosteric and active site labeling. Our data suggest that the hinge movement and pinning of the L2-L2′ are most critical for transitioning between the active and inactive forms of the enzyme.  相似文献   

6.
Hyperhomocysteinemia has long been associated with atherosclerosis and thrombosis and is an independent risk factor for cardiovascular disease. Its causes include both genetic and environmental factors. Although homocysteine is produced in every cell as an intermediate of the methionine cycle, the liver contributes the major portion found in circulation, and fatty liver is a common finding in homocystinuric patients. To understand the spectrum of proteins and associated pathways affected by hyperhomocysteinemia, we analyzed the mouse liver proteome of gene-induced (cystathionine β-synthase (CBS)) and diet-induced (high methionine) hyperhomocysteinemic mice using two-dimensional difference gel electrophoresis and Ingenuity Pathway Analysis. Nine proteins were identified whose expression was significantly changed by 2-fold (p ≤ 0.05) as a result of genotype, 27 proteins were changed as a result of diet, and 14 proteins were changed in response to genotype and diet. Importantly, three enzymes of the methionine cycle were up-regulated. S-Adenosylhomocysteine hydrolase increased in response to genotype and/or diet, whereas glycine N-methyltransferase and betaine-homocysteine methyltransferase only increased in response to diet. The antioxidant proteins peroxiredoxins 1 and 2 increased in wild-type mice fed the high methionine diet but not in the CBS mutants, suggesting a dysregulation in the antioxidant capacity of those animals. Furthermore, thioredoxin 1 decreased in both wild-type and CBS mutants on the diet but not in the mutants fed a control diet. Several urea cycle proteins increased in both diet groups; however, arginase 1 decreased in the CBS+/− mice fed the control diet. Pathway analysis identified the retinoid X receptor signaling pathway as the top ranked network associated with the CBS+/− genotype, whereas xenobiotic metabolism and the NRF2-mediated oxidative stress response were associated with the high methionine diet. Our results show that hyperhomocysteinemia, whether caused by a genetic mutation or diet, alters the abundance of several liver proteins involved in homocysteine/methionine metabolism, the urea cycle, and antioxidant defense.Homocysteine (Hcy)1 is a thiol-containing amino acid that is produced in every cell of the body as an intermediate of the methionine cycle (Fig. 1, Reactions 1–5) (1). Once formed, the catabolism of homocysteine occurs via three enzymatic pathways. 1) Hcy is remethylated back to methionine using vitamin B12-dependent methionine synthase (Fig. 1, Reaction 4) and/or 2) betaine-homocysteine methyltransferase (BHMT) (Fig. 1, Reaction 5), and 3) Hcy is converted to cysteine via the transsulfuration pathway using CBS and γ-cystathionase (Fig. 1, Reactions 6 and 7). Under normal conditions ∼40–50% of the Hcy that is produced in the liver is remethylated, ∼40–50% is converted to cysteine, and a small amount is exported (13). However, when Hcy production is increased (i.e. increased dietary methionine/protein intake) or when Hcy catabolism is decreased (i.e. CBS deficiency or B vitamin deficiencies), excess Hcy is exported into the extracellular space, resulting in hyperhomocysteinemia (15).Open in a separate windowFig. 1.Homocysteine metabolism in liver and kidney. In classical homocystinuria, the initial enzyme of the transsulfuration pathway, CBS (Reaction 6), is deficient. MTHF, methylenetetrahydrofolate; THF, tetrahydrofolate; DHF, dihydrofolate; MeCbl, methylcobalamin; DMG, dimethylglycine; PLP, pyridoxal 5′-phosphate.Homocystinuria was first described in the 1960s by Carson et al. (6): they observed 10 pediatric patients with severely elevated levels of Hcy in the urine and hypermethioninemia. Normal concentrations of plasma total homocysteine (tHcy) range from 5 to 12 μm (7); however, in homocystinuria, tHcy levels can exceed 100 μm. Homocystinuric patients present with mental retardation, abnormal bone growth, fine hair, malar flush, and dislocation of the lens of the eye, and most die from premature cardiovascular disease (6, 8). Autopsy findings indicate widespread thromboembolism, arteriosclerosis, and fatty livers (6, 8). Mudd et al. (9, 10) identified the cause of homocystinuria as a defect in the enzyme cystathionine β-synthase. A recent study of newborn infants in Denmark estimated the birth prevalence for CBS heterozygosity to be about 1:20,000 (11).Plasma tHcy concentrations are also directly correlated with dietary methionine/protein intake (12, 13). Guttormsen et al. (13) demonstrated