首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphorus-induced micronutrient disorders in hybrid poplar   总被引:3,自引:0,他引:3  
Growth and nutrition of four clones (DN 17, DN 125, NM 2, Jac 4) of hybrid poplar in a sandy loam nursery soil, were examined for fertilization response to P at four rates (0, 288, 576, and 1152 kg ha–1) in 1986 and 1987. Except for clone NM 2, fertilization reduced height growth and caused various degrees of leaf symptoms suggesting nutrient disorders. Height of DN 17, the most sensitive of the four clones, was decreased 23 and 47% by the highest P treatment in the first and second year, respectively. Foliar vector diagnosis indicated that P addition induced Zn and/or Cu deficiencies rather than a direct P toxicity, since P vectors were smaller than Zn and Cu vectors. Available P levels in soil were raised proportionally by fertilization, but DTPA-extractable micronutrient status was not affected except for Mn. Differences in leaf P/Zn and P/Cu ratios among clones suggested that the clonal variation in growth performance may be related to maintaining nutritional balance in plants.  相似文献   

2.
The effect of pelleting seeds of lucerne with lime was studied in an acid sandy soil. In pot experiments, the fraction of seedlings with crown nodules, i.e. nodules on the upper 10 mm of the taproot, increased from 26% to 71%. In rhizotrons, the application of CaCO3 resulted in an even stronger response.An agar-contact method was used to study pH changes in the rhizosphere during a period up to 12 days. Application of 1.0 µmol of CaCO3, in drops of 12 µL volume, resulted in an initial soil pH of 6.1 and yielded 75% crown nodulation. In the absence of CaCO3, roots induced a pH increase from 5.1 (day 0) to 5.7 (day 12). However, this did not increase nodulation (5%). Obviously, this type of alkalinization does not overcome the acid-sensitive step of the nodulation process.  相似文献   

3.
Summary The enzyme aspartate aminotransferase (AAT) plays a key role in the assimilation of fixed-N in alfalfa (Medicago sativa L.) root nodules. AAT activity in alfalfa nodules is due to the activity of two dimeric isozymes, AAT-1 and AAT-2, that are products of two distinct genes. Three forms of AAT-2 (AAT-2a, -2b, and-2c) have been identified. It was hypothesized that two alleles occur at the AAT-2 locus, giving rise to the three AAT-2 enzymes. In a prior study bidirectional selection for root nodule AAT and asparagine synthetase (AS) activities on a nodule fresh weight basis in two diverse alfalfa germ plasms resulted in high nodule enzyme activity subpopulations with about 20% more nodule AAT activity than low enzyme activity subpopulations. The objectives of the study presented here were to determine the inheritance of nodule AAT-2 production and to evaluate the effect of bidirectional selection for AAT and AS on AAT-2 allelic frequencies, the relative contributions of AAT-1 and AAT-2 to total nodule activity, nodule enzyme concentration, and correlated traits. Two alleles at the AAT-2 locus were verified by evaluating segregation of isozyme phenotypes among F1 and S1 progeny of crosses or selfs. Characterization of subpopulations for responses associated with selection was conducted using immunoprecipitation of in vitro nodule AAT activity, quantification of AAT enzyme protein by ELISA, and AAT activity staining of native isozymes on PAGE. Results indicate that selection for total AAT activity specifically altered the expression of the nodule AAT-2 isozyme. AAT-2 activity was significantly greater in high compared to low activity subpopulations, and high AAT subpopulations from both germ plasms had about 18% more AAT-2 enzyme (on a nodule fresh weight basis). No significant or consistent changes in AAT-2 genotypic frequencies in subpopulations were caused by selection for AAT activity. Since changes in AAT activity were not associated with changes in AAT-2 genotype, selection must have affected a change(s) at another locus (or loci), which indirectly effects the expression of nodule AAT.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products or vendors that might also be suitable  相似文献   

