首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor activity of bovine brain-derived growth factor   总被引:1,自引:0,他引:1  
Bovine brain-derived growth factor (BDGF), whose biochemical properties resemble those of endothelial cell growth factor (ECGF) and brain-derived acidic fibroblast growth factor (acidic FGF), is able to promote colony formation of normal rat kidney fibroblasts (NRK cells) in soft agar. As in the case of transforming growth factor beta (TGF beta), EGF potentiates the anchorage-independent growth promoting activity of BDGF. In the presence of EGF (5 ng/ml), the optimal concentration of BDGF for stimulation of anchorage-independent of NRK cells is approximately 0.5 ng/ml. At higher concentrations, BDGF becomes inhibitory. The anchorage-independent cell growth promoting activity of BDGF differs from that of TGF beta in acid and reducing agent stability.  相似文献   

2.
Transforming growth factor-beta 1 (TGF beta 1) is a multifunctional regulator of cell growth and differentiation. We report here that TGF beta 1 decreased the proliferation of nontransformed bovine anterior pituitary-derived cells grown in culture. We have previously demonstrated that these cells express both TGF alpha and its receptor [the epidermal growth factor (EGF) receptor] and that expression can be stimulated by phorbol ester (TPA) and EGF. TGF beta 1 treatment over a 2-day period decreased the proliferation of pituitary cells. This decreased growth rate was accompanied by a decrease in the TGF alpha mRNA level. The effect of TGF beta 1 on TGF alpha mRNA down-regulation was both dose dependent (maximal effect observed at 1.0 ng/ml TGF beta 1) and time dependent (minimum of 2-day treatment with TGF beta 1 was required before a decrease in TGF alpha mRNA was observed). Studies on TGF alpha mRNA stability indicated that TGF beta 1 did not alter the TGF alpha mRNA half-life. Treatment of the TGF beta 1 down-regulated cells with EGF resulted in the stimulation of TGF alpha mRNA levels; thus, the TGF beta 1-treated cells remained responsive to EGF. The decreased proliferation in response to TGF beta 1 could be only partially reversed by simultaneous treatment of the cells with EGF (10(-9)M) and TGF beta 1 (3.0 ng/ml). Qualitatively, the TGF beta 1-induced reduction of TGF alpha mRNA content was independent of cell density. TGF beta 1 treatment of the anterior pituitary-derived cells also reduced the levels of c-myc and EGF receptor mRNA. These results represent the first demonstration of the down-regulation of TGF alpha synthesis by a polypeptide growth factor and suggest that TGF beta 1 may be a physiological regulator of TGF alpha production in vivo.  相似文献   