that a protein-rich meal affected tHcy for at least 8–24 h. When normal subjects were fed a low protein-containing breakfast (12–15 g), plasma methionine levels increased slightly after 2 h (22.5–27.5 μm), but tHcy levels did not change significantly. However, when these same subjects were fed a high protein meal (52 g), plasma methionine levels peaked after 4 h (38 μm), and tHcy rose steadily until a maximum level was reached 8 h postmeal (7.6 versus 8.5 μm) (13). Thus, the following questions can be raised. How does the hepatic proteome respond to a hyperhomocysteinemic diet, and are the changes that accompany such a diet the same as or different from those that may be observed in gene-induced hyperhomocysteinemia?Because hyperhomocysteinemia is a strong independent risk factor for cardiovascular, cerebrovascular, and peripheral vascular disease, most of the current research has focused on the mechanisms involved in Hcy-induced endothelial dysfunction (1424). The results of those studies have concluded that Hcy induces intracellular oxidative stress by generating ROS, which in turn lead to decreased bioavailable nitric oxide (NO), altered gene expression, increased endoplasmic reticulum stress, and activation of cholesterol biosynthesis. Also, several studies have examined the association between hyperhomocysteinemia and alcoholic liver disease, but few have looked at the effect of Hcy on the non-alcoholic liver even though fatty liver is a constant finding in homocystinuria (6, 8), and the liver is the major source of circulating Hcy (4, 5, 10). We hypothesize that 1) the liver proteome will respond to hyperhomocysteinemia by altering the expression of proteins involved in methionine/homocysteine metabolism and antioxidant defense and that 2) the set of proteins that are expressed when hyperhomocysteinemia is induced by CBS deficiency will differ from those expressed as a result of a high methionine diet. In the present study, we use a well established mouse model of CBS deficiency to study the early changes in the liver proteome that accompany hyperhomocysteinemia (25).  相似文献   

7.
8.
9.
10.
Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)+ as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shown here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.Glutamate dehydrogenase (GDH)2 is found in all living organisms and catalyzes the reversible oxidative deamination of l-glutamate to 2-oxoglutarate using NAD(P)+ as coenzyme (1). In eukaryotic organisms, GDH resides within the inner mitochondrial matrix where it catabolizes glutamate to feed 2-oxoglutarate to the Krebs cycle. Although there is some debate as to the directionality of the reaction, the high Km for ammonium in the reductive amination reaction seems to prohibit the reverse reaction under normal conditions in most organisms (2). GDH from animals, but not other kingdoms (3), is allosterically regulated by a wide array of ligands (39). GTP (911), and with ∼100-fold lower affinity, ATP (3), is a potent inhibitor of the reaction and acts by increasing the binding affinity for the product, thereby slowing down enzymatic turnover (11). Hydrophobic compounds such as palmitoyl-CoA (12), steroid hormones (13), and steroid hormone analogs such as diethylstilbestrol (5) are also potent inhibitors. ADP is an activator of GDH (3, 6, 10, 11, 14) that acts in an opposite manner to GTP by facilitating product release. Leucine is a poor substrate for GDH but is also an allosteric activator for the enzyme (8). Its activation is akin to ADP but acts at site distinct from ADP (15).The crystal structures of the bacterial (1618) and animal forms (19, 20) of GDH have shown that the general architecture and the locations of the catalytically important residues have remained unchanged throughout evolution. The structure of GDH (Fig. 1) is essentially two trimers of subunits stacked directly on top of each other with each subunit being composed of at least three domains (1922). The bottom domain makes extensive contacts with a subunit from the other trimer. Resting on top of this domain is the “NAD binding domain” that has the conserved nucleotide binding motif. Animal GDH has a long protrusion, “antenna,” rising above the NAD binding domain that is not found in bacteria, plants, fungi, and the vast majority of protists. The antenna from each subunit lies immediately behind the adjacent, counterclockwise neighbor within the trimer. Because these intertwined antennae are only found in the forms of GDH that are allosterically regulated by numerous ligands, it is reasonable to speculate that it plays a role in regulation.Open in a separate windowFIGURE 1.Conformational