4.
Studies were conducted to evaluate whether field-grown cultivars of alfalfa (Medicago sativa L.) nodulate differentially with members of a soil population ofRhizobium meliloti, and to determine the influence of the dominant nodule occupants on N2-dependent growth of the same cultivars under greenhouse conditions. Nodules were sampled from four replicate plots of Vernal, Anchor, and Saranac alfalfa, and the isolates analysed serologically. Results from agglutination tests identified serogroup 31 as a dominant nodule occupant. A significant cultivar effect was observed, with a greater and more consistent occupancy rate by serogroup 31 across the replicates on Vernal (60%) compared to Anchor (24%) or Saranac (36%). The symbiotic effectiveness of the parent isolate of serogroup 31 was evaluated on each cultivar over four successive harvests in a greenhouse study. Significant cultivar x N source interactions for herbage dry weight resulted following the second harvest. Of the three cultivars, only inoculated Vernal responded with an increase in shoot dry weight and N2 assimilated relative to N supplemented plants between harvests two and three. In separate greenhouse experiments, field isolates of serogroup 31 from nodules on Vernal produced homogeneous, effective responses both on Vernal and Anchor. In contrast, serogroup 31 field isolates from Anchor nodules were highly heterogeneous in effectiveness on the parent host, with poorly effective isolates being substantially more effective on Vernal. The data indicate that attention should be given to the potential impact of the indigenousR. meliloti population upon cultivar ranking at specific field locations, and also to strain-cultivar idiosyncracies when carrying out physiological sutidies of regrowth characteristics.Technical Paper No. 8716 of the Oregon State University Agricultural Experiment Station.  相似文献   

5.
A method for estimating the nitrogen-fixing capacity of a population of rhizobia resident in soil is presented. legume test plants, growing under microbiologically-controlled conditions in test tubes packed with a vermiculite substrate moistened with a nitrogen-free plant nutrient solution, are inoculated directly with a suspension of the soil under examination. Rhizobia in the soil nodulate the test plants, and the amount of foliage dry matter produced in the 28 days after inoculation is regarded as an index of their effectiveness. An inoculum of at least 30, and preferably 100, rhizobia is needed to ensure that nitrogen fixation is not masked by delayed nodulation. The new method is tentatively described as the ‘whole-soil inoculation’ technique. Appraisals were made withTrifolium subterraneum L. andRhizobium trifolii and withMedicago sativa L. andR. meliloti. Soil-borne pathogens did not interfere with plant growth. The whole-soil inoculation technique was less tedious and time-consuming than an alternative method which involved extracting representative isolates from the soil and testing their effectiveness individually, and appeared to give more realistic values for the nitrogen-fixing capacity of the soil as a whole. Used in association with a field experiment, the whole-soil inoculation technique confirmed microbiologically that there had been an agronomic response to surface application of inoculant to poorly-nodulatedT. subterraneum pasture. It is submitted that this technique for determining the effectiveness of rhizobia in soil, combined with a plant-infection method for counting rhizobia, can be a reliable guide to the need for inoculation in the field.  相似文献   

6.
Dissimilatory reduction of ionic nitrogen oxides to gaseous forms such as nitrous oxide or nitrogen can be carried out by free living or symbiotic forms of some strains of Rhizobium meliloti. In this paper we investigate whether bacteroid denitrification plays a role in the alleviation of the inhibitory effects of nitrate on nitrogen fixation both in bacteroid incubations as in whole nodules. The presence of a constitutive nitrate reductase (NR) activity in isolated bacteroids caused nitrite accumulation in the incubation medium, and acetylene reduction activity in these bacteroids was progressively inhibited, since nitrite reductase (NiR) activity was unable to reduce all the nitrite produced by NR and denitrification occurred slowly. Even nodules infiltrated with nitrate and nitrite failed to increase gaseous forms of nitrogen substantially, indicating that nitrite availability was not limiting denitrification by bacteroids. In spite of the low rates of bacteroidal denitrification, the effect of nodule denitrification on the inhibition of nitrogen fixation by nitrate in whole plants was tested. For that purpose, lucerne plants (Medicago sativa L. cv. Aragon) were inoculated with two Rhizobium meliloti strains: 102-F-65 (non denitrifying) and 102-F-51 (a highly denitrifying strain). After a seven days nitrate treatment, both strains showed the same pattern of inhibition, and it occurred before any nitrate or nitrite accumulation within the nodules could be detected. This observation, together with the lack of alleviation of the ARA inhibition in the denitrifying strain, and the limited activity of dissimilatory nitrogen reduction present in these bacteroids, indicate a role other than nitrite detoxification for denitrification in nodules under natural conditions.  相似文献   