3.
The link between cell adhesion to extracellular matrix and integrin-mediated survival signals has been established in several physiological systems, and roles for the cytokines tumor necrosis factor alpha (TNF alpha) and transforming growth factor alpha (TGF alpha) have been suggested. TGF alpha stimulates fibronectin production in hen granulosa cells and is an important survival factor during follicular maturation. In contrast, the role of TNF alpha and its possible interaction with TGF alpha in the regulation of granulosa cell fate (death versus survival) during ovarian follicular development have not been fully elucidated. The object of the current study was to determine if TNF alpha and TGF alpha interact in the regulation of hen granulosa cell fibronectin and integrin content in the context of cell death and survival during follicular development. TGF alpha (0.1 or 10 ng/ml), but not TNF alpha (0.1 or 10 ng/ml), increased both cellular and secreted fibronectin content in granulosa cell cultures of F5,6 but not F1 follicles. The expression of integrin beta(3) subunit was also stimulated by TGF alpha in a follicular stage-dependent manner, and culture of F5,6 granulosa cells with TNF alpha in the presence of maximal stimulatory concentrations of TGF alpha potentiated this response. TGF alpha increased both F5,6 and F1 granulosa cell [(3)H]thymidine incorporation but not 3-(4,5-dimethylthiazol-2-yl)3,5-diphenyl tetrazolium bromide (MTT) metabolism. Although TNF alpha had no effect on [(3)H]thymidine incorporation irrespective of the presence of the growth factor, MTT metabolism was higher in F5,6 granulosa cells cultured for 24 h with both TNF alpha and TGF alpha than with either cytokine alone. Incubation of F5,6 granulosa cells for 48 and 72 h resulted in a TGF alpha-inhibited loss of cellular adhesion and detachment of granulosa cells from the growth surface. Although TNF alpha alone had no effect on cell morphology, it facilitated the reorganization of the granulosa cells into multicellular follicle-like structures in the presence of the growth factor. DNA degradation significantly increased between 0 and 72 h of culture in the absence of the cytokine but was suppressed by the addition of TGF alpha but not of TNF alpha. However, fluorometric analysis indicated that the primary type of cell death exhibited by F5,6 granulosa cells during extended culture and attenuated by the presence of TNF alpha and TGF alpha was necrosis and not apoptosis. The current study demonstrates that TNF alpha and TGF alpha interact in the regulation of granulosa cell integrin content and cell survival in vitro in a follicular stage-dependent manner. These findings suggest that follicular development is accompanied by a change in the intraovarian role of TNF alpha; it is atretogenic prior to follicular selection but prevents follicular demise during preovulatory growth.  相似文献   

4.
Many carcinoma cells secrete transforming growth factor alpha (TGF alpha). A 23 base anti-sense oligonucleotide that recognizes the TGF alpha mRNA inhibits both DNA synthesis and the proliferation of the colon carcinoma cell line LIM 1215. The effects of the anti-sense TGF alpha oligonucleotide are reversed by epidermal growth factor (EGF) at 20 ng/ml. When the LIM 1215 cells are grown under serum free conditions, the anti-sense TGF alpha oligonucleotides have their greatest effects at high cell density (2 x 10(5) cells/cm2), indicating that the secreted TGF alpha is acting as an exogenous growth stimulus. In addition, at higher cell densities, the kinase activity of the EGF receptor is activated and the receptor is down-modulated. The cell density dependent activation of the EGF receptor is inhibited by the application of the antisense TGF alpha oligonucleotides.  相似文献   

5.
Tumor-promoting phorbol esters such as 4 beta-phorbol 12-myristate 13-acetate (PMA) have been shown to act synergistically with Ca2+ ionophores in cell activation, including stimulation of arachidonic acid metabolism. The effects of PMA on unstimulated and Ca2+ ionophore- or thrombin-stimulated PGI2 and platelet-activating factor (PAF) production in cultured bovine aortic endothelial cells (BAEC) and human umbilical vein endothelial cells (HUVEC) were investigated. Incubation of BAEC or HUVEC for 5-10 min with 100 nM PMA alone slightly increased basal PGI2 production. PGI2 production was rapidly stimulated in BAEC and HUVEC treated with the Ca2+ ionophore ionomycin. Preincubation of BAEC or HUVEC with 100 nM PMA for 5-10 min followed by ionomycin for up to 60 min enhanced PGI2 production up to 2.5-fold. Pretreatment with 100 nM PMA for 5 min also caused a 2-fold enhancement of thrombin-stimulated (1 U/ml) PGI2 production in HUVEC. The production of other prostaglandins, PGF2 alpha, PGE2, and PGD2, was also enhanced. In contrast, PMA had no effect on PGI2 synthesized directly from exogenous arachidonic acid or PGH2. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate was without effect. Since the biosyntheses of both PGI2 and PAF share a common first step, the hydrolysis of their respective phospholipid precursors by phospholipase A2, we investigated whether PMA preincubation could also enhance PAF biosynthesis. Incubation of HUVEC with 100 nM PMA alone had a negligible effect on PAF production. However, thrombin-stimulated (1 U/ml) PAF production was enhanced 2.6-fold by preincubation with 100 nM PMA. The protein kinase C inhibitors H-7 and staurosporine ablated the enhancing effect of PMA on thrombin-stimulated PGI2 and PAF biosynthesis. These results demonstrate that PMA can significantly alter the production of PGI2 and PAF in vascular endothelial cells, and suggest that protein kinase C activation modulates phospholipase A2 activity in this cell type.  相似文献   