transitions and locations of ligand binding sites in bovine glutamate dehydrogenase. A, a ribbon diagram of apo-bovine glutamate dehydrogenase with each of the identical subunits represented by different colors. The subunit arrangement is that of a trimer of dimers where anti-parallel β-strands form extensive interactions between the subunits stacked on top of each other. This pairing is represented by different shades of the same color. The conformational changes that during substrate binding are shown by the numbered arrows. As substrate binds, the NAD+ binding domain closes (1). The ascending helix of the antenna moves toward the pivot helix of the adjacent subunit (2). The short helix of the descending strand of the antenna becomes extended and distorted at the carboxyl end (3). Finally, the internal cavity of the helix compresses, bringing the three pairs closer together (4). B shows the structure of ADP (green spheres) bound to the apo-form of GDH and the location of Arg-463 (mauve spheres) that is involved in ADP activation (22). C shows the location of the inhibitor, GTP (mauve spheres), bound to the NADH (gray spheres), and glutamate (orange spheres) abortive complex. The green arrow notes the approximate location of one of the two sites (Lys-420) modified by 5′-FSBA (48). Comparing B and C, the closing of the catalytic cleft and the movement of the pivot helix is evident.From the structures GDH alone and complexed with various ligands, it is clear that GDH undergoes large conformational changes during each catalytic cycle (1922) (the locations of these changes are summarized in Fig. 1). Substrate binds to the deep recesses of the cleft between the coenzyme binding domain and the lower domain. Coenzyme binds along the coenzyme binding domain surface of the cleft. Upon binding, the coenzyme binding domain rotates by ∼18° to firmly close down upon the substrate and coenzyme (Fig. 1, arrow 1). As the catalytic cleft closes, the base of each of the long ascending helices in the antenna appears to rotate out in a counterclockwise manner to push against the “pivot” helix of the adjacent subunit (Fig. 1, arrow 2). There is a short helix in the descending loop of the antenna that becomes distended and shorter as the mouth closes in a manner akin to an extending spring (Fig. 1, arrow 3). The pivot helix rotates in a counterclockwise manner along the helical axes as well as rotating counterclockwise around the trimer 3-fold axis. Finally, the entire hexamer seems to compress as the mouth closes (Fig. 1, arrow 4). The three pairs of subunits that sit on top of each other move as a rigid units toward each other, compressing the cavity at the core of the hexamer. This last conformational change will be further examined in this work. Allosteric regulation is likely exacted by controlling some or all of these conformational changes.The reason for complex animal regulation came from studies that linked GDH regulation with insulin and ammonia homeostasis. The connection between GDH and insulin regulation was initially established using a non-metabolizable analog of leucine (7, 23), BCH (β-2-aminobicycle[2.2.1]-heptane-2-carboxylic acid). These studies demonstrated that activation of GDH was tightly correlated with increased glutaminolysis and release of insulin. In addition, it has also been noted that factors that regulate GDH also affect insulin secretion (24). The in vivo importance of GDH in glucose homeostasis was demonstrated by the discovery that a genetic hypoglycemic disorder, the hyperinsulinemia/hyperammonemia (HHS) syndrome, is caused by loss of GTP regulation of GDH (2527). Children with HHS have increased β-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals (28). This is likely due to uncontrolled catabolism of amino acids yielding high ATP levels that stimulate insulin secretion as well as high serum ammonium levels. During glucose-stimulated insulin secretion in normal individuals, it has been proposed that the generation of high energy phosphates inhibits GDH and promotes conversion of glutamate to glutamine, which, alone or combined, might amplify the release of insulin (29, 30). Further support for this contention came from studies on the inhibitory effects of the polyphenolic compounds from green tea on BCH-stimulated insulin secretion (31). This not only lent support for the contention that GDH plays a significant role in insulin homeostasis, but also suggests that the HHS disorder might be directly controlled pharmaceutically. The role of GDH in insulin homeostasis is summarized in Fig. 2.Open in a separate windowFIGURE 2.Link between GDH and insulin homeostasis. This figure shows the role of GDH in BCH stimulated