7.
Bélanger  G.  Richards  J.E. 《Plant and Soil》2000,219(1-2):177-185
The dynamics of biomass and N accumulation following defoliation of alfalfa and the application of N fertilization has rarely been studied under field conditions, particularly in the seeding year. Our objectives were to determine the effect of N fertilization on the dynamics of biomass and N accumulation during the first regrowth of alfalfa in the seeding year, and to determine if a model describing critical N concentration developed for established stands could be used in the seeding year. In two separate experiments conducted in 1992 and 1993, the biomass and N accumulation of alfalfa grown with three N rates (0, 40 and 80 kg N ha-1) were determined weekly. Maximum shoot growth was reached with 40 kg N ha-1 in 1992, and maximum shoot growth was not reached with the highest N fertilization rate in 1993. Nitrogen fixation, root N reserves and soil inorganic N uptake when no N was applied were, therefore, not sufficient to ensure non-limiting N conditions, particularly when growth rates were the highest between 14 to 21 d after defoliation. Nitrogen fertilization increased shoot biomass accumulation in the first 21 d of regrowth, biomass partitioning to the shoots and shoot and taproot N concentrations. The model parameters of critical N concentration developed by Lemaire et al. (1985) for established stands of alfalfa were not adequate in the seeding year. The N requirements per unit of shoot biomass produced are greater in the seeding year than on established stands, and this was attributed to a greater proportion of leaves in the seeding year.  相似文献   

8.
The nodulation of lucerne was studied in soil (pH-H2O 5.2) with seeds either inoculated with Rhizobium meliloti (R), or inoculated and pelleted with lime (RP). For comparison, experiments were done in the field and in two types of micro-cosmos: pots and rhizotrons. In the field experiments, lime-pelleting improved the establishment of seedlings and augmented the nitrogen yield of the first harvest. These positive responses in plant growth were the consequence of a better nodulation on the upper 10 mm of the seedling tap root. The number of seedlings carrying crown nodules increased from 18% (R) to 56% (RP) at 26 days after sowing.In both, pots and rhizotrons, lime-pelleting also increased crown nodulation: in pots from 32% (R) to 60% (RP), and in rhizotrons from 5% (R) to 90% (RP). Rhizotrons, made of plastic petri dishes, allowed for continuously following of early root developments and nodule formation. Crown nodulation could already be measured after 14 days. Based on these experiments, it was concluded (i) that crown nodulation is an adequate parameter to quantify the benefit of lime-pelleting, and (ii) that rhizotrons, because of the more pronounced effects and shorter incubation time, are more suitable to study the nodulation responses in the soil caused by the addition of rhizobia and lime.  相似文献   

9.
A lime-pellet around seeds of lucerne significantly increased crown nodulation in an acid soil. To investigate whether neutralization or calcium were of importance when lime was supplied, experiments with plants were done either in pots or in rhizotrons. Crown nodulation was used to quantify the effect of these two parameters.For the neutralization of the soil, KOH (in pots) or K2CO3 (in rhizotrons) was added. The crown nodulation of pot-grown plants increased from 31% to 53%. In rhizotrons, the number of crown-nodulated seedlings increased from 9% to 53%. If calcium was supplied additionally (as CaCl2 or CaSO4), 63% crown nodulation was found in pots, and 68% in rhizotrons. These numbers are close to the crown nodulation with lime (CaCO3) alone: 70% in pots and 71% in rhizotrons. In the soil studied, the beneficial effect of lime is largely due to neutralization (80%), and only a minor part (20%) is due to the input of calcium.Using rhizotrons, the dynamics of the pH in the rhizosphere of lime-treated and untreated seedlings was followed during a period of 12 days. It was found that, even in the absence of lime, the pH along the taproot increased from 5.1 to 5.7. However, this did not result in the formation of root nodules. Nodulation was obtained only by adding neutralizing chemicals, which increased the pH during the initial 3 days, the acid sensitive period of the process.  相似文献   

