首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Insulin and hepatocyte growth factor (HGF) induced morphologically different membrane rufflings in KB cells. Insulin-induced membrane ruffling was inhibited by microinjection of rho GDI, an inhibitory GDP/GTP exchange regulator for both rho p21 and rac p21 small GTP-binding proteins, but not inhibited by microinjection of botulinum exoenzyme C3, known to selectively ADP-ribosylate rho p21 and to impair its function. This rho GDI action was prevented by comicroinjection with guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-bound rac1 p21. In contrast, HGF-induced membrane ruffling was inhibited by microinjection of rho GDI or C3. This rho GDI action was prevented by comicroinjection with GTP gamma S-bound rhoA p21, and this C3 action was prevented by comicroinjection with GTP gamma S-bound rhoAIle-41 p21, which is resistant to C3. Microinjection of either GTP gamma S-bound rac1 p21 or rhoA p21 alone induced membrane ruffling in the absence of the growth factors. The rac1 p21-induced membrane ruffling was morphologically similar to the insulin-induced kind, whereas rhoA p21-induced ruffling was apparently different from both the insulin- and HGF-induced kinds. Membrane ruffling was also induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C-activating phorbol ester, but not by Ca2+ ionophore or microinjection of a dominant active Ki-ras p21 mutant (Ki-rasVal-12 p21). The phorbol ester-induced membrane ruffling was morphologically similar to the rhoA p21-induced kind and inhibited by microinjection of rho GDI or C3. These results indicate that rac p21 and rho GDI are involved in insulin-induced membrane ruffling and that rho p21 and rho GDI are involved in HGF- and phorbol ester-induced membrane rufflings.  相似文献   

3.
Transforming growth factor-beta (TGF-β) suppresses the initiation of tumorigenesis by causing arrest at the G1 phase of the cell cycle. The loss of the antiproliferative function of TGF-β is a hallmark of many cancers. Here we report that p130Cas plays a role in determining the cellular responsiveness to TGF-β-induced growth inhibition in some cancer cells. An analysis of the tyrosine phosphorylation levels of p130Cas revealed higher levels of phosphorylation in cancer cell lines (MCF7 and A375) than in corresponding normal cell lines (MCF10A and MEL-STV). In contrast to normal cells, the cancer cells showed resistance to not only TGF-β-induced Smad3 phosphorylation and p21 expression, but also growth inhibition. However, silencing p130Cas using siRNA was sufficient to restore Smad3 phosphorylation and p21 expression, as well as the susceptibility to TGF-β-induced growth inhibition. Interestingly, the stable overexpression of p130Cas accelerated TGF-β-induced epithelial–mesenchymal transition. Our results suggest that elevated expression and tyrosine phosphorylation of p130Cas contributes to the resistance to TGF-β-induced growth inhibition, and thus to the initiation and progression of human cancers that harbor an active integrin signal.  相似文献   

4.
Doxorubicin (DOX)-induced apoptosis is suppressed by p21 (waf1/cip1/sdi1), a cyclin dependent kinase (CDK) inhibitor. Here we show that exogenous expression of p21 before, but not after, the DOX-treatment protected p21-deficient human colorectal cancer cell line DLD1 from DOX-induced apoptosis. In previous work, we demonstrated that p21 inhibits DOX-induced apoptosis via its CDK-binding and CDK-inhibitory activity. Here we report that pre-existing p21 can associate with pro-caspase-3 and inhibit caspase-3 activation in the cells, which was at least in part responsible for enhancing survival of DOX-treated cells. Furthermore, the N-terminal domain of p21 was found to interact with pro-caspase-3 in DLD1 cells. Thus, we propose that pre-existing p21 is required to prevent DOX-induced apoptosis.  相似文献   