insulin secretion and how GDH inhibitors affect this process (29, 30). In energy-depleted β-cells, a BCH ramp stimulates insulin secretion. Here, the major energy source is glutaminolysis via phosphate-dependent glutaminase and GDH, because the concentration of GDH inhibitors (ATP/GTP) have been depleted and the phosphate-dependent glutaminase activator Pi (inorganic phosphate) has been increased. BCH stimulates glutamine utilization via GDH activation, thus providing the ATP signal necessary for insulin secretion. GDH inhibitors block this process by inhibiting GDH activity.To both find a more stable pharmaceutical agent to control HHS and to better understand the allosteric regulation of GDH, a high throughput screen was performed to identify new GDH inhibitors (32). Of the ∼30,000 compounds tested, ∼20 demonstrated significant activity. Three of the most active compounds, hexachlorophene, GW5074, and bithionol, were chosen for further analysis in this study. As shown here, all three compounds exhibit essentially non-competitive inhibition of the reaction and therefore do not compete with either substrate or coenzyme. Structural studies are presented here that demonstrate that six hexachlorophene (HCP) molecules bind to the inner core of the GDH hexamer, forming an internal ring via aromatic interactions. In contrast, bithionol and GW5074 bind as pairs between dimers of GDH subunits further away from the core of the enzyme. None of these compounds induce significant conformational changes in their immediate vicinity, and the mechanism of action is not clear from the location of their binding sites. However, detailed analysis of the various GDH complexes shows all of the drugs are binding to contact areas in the core of the hexamer that appear to be expanding and contracting during catalytic turnover. Therefore, inhibition is likely due interference with this “breathing” process.  相似文献   

11.
12.
13.
14.
15.
FTY720, a sphingosine analog, is in clinical trials as an immunomodulator. The biological effects of FTY720 are believed to occur after its metabolism to FTY720 phosphate. However, very little is known about whether FTY720 can interact with and modulate the activity of other enzymes of sphingolipid metabolism. We examined the ability of FTY720 to modulate de novo ceramide synthesis. In mammals, ceramide is synthesized by a family of six ceramide synthases, each of which utilizes a restricted subset of acyl-CoAs. We show that FTY720 inhibits ceramide synthase activity in vitro by noncompetitive inhibition toward acyl-CoA and uncompetitive inhibition toward sphinganine; surprisingly, the efficacy of inhibition depends on the acyl-CoA chain length. In cultured cells, FTY720 has a more complex effect, with ceramide synthesis inhibited at high (500 nm to 5 μm) but not low (<200 nm) sphinganine concentrations, consistent with FTY720 acting as an uncompetitive inhibitor toward sphinganine. Finally, electrospray ionization-tandem mass spectrometry demonstrated, unexpectedly, elevated levels of ceramide, sphingomyelin, and hexosylceramides after incubation with FTY720. Our data suggest a novel mechanism by which FTY720 might mediate some of its biological effects, which may be of mechanistic significance for understanding its mode of action.FTY720 (2-amino-(2-2-[4-octylphenyl]ethyl)propane 1,3-diol hydrochloride), also known as Fingolimod, is an immunosuppressant drug currently being tested in clinical trials for organ transplantation and autoimmune diseases such as multiple sclerosis (1). FTY720 is a structural analog of sphingosine, a key biosynthetic intermediate in sphingolipid (SL)2 metabolism (see Fig. 1). In vivo, FTY720 is rapidly phosphorylated by sphingosine kinase 2 (2, 3) to form FTY720 phosphate (FTY720-P), an analog of sphingosine 1-phosphate (S1P) (see Fig. 1A). FTY720-P binds to S1P receptors (S1PRs) (4, 5) and thereby induces a variety of phenomena such as T-lymphocyte migration from lymphoid organs (69); accordingly, FTY720 treatment results in lymphopenia as lymphocytes (especially T-cells) become sequestered inside lymphoid organs (1012). The ability of FTY720 to sequester lymphocytes has stimulated its use in treatment of allograft rejection and autoimmune diseases (13), and FTY720 is currently under phase III clinical trials for treatment of relapsing-remitting multiple sclerosis (14).Open in a separate windowFIGURE 1.SL structure and metabolism. A, structures of SLs and SL analogs used in this study. B, metabolic inter-relationships between SLs and the metabolism of FTY720. The enzymes are denoted in italics. LPP3, lipid phosphate phosphatase 3; LPP1α, lipid phosphate phosphatase 1α.Apart from the binding of