10.
In addition to the flavonoids exuded by many legumes as signals to their rhizobial symbionts, alfalfa (Medicago sativa L.) releases two betaines, trigonelline and stachydrine, that induce nodulation (nod) genes inRhizobium meliloti. Experiments with14C-phenylalanine in the presence and absence of phenylalanine ammonia-lyase inhibitors show that exudation of flavonoidnod-gene inducers from alfalfa roots is linked closely to their concurrent synthesis. In contrast, flavonoid and betainenod-gene inducers are already present on mature seeds before they are released during germination. Alfalfa seeds and roots release structurally differentnod-gene-inducing signals in the absence of rhizobia. WhenR. meliloti is added to roots, medicarpin, a classical isoflavonoid phytoalexin normally elicited by pathogens, and anod-gene-inducing compound, formononetin-7-O-(6-O-malonylglycoside), are exuded. Carbon flow through the phenylpropanoid pathway and into the flavonoid pathway via chalcone synthase is controlled by complexcis-acting sequences andtrans-acting factors which are not completely understood. Even less information is available on molecular regulation of the two other biosynthetic pathways that produce trigonelline and stachydrine. Presumably the three separate pathways for producingnod-gene inducers in some way protect the plant against fluctuations in the production or transmission of the two classes of signals. Factors influencing transmission of alfalfanod-gene inducers through soil are poorly defined, but solubility differences between hydrophobic flavonoids and hydrophilic betaines suggest that the diffusional traits of these molecules are not similar. Knowledge derived from studies of how legumes regulate rhizobial symbionts with natural plant products offers a basis for defining new fundamental concepts of rhizosphere ecology.  相似文献   

11.
Adsorption ofRhizobium meliloti L5-30 in low numbers to alfalfa (Medicago sativa L.) roots was dependent on the presence of divalent cations, and required neutral pH. Adsorption was proportional to Ca and/or Mg concentrations up to 1.5 mM. Ca was not substituted by Sr, Ba or Mn. Adsorption was abolished and viability decreased at pH6. When lowering pH, higher Ca concentrations were required to attain similar adsorption levels, indicating a marked interactive effect between Ca and H ions. Pretreatment of the roots with Ca and low pH did not affect subsequent adsorption of the bacteria. However, Ca pretreatment ofR. meliloti sustained further adsorption at low Ca levels and low pH substantially affected their ability to adsorb. Low pH appears to affect the stability of binding causing desorption of the previously bound bacteria. The presence of saturating concentrations of heterologousR. leguminosarum bv.trifolii A118, did not prevent the expression of divalent cations and pH requirements, as well as their interaction. Our results suggest that rhizobial binding to the root surface already shows the Ca and pH dependence of alfalfa nodulation, which was generally associated to some event prior to rhizobial penetration of root hairs.  相似文献   

12.
Symbiotic nitrogen fixation of Rhizobium meliloti bacteroids in Medicago sativa root nodules was suppressed by several inorganic nitrogen sources. Amino acids like glutamine, glutamic acid and aspartic acid, which can serve as sole nitrogen sources for the unnodulated plant did not influence nitrogenase activity of effective nodules, even at high concentrations.Ammonia and nitrate suppressed symbiotic nitrogen fixation in vivo only at concentrations much higher than those needed for suppression of nitrogenase activity in free living nitrogen fixing bacteria. The kinetics of suppression were slow compared with that of free living nitrogen fixing bacteria. On the other hand, nitrite, which acts as a direct inhibitor of nitrogenase, suppressed very quickly and at low concentrations. Glutamic acid and glutamine enhanced the effect of ammonia dramatically, while the suppression by nitrate was enhanced only slightly.  相似文献   