5.
Ligation of CD95 on T lymphocytes resulted in the up-regulation of a cell cycle control protein, p21cip-1/WAF-1, an inhibitor of cyclin-dependent kinases. This up-regulation was completely blocked by the cysteine protease inhibitor Z-VAD-fmk (benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone), whereas DEVD-CHO (succinyl-Asp-Glu-Val-Asp-aldehyde), a caspase 3 inhibitor, had no effect. In Faslpr-cg mice, a point mutation in the death domain of CD95 results in failure to recruit FADD (Fas-associated death domain), and in the present study this mutation prevented both CD95-mediated apoptosis and p21cip-1/WAF-1 induction. During apoptotic cell death due to irradiation, p21cip-1/WAF-1 is up-regulated by a p53-dependent pathway that responds to DNA damage. However, CD95-induced up-regulation of p21cip-1/WAF-1 in T cells was p53-independent. T cells deficient in p21cip-1/WAF-1 were less susceptible to CD95-induced apoptosis. We conclude that in T cells, ligation of CD95 and activation of caspases cause the induction of p21cip-1/WAF-1, which acts to promote cell death.  相似文献   

6.
7.
The p53 tumor suppressor gene product plays an important role in the regulation of apoptosis. Transforming growth factor beta1 (TGF-beta1)-induced apoptosis in hepatic cells is associated with reduced expression of the retinoblastoma protein (pRb) and subsequent E2F-1-activated expression of apoptosis-related genes. In this study, we explored the potential role of p53 in TGF-beta1-induced apoptosis. HuH-7 human hepatoma cells were either synchronized in G1, S and G2/M phases, or treated with 1 nM TGF-beta1. The results indicated that greater than 90% of the TGF-beta1-treated cells were arrested in G1 phase of the cell cycle. This was associated with enhanced p53 dephosphorylation and p21(Cip1/Waf1) expression, which coincided with decreased Cdk2, Cdk4, and cyclin E expression, compared with synchronized G1 cells. In addition, p53 dephosphorylation coincided with caspase-3 activation, and translocation of p21(Cip1/Waf1) and p27(Kip1) into the cytoplasm, all of which were suppressed by caspase inhibition of TGF-beta1-induced apoptosis. Finally, phosphatase inhibition and pRb overexpression partially inhibited p53-mediated apoptosis. In conclusion, the results demonstrated that TGF-beta1-induced p53 dephosphorylation is associated with caspase-3 activation, and cytosolic translocation of p21(Cip1/Waf1) and p27(Kip1), resulting in decreased expression of Cdks and cyclins. Further, p53 appears to mediate TGF-beta1-induced apoptosis downstream of the pRb/E2F-1 pathway.  相似文献   

8.
The Wee1 inhibitor MK1775 (AZD1775) is currently being tested in clinical trials for cancer treatment. Here, we show that the p53 target and CDK inhibitor p21 protects against MK1775-induced DNA damage during S-phase. Cancer and normal cells deficient for p21 (HCT116 p21-/-, RPE p21-/-, and U2OS transfected with p21 siRNA) showed higher induction of the DNA damage marker γH2AX in S-phase in response to MK1775 compared to the respective parental cells. Furthermore, upon MK1775 treatment the levels of phospho-DNA PKcs S2056 and phospho-RPA S4/S8 were higher in the p21 deficient cells, consistent with increased DNA breakage. Cell cycle analysis revealed that these effects were due to an S-phase function of p21, but MK1775-induced S-phase CDK activity was not altered as measured by CDK-dependent phosphorylations. In the p21 deficient cancer cells MK1775-induced cell death was also increased. Moreover, p21 deficiency sensitized to combined treatment of MK1775 and the CHK1-inhibitor AZD6772, and to the combination of MK1775 with ionizing radiation. These results show that p21 protects cancer cells against Wee1 inhibition and suggest that S-phase functions of p21 contribute to mediate such protection. As p21 can be epigenetically downregulated in human cancer, we propose that p21 levels may be considered during future applications of Wee1 inhibitors.  相似文献   

9.
Summary While arsenic trioxide (As2O3) is an infamous carcinogen, it is also an effective chemotherapeutic agent for acute promyelocytic leukemia and some solid tumors. In human epidermoid carcinoma A431 cells, we found that As2O3 induced cell death in time- and dose-dependent manners. Similarly, dependent regulation of the p21 WAF1/CIP1 (p21) promoter, mRNA synthesis, and resultant protein expression was also observed. Additionally, transfection of a small interfering RNA of p21 could block the As2O3-induced cell growth arrest. The As2O3-induced p21 activation was attenuated by inhibitors of EGFR and MEK in a dose-dependent manner. Using a reporter assay, we demonstrated the involvement of the EGFR-Ras-Raf-ERK1/2 pathway in the promoter activation. In contrast, JNK inhibitor enhanced the As2O3-induced p21 activation, also in a dose-dependent fashion. Over-expression of a dominant negative JNK plasmid likewise also enhanced this activation. Furthermore, MEK inhibitor attenuated the anti-tumor effect of As2O3. In contrast, in combination with JNK inhibitor and As2O3 enhanced cellular cytotoxicity. Therefore, we conclude that in A431 cells the ERK1/2 and JNK pathways might differentially contribute to As2O3-induced p21 expression and then due to cellular cytotoxicity.  相似文献   