FTY720-P to S1PRs, the ability of FTY720 to inhibit S1P lyase (15) (see Fig. 1B), and its inhibitory effect on cytosolic phospholipase A2 (16), whose activity can be modulated by ceramide 1-phosphate (17), little is known about whether FTY720 or FTY720-P can modulate the activity of other enzymes of SL metabolism. Because FTY720 is an analog of sphingosine, one of the two substrates of ceramide synthase (CerS) (see Fig. 1), we now examine whether FTY720 can modulate CerS activity. CerS utilizes fatty acyl-CoAs to N-acylate sphingoid long chain bases. Six CerS exist in mammals, each of which uses a restricted subset of acyl-CoAs (1823). We demonstrate that FTY720 inhibits CerS activity and that the extent of inhibition varies according to the acyl chain length of the acyl-CoA substrate. Surprisingly, FTY720 inhibits CerS activity toward acyl-CoA via noncompetitive inhibition and toward sphinganine via uncompetitive inhibition. Finally, the mode of interaction of FTY720 with CerS in cultured cells depends on the amount of available sphinganine. Together, we show that FTY720 modulates ceramide synthesis, which may be of relevance for understanding its biological effects in vivo and its role in immunomodulation.  相似文献   

16.
17.
The gene rapL lies within the region of the Streptomyces hygroscopicus chromosome which contains the biosynthetic gene cluster for the immunosuppressant rapamycin. Introduction of a frameshift mutation into rapL by ΦC31 phage-mediated gene replacement gave rise to a mutant which did not produce significant amounts of rapamycin. Growth of this rapL mutant on media containing added l-pipecolate restored wild-type levels of rapamycin production, consistent with a proposal that rapL encodes a specific l-lysine cyclodeaminase important for the production of the l-pipecolate precursor. In the presence of added proline derivatives, rapL mutants synthesized novel rapamycin analogs, indicating a relaxed substrate specificity for the enzyme catalyzing pipecolate incorporation into the macrocycle.Rapamycin is a 31-member macrocyclic polyketide produced by Streptomyces hygroscopicus NRRL 5491 which, like the structurally related compounds FK506 and immunomycin (Fig. (Fig.1),1), has potent immunosuppressive properties (24). Such compounds are potentially valuable in the treatment of autoimmune diseases and in preventing the rejection of transplanted tissues (16). The biosynthesis of rapamycin requires a modular polyketide synthase, which uses a shikimate-derived starter unit (11, 20) and which carries out a total of fourteen successive cycles of polyketide chain elongation that resemble the steps in fatty acid biosynthesis (2, 27). l-Pipecolic acid is then incorporated (21) into the chain, followed by closure of the macrocyclic ring, and both these steps are believed to be catalyzed by a pipecolate-incorporating enzyme (PIE) (18), the product of the rapP gene (8, 15). Further site-specific oxidations and O-methylation steps (15) are then required to produce rapamycin. Open in a separate windowFIG. 1Structures of rapamycin, FK506, and immunomycin.The origin of the pipecolic acid inserted into rapamycin has been previously established (21) to be free l-pipecolic acid derived from l-lysine (although the possible role of d-lysine as a precursor must also be borne in mind) (9). Previous work with other systems has suggested several alternative pathways for pipecolate formation from lysine (22), but the results of the incorporation of labelled lysine into the pipecolate moiety of immunomycin (Fig. (Fig.1)1) clearly indicate loss of the α-nitrogen atom (3). More recently, the sequencing of the rap gene cluster revealed the presence of the rapL gene (Fig. (Fig.2),2), whose deduced gene product bears striking sequence similarity to two isoenzymes of ornithine deaminase from Agrobacterium tumefaciens (25, 26). Ornithine deaminase catalyzes the deaminative cyclization of ornithine to proline, and we have proposed (15) that the rapL gene product catalyzes the analogous conversion of l-lysine to l-pipecolate (Fig. (Fig.3).3). Open in a separate windowFIG. 2A portion of the rapamycin biosynthetic gene cluster which contains ancillary (non-polyketide synthase) genes (15, 27). PKS, polyketide synthase.Open in a separate windowFIG. 3(A) The conversion of l-ornithine to l-proline by ornithine cyclodeaminase (17). (B) Proposed conversion of l-lysine to l-pipecolic acid by the rapL gene product.Here, we report the use of ΦC31 phage-mediated gene replacement (10) to introduce a frameshift mutation into rapL and the ability of the mutant to synthesize rapamycins in the absence or presence of added pipecolate or pipecolate analogs.  相似文献   

18.