13.
Two mutants defective in succinate utilization were isolated by NTG mutagenesis of the effective wild typeRhizobium meliloti strain S14. The mutants used carbon sources in a fashion similar to strain S14, but they were not able to grow on succinate, fumarate or malate. The mutants nodulated alfalfa plants but did not exhibit any nitrogenase activity. The mutants oxidized glucose and fructose, but were not able to oxidize organic acids. Cultured free-living bacteria of strain S14 appeared to have an inducible C4-dicarboxylic acid uptake system and a constitutive glucose uptake system. When S14 cells were grown on glucose in the presence of 5mM or more succinate or malate, the rate of glucose-dependent O2 consumption significantly decreased suggesting the presence of a catabolite repression like phenomenom. Contribution no. 301, Station de Recherches, Agriculture Canada.  相似文献   

14.
Summary Microgametophytic selection was investigated using two ecologically diverse autotetraploid clones of alfalfa. Several selection pressures (drying, aging, freezing, and high and low temperatures) were applied to microgametophytes at three stages of the life cycle, 1) during microsporogenesis, 2) post-anthesis, and 3) pollen tube growth. Pollen aging produced a progeny population with a greater mean plant size and a lower coefficient of variation than the control progeny. High temperature (29.5 °C) applied both during microsporogenesis and pollen tube growth resulted in progeny populations which were significantly taller and, in one case, had a larger leaf number than the control populations. In contrast, air dried pollen resulted in a progeny population which had significantly smaller character means and larger coefficients of variation than the control population. Also, low temperature (15 °C) during pollen tube growth yielded progeny with reduced branch number and a larger coefficient of variation than the control progeny. In cases where progeny derived from selected microgametophytes were found to differ from the control offspring, corresponding shifts in the reciprocal cross were not observed. For the temperature stress treatments, the lack of reciprocal differences may be related to the different temperature adaptations of the two ecotypes. These results suggest that microgametophytic selection can be effective in shifting the mean of the progeny generation; however, the results obtained will vary depending upon the selection pressure, stage of selection, and the parents used.  相似文献   

15.
Summary The binding ofRhizobium meliloti strains A2 (effective) and V6 (ineffective),Agrobacterium tumefaciens strain B6S3 andR. trifolii strain TL5 to lucerne seedling roots was studied by using14C or3H-labelled bacteria. When added singly or in combination with the heterologous bacteria, the number of A2 cells attached to the roots was significantly less than the number of B6S3 or TL5 cells. However, the presence of the heterologous bacteria did not decrease the proportion of A2 cells added in the inoculum that bind to the roots, suggesting thatR. meliloti is attached to specific sites. In fact, the same number of A2 or V6 cells bind to the roots and in mixed inoculation the 2 strains share equally the binding sites. When added to the seedlings growth medium NO 3 at 5 or 16 mM significantly decreased the number of A2 cells adhering to lucerne seedling roots. The results suggest that the lectin-recognition hypothesis is probably involved in the attachment ofR. meliloti to lucerne seedling roots.Contribution No. 252 Station de recherches, Agriculture Canada  相似文献   

16.
Perennial legume such as alfalfa have the capacity to sustain shoot regrowth and some nodule N2-fixation after removal (cutting) of shoots which contain practically all of the plant's photosynthetic capacity. The role of the roots in supporting these processes has not been fully described. Measurements were made of the nodules' responses to removal of shoots from 8-week-old seedlings in terms of N2-fixation, as nitrogenase activity (NA) measured as acetylene reduction, dark CO2 fixation, measured as in vitro phosphoenolpyruvate carboxylase (PEPC) activity, and total non-structural carbohydrate (NSC) content. These properties decreased and recovered in that sequence, which suggests that nodule NSC supported the substrate requirements of NA and PEPC immediately after cutting. The utilization and redistribution or root carbon and nitrogen, prelabeled with 14C and 15N, were also followed after cutting 8-week-old alfalfa seedlings. In the first 2 weeks of regrowth 12% of root C and 25% of root N were transferred for incorporation into new shoots. Up to 40% of the root C was used for plant respiration to support 28 days of shoot regrowth and N2-fixation. The decline of N2-fixation was slower after cutting and its minimum activity rose up 45% of pre-cut activity as root reserves were built up with plant age. Therefore, the stored reserves of nodulated roots play an important role in support of N2-fixation after cutting.Contribution No. 1265 from Plant Research Center.Contribution No. 1265 from Plant Research Center.  相似文献   