10.
When the cell cycle is arrested, even though growth-promoting pathways such as mTOR are still active, then cells senesce. For example, induction of either p21 or p16 arrests the cell cycle without inhibiting mTOR, which, in turn, converts p21/p16-induced arrest into senescence (geroconversion). Here we show that geroconversion is accompanied by dramatic accumulation of cyclin D1 followed by cyclin E and replicative stress. When p21 was switched off, senescent cells (despite their loss of proliferative potential) progressed through S phase, and levels of cyclins D1 and E dropped. Most cells entered mitosis and then died, either during mitotic arrest or after mitotic slippage, or underwent endoreduplication. Next, we investigated whether inhibition of mTOR would prevent accumulation of cyclins and loss of mitotic competence in p21-arrested cells. Both nutlin-3, which inhibits mTOR in these cells, and rapamycin suppressed geroconversion during p21-induced arrest, decelerated accumulation of cyclins D1 and E and decreased replicative stress. When p21 was switched off, cells successfully progressed through both S phase and mitosis. Also, senescent mouse embryonic fibroblasts (MEFs) overexpressed cyclin D1. After release from cell cycle arrest, senescent MEFs entered S phase but could not undergo mitosis and did not proliferate. We conclude that cellular senescence is characterized by futile hyper-mitogenic drive associated with mTOR-dependent mitotic incompetence.  相似文献   

11.
12.
Cyclosporine has potent antiproliferative properties, some of which may be via the induction of the cyclin inhibitor p21. In this study, we describe the effects of in vitro and in vivo transfection of p21 in lymphoid and nonlymphoid cells. For in vitro studies, p21 sense plasmid DNA was transfected in A-549 cells (lung adenocarcinoma cell line) and Jurkat cells (human lymphoid cell line). This in vitro transfection of p21 resulted in the inhibition of spontaneous and mitogen-induced cellular proliferation ([3H]thymidine uptake) and also augmented the antiproliferative effects of cyclosporine. In vivo transfection of p21 was accomplished in mice via the i.m. injection of p21 sense plasmid DNA complexed with cationic lipids. As was the case in the cell lines, p21 mRNA was augmented in heart, lung, liver, and spleen 7 days after i.m. injection of p21 sense plasmid DNA. The mitogen (anti-CD3)-induced proliferation of splenocytes from p21-overexpressing mice was significantly decreased, and again this effect was augmented by cotreatment with cyclosporine. These novel findings demonstrate the potential of targeting the cell cycle directly to inhibit alloimmune activation in organ transplantation. This may serve as an alternate strategy to induce immunosuppression, perhaps with less toxicity than that which is seen with conventional immunosuppressive agents.  相似文献   

13.
To examine the p53-mediated biological activities and signalling pathways, we generated stable transfectants of the p53-null IW32 murine erythroleukemia cells expressing the temperature-sensitive p53 mutant DNA, tsp53(val135). Two clones with different levels of p53 protein expression were selected for further characterization. At permissive temperature, clone 1-5 cells differentiated along the erythroid pathway, and clone 3-2 cells that produced greater levels (3.5-fold) of p53 underwent apoptosis. Apoptosis of 3-2 cells was accompanied by mitochondrial cytochrome c release and caspase activation as well as by cleavage of caspase substrates. Bax protein was induced to a similar extent in these clones by wild-type p53; expression of p21(Cip1/Waf1) and p27(Kip1) proteins was also increased. However, significantly lesser extent of induction for both CDK inhibitors was detected in the apoptotic 3-2 clone. The general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD.fmk) blocked the p53-induced apoptosis in 3-2 cells, with a concomitant elevation of p27(Kip1), suggesting that p27(Kip1) protein underwent caspase-dependent proteolysis in the apoptotic 3-2 cells. Together these results linked a pathway involving cytochrome c release, caspase activation and p27(Kip1) degradation to the p53-induced apoptosis in IW32 erythroleukemia cells.  相似文献   