19.
20.
Folding and stability are parameters that control protein behavior. The possibility of conferring additional stability on proteins has implications for their use in vivo and for their structural analysis in the laboratory. Cyclic polypeptides ranging in size from 14 to 78 amino acids occur naturally and often show enhanced resistance toward denaturation and proteolysis when compared with their linear counterparts. Native chemical ligation and intein-based methods allow production of circular derivatives of larger proteins, resulting in improved stability and refolding properties. Here we show that circular proteins can be made reversibly with excellent efficiency by means of a sortase-catalyzed cyclization reaction, requiring only minimal modification of the protein to be circularized.Sortases are bacterial enzymes that predominantly catalyze the attachment of surface proteins to the bacterial cell wall (1, 2). Other sortases polymerize pilin subunits for the construction of the covalently stabilized and covalently anchored pilus of the Gram-positive bacterium (35). The reaction catalyzed by sortase involves the recognition of short 5-residue sequence motifs, which are cleaved by the enzyme with the concomitant formation of an acyl enzyme intermediate between the active site cysteine of sortase and the carboxylate at the newly generated C terminus of the substrate (1, 68). In many bacteria, this covalent intermediate can be resolved by nucleophilic attack from the pentaglycine side chain in a peptidoglycan precursor, resulting in the formation of an amide bond between the pentaglycine side chain and the carboxylate at the cleavage site in the substrate (9, 10). In pilus construction, alternative nucleophiles such as lysine residues or diaminopimelic acid participate in the transpeptidation reaction (3, 4).When appended near the C terminus of proteins that are not natural sortase substrates, the recognition sequence of Staphylococcus aureus sortase A (LPXTG) can be used to effectuate a sortase-catalyzed transpeptidation reaction using a diverse array of artificial glycine-based nucleophiles (Fig. 1). The result is efficient installation of a diverse set of moieties, including lipids (11), carbohydrates (12), peptide nucleic acids (13), biotin (14), fluorophores (14, 15), polymers (16), solid supports (1618), or peptides (15, 19) at the C terminus of the protein substrate. During the course of our studies to further expand sortase-based protein engineering, we were struck by the frequency and relative ease with which intramolecular transpeptidation reactions were occurring. Specifically, proteins equipped with not only the LPXTG motif but also N-terminal glycine residues yielded covalently closed circular polypeptides (Fig. 1). Similar reactivity using sortase has been described in two previous cases; however, rigorous characterization of the circular polypeptides was absent (16, 20). The circular proteins in these reports were observed as minor components of more complex reaction mixtures, and the cyclization reaction itself was not optimized.Open in a separate windowFIGURE 1.Protein substrates equipped with a sortase A recognition sequence (LPXTG) can participate in intermolecular transpeptidation with synthetic oligoglycine nucleophiles (left) or intramolecular transpeptidation if an N-terminal glycine residue is present (right).Here we describe our efforts toward applying sortase-catalyzed transpeptidation to the synthesis of circular and oligomeric proteins. This method has general applicability, as illustrated by successful intramolecular reactions with three structurally unrelated proteins. In addition to circularization of individual protein units, the multiprotein complex AAA-ATPase p97/VCP/CDC48, with six identical subunits containing the LPXTG motif and an N-terminal glycine, was found to preferentially react in daisy chain fashion to yield linear protein fusions. The reaction exploited here shows remarkable similarities to the mechanisms proposed for circularization of cyclotides, small circular proteins that have been isolated from plants (2123).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号