17.
Summary Hydrogen evolution from root nodules has been reported to decrease the efficiency of the nitrogen fixing system. Mutants ofRhizobium meliloti andRhizobium leguminosarum were selected which were deficient in H2-uptake capacity (Hup). The relative efficiency of the nitrogen fixation for both species assessed with C2H2 reduction was 0.66.The hydrogen production was monitored using a simple root incubation method. As such, hydrogen production up to 3.83 and 15.57 ml.day–1.g–1 plant dry weight were recorded forPisum sativum — Rhizobium leguminosarum 4.20 Hup andMedicago sativa — Rhizobium meliloti 1.5 Hup respectively. In a closed container (250 ml), hydrogen concentrations up to 20% (v/v) could be reached in the root phase ofMedicago sativa in a time period of 320 hours.  相似文献   

18.
19.
Drought is an important environmental factor that can affect rhizobial competition and N2 fixation. Three alfalfa (Medicago sativa L. and M. falcata L.) accessions were grown in pots containing soil from an irrigated (Soil 1) and a dryland (Soil 2) alfalfa field in northern Utah, USA. Mutants of three strains of Rhizobium meliloti Dang. from Pakistan (UL 136, UL 210, and UL 222) and a commercial rhizobial strain 102F51a were developed with various levels of resistance to streptomycin. Seeds inoculated with these individual streptomycin-resistant mutants were sown in the two soils containing naturalized rhizobial populations. Soils in the pots were maintained at −0.03, −0.5, and −1.0 MPa. After 10 weeks, plants were harvested and nodule isolates were cultured on agar medium with and without streptomycin to determine nodule occupancy (proportion of the nodules occupied by introduced rhizobial strains). Number of nodules, nodule occupancy, total plant dry weight, and shoot N were higher for Soil 1 than Soil 2. Number of nodules, plant dry weight, and shoot N decreased as drought increased from −0.03 to −1.0 MPa in the three alfalfa accessions. Rhizobial strains UL 136 and UL 222 were competitive with naturalized alfalfa rhizobia and were effective at symbiotic N2 fixation under drought. These results suggest that nodulation, growth, and N2 fixation in alfalfa can be improved by inoculation with competitive and drought-tolerant rhizobia and may be one economically feasible way to increase alfalfa production in water-limited environments. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931. Joint contribution from USDA-ARS and the Utah Agric. Exp. Sta., Utah State Univ., Logan, UT 84322-4810, USA. Journal Paper No. 4931.  相似文献   

20.
Fall dormancy results in decumbent, slow shoot growth of alfalfa (Medicago sativa L.) in autumn and reduced shoot regrowth rates after herbage removal in summer. Although fall dormancy is used to predict alfalfa adaptation, we possess a poor understanding of the biological mechanisms underlying fall dormancy. Our objective was to examine growth and carbohydrate metabolism of suspension cell cultures derived from contrasting alfalfa cultivars that genetically differed in fall dormancy. Suspension cells were grown in B5h media containing 2% sucrose. Cells derived from fall non-dormant plants accumulated sugars more rapidly after transfer to fresh media and to higher concentrations than did cells derived from fall dormant alfalfa cultivars. Dark respiration rates of cells derived from non-dormant plants were similar to those derived from fall dormant plants when growth was limited at low cell sugar concentrations. However, both cell growth and dark respiration rates increased in cells derived from non-dormant cultivars in response to greater cell sugar concentrations. High growth rates of cells derived from rapid growing, fall non-dormant alfalfa cultivars were associated with rapid sugar uptake and higher cell respiration rates when compared to cells derived from dormant alfalfa cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号