14.
Endothelin-1 (ET-1), a member of a family of 21 amino acid peptides possessing vasoconstrictor properties, is known to stimulate mesangial cell proliferation. In this study, ET-1 (100 nm) induced a rapid activation of p21(ras) in human glomerular mesangial cells (HMC). Inhibition of Src family tyrosine kinase activation with [4-Amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] or chelation of intracellular free calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester significantly decreased ET-1dependent p21(ras) activation and suggested the involvement of the cytoplasmic proline-rich tyrosine kinase Pyk2. We have observed that Pyk2 was expressed in HMC and was tyrosine-phosphorylated within 5 min of ET-1 treatment. ET-1-induced activation of Pyk2 was further confirmed using phospho-specific anti-Pyk2 antibodies. Surprisingly, Src kinase activity was required upstream of ET-1-induced autophosphorylation of Pyk2. To determine whether Pyk2 autophosphorylation mediated ET-1-dependent p21(ras) activation, adenovirus-mediated transfer was employed to express a dominant-negative form of Pyk2 (CRNK). CRNK expression inhibited ET-1-induced endogenous Pyk2 autophosphorylation, but did not abolish ET-1-mediated increases in GTP-bound p21(ras) levels. ET-1-induced activation of the p38 MAPK (but not ERK) pathway was inhibited in HMC and in rat glomerular mesangial cells expressing the dominant-negative form of Pyk2. These findings suggest that the engagement of Pyk2 is important for ET-1-mediated p38 MAPK activation and hence the biological effect of this peptide in mesangial cells.  相似文献   

15.
16.
Liu W  Dai Q  Lu N  Wei L  Ha J  Rong J  Mu R  You Q  Li Z  Guo Q 《Biochimie et biologie cellulaire》2011,89(3):287-298
We recently established that LYG-202, a new flavonoid with a piperazine substitution, exerts an anti-tumor effect in vivo and in vitro. In the present study, we demonstrate that LYG-202 induces G1/S phase arrest and apoptosis in human colorectal carcinoma HCT-116 cells. Data showed that the blockade of the cell cycle was associated with increased p21(WAF1/Cip1) and Rb levels and reduced expression of cyclin D1, cyclin E, and CDK4. Moreover, PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, and an increased ratio of Bax/Bcl-2 were detected in LYG-202-induced apoptosis. Additionally, activation of p53 resulted in the up-regulation of its downstream targets PUMA and p21(WAF1/Cip1), as well as the down-regulation of its negative regulator MDM2, suggesting that the p53 pathway may play a crucial role in LYG-202-induced cell cycle arrest and apoptosis. Furthermore, siRNA knockdown of p53 attenuated the G1 cell cycle arrest and apoptosis induced by LYG-202, as the effects of LYG-202 on up-regulation of p21(WAF1/Cip1) and down-regulation of Bcl-2 and pro-caspase-3 were partly inhibited in p53 siRNA transfected cells compared with control siRNA transfected cells. Collectively, these data indicate that LYG-202 exerts its anti-tumor potency by activating the p53-p21 pathway for G1/S cell cycle arrest and apoptosis in colorectal cancer cells.  相似文献   

17.
Infection with human papillomaviruses (HPV) is strongly associated with the development of cervical cancer. The HPV E6 gene is essential for the oncogenic potential of HPV. E6 induces cell proliferation and apoptosis in cervical cancer precursor lesions and in cultured cells. Although induction of telomerase and inactivation of the tumor suppressor p53 play important roles for E6 to promote cell growth, the molecular basis of E6-induced apoptosis is poorly understood. While it is expected that inactivation of p53 by E6 should lead to a reduction in cellular apoptosis, numerous studies demonstrated that E6 could in fact sensitize cells to apoptosis. Understanding the mechanism of p53-independent apoptosis is of clinical significance. In the present study, we investigated the mechanism of apoptosis during E6-mediated immortalization of primary human mammary epithelial cell (HMEC). E6 by itself is sufficient to immortalize HMECs and is believed to do so at least in part by activation of telomerase. During the process of E6-mediated HMEC immortalization, an increased apoptosis was observed. Mutational analysis demonstrated that E6-induced apoptosis was distinct from its ability to promote cell proliferation, activate telomerase, or degrade p53. While the known pro-apoptotic E6 target proteins such as Bak or c-Myc did not appear to play an important role, down-regulation of the cyclin-dependent kinase inhibitor p21Waf1/Cip1 (p21) by E6 correlated with its ability to induce apoptosis. Ectopic expression of p21 inhibited E6-induced apoptosis. Moreover, a p53 degradation defective E6 mutant was competent for p21 down-regulation and apoptosis induction. The anti-apoptotic function of p21 may not simply be the result of p21-induced growth arrest. These studies demonstrate an E6 activity to down-regulate p21 that is important for induction of apoptosis.  相似文献   

18.
Chen X  Zhang W  Gao YF  Su XQ  Zhai ZH 《Cell research》2002,12(3-4):229-233
P21(Waf1/Cip1) is a potent cyclin-dependent kinase inhibitor. As a downstream mediator of p53, p21(Waf1/Cip1) involves in cell cycle arrest, differentiation and apoptosis. Previous studies in human cells provided evidence for a link between p21(Waf1/Cip1) and cellular senescence. While in murine cells, the role of p21(Waf1/Cip1) is indefinite. We explored this issue using NIH3T3 cells with inducible p21(Waf1/Cip1) expression. Induction of p21(Waf1/Cip1) triggered G1 growth arrest, and NIH3T3-p21 cells exhibited morphologic features, such as enlarged and flattened cellular shape, specific to the senescence phenotype. We also showed that p21(Waf1/Cip1)-transduced NIH3T3 cells expressed beta-galactosidase activity at pH 6.0, which is known to be a marker of senescence. Our results suggest that p2l(Waf1/Cip1) can also induce senescence-like changes in murine cells.  相似文献   

19.
The BCR/ABL tyrosine kinase inhibitor imatinib is highly effective for treatment of chronic myeloid leukemia (CML) and Philadelphia-chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). However, relapses with emerging imatinib-resistance mutations in the BCR/ABL kinase domain pose a significant problem. Here, we demonstrate that nutlin-3, an inhibitor of Mdm2, inhibits proliferation and induces apoptosis more effectively in BCR/ABL-driven Ton.B210 cells than in those driven by IL-3. Moreover, nutlin-3 drastically enhanced imatinib-induced apoptosis in a p53-dependent manner in various BCR/ABL-expressing cells, which included primary leukemic cells from patients with CML blast crisis or Ph+ ALL and cells expressing the imatinib-resistant E255K BCR/ABL mutant. Nutlin-3 and imatinib synergistically induced Bax activation, mitochondrial membrane depolarization, and caspase-3 cleavage leading to caspase-dependent apoptosis, which was inhibited by overexpression of Bcl-XL. Imatinib did not significantly affect the nutlin-3-induced expression of p53 but abrogated that of p21. Furthermore, activation of Bax as well as caspase-3 induced by combined treatment with imatinib and nutlin-3 was observed preferentially in cells expressing p21 at reduced levels. The present study indicates that combined treatment with nutlin-3 and imatinib activates p53 without inducing p21 and synergistically activates Bax-mediated intrinsic mitochondrial pathway to induce apoptosis in BCR/ABL-expressing cells.  相似文献   

20.
Nutlin-3 selectively activates p53 by inhibiting the interaction of this tumor suppressor with its negative regulator murine double minute 2 (mdm2), while trichostatin A (TSA) is one of the most potent histone deacetylase (HDAC) inhibitors currently available. As both Nutlin-3 and TSA increase the levels of the cell cycle inhibitor p21(cip1/waf1) in cells, we investigated whether a combination of these compounds would further augment p21 levels. Contrary to expectations, we found that short-term exposure to Nutlin-3 and TSA in combination did not have an additive effect on p21 expression. Instead, we observed that activation of p53 prevented the ability of TSA to increase p21 levels. Furthermore, TSA inhibited Nutlin-3-induced expression of p53-dependent mRNAs including P21. This negative effect of TSA on Nutlin-3 was significantly less pronounced in the case of hdm2, another p53 downstream target. Aside from suggesting a model to explain these incompatible effects of Nutlin-3 and TSA, we discuss the implications of our findings in cancer therapy and cell reprogramming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号