6.
7.
Treatment of mesangial cells with interleukin 1 beta (IL-1 beta) or tumour necrosis factor alpha (TNF alpha) has been shown to induce nitric oxide (NO) synthase with subsequent autocrine stimulation of soluble guanylate cyclase (Pfeilschifter and Schwarzenbach, 1990, FEBS Lett. 273, 185-187). Here we report that transforming growth factor beta 2 (TGF beta 2) dose-dependently inhibits IL-1 beta- and TNF alpha-stimulated cGMP formation in mesangial cells. Half-maximal inhibition is observed at concentrations of 0.4 and 0.06 ng/ml of TGF beta 2, respectively. Maximum inhibition of cGMP formation over a 24 h period requires the presence of TGF beta 2 during the first 4 h of induction. In addition, the inhibitory effect of TGF beta 2 on cytokine-induced cGMP formation is not affected by the potent cyclo-oxygenase inhibitor indomethacin, thus excluding prostaglandins as mediators.  相似文献   

8.
Prostaglandin production by cultured human endothelial cells varies with growth conditions. We observed a marked diminution in both spontaneous and inducible production of prostacyclin (PGI2) by human umbilical vein and saphenous vein endothelial cells when they were cultured in the presence of the heparin-binding growth factor, acidic fibroblast growth factor (aFGF) and heparin, compared with PGI2 production during culture in medium lacking these factors. Decreased PGI2 production was related to duration of exposure of the cells to aFGF and heparin and depended on the concentration of both substances. Heparin (1-100 micrograms/ml) strongly potentiated the effects of aFGF but had a limited and variable effect alone. The decrease in PGI2 production correlated with a reduction in the cellular content of immunoreactive prostaglandin H synthase and prostacyclin synthase. Arachidonate deacylation was not decreased. In addition, the eicosanoid profile of endothelial cells was changed by exposure to aFGF and heparin. These studies indicate that heparin acts as a modulator of prostaglandin synthesis in endothelial cells through its interaction with aFGF, mediated by alterations in two key enzymes in the arachidonate metabolic pathway.  相似文献   

9.
The endothelium comprises a cellular barrier between the circulation and tissues. We have previously shown that activation of protease-activated receptor 1 (PAR-1) and PAR-2 on the surface of human coronary artery endothelial cells by tryptase or thrombin increases group VIA phospholipase A(2) (iPLA(2)β) activity and results in production of multiple phospholipid-derived inflammatory metabolites. We isolated cardiac endothelial cells from hearts of iPLA(2)β-knockout (iPLA(2)β-KO) and wild-type (WT) mice and measured arachidonic acid (AA), prostaglandin I(2) (PGI(2)), and platelet-activating factor (PAF) production in response to PAR stimulation. Thrombin (0.1 IU/ml) or tryptase (20 ng/ml) stimulation of WT endothelial cells rapidly increased AA and PGI(2) release and increased PAF production. Selective inhibition of iPLA(2)β with (S)-bromoenol lactone (5 μM, 10 min) completely inhibited thrombin- and tryptase-stimulated responses. Thrombin or tryptase stimulation of iPLA(2)β-KO endothelial cells did not result in significant PAF production and inhibited AA and PGI(2) release. Stimulation of cardiac endothelial cells from group VIB (iPLA(2)γ)-KO mice increased PAF production to levels similar to those of WT cells but significantly attenuated PGI(2) release. These results indicate that cardiac endothelial cell PAF production is dependent on iPLA(2)β activation and that both iPLA(2)β and iPLA(2)γ may be involved in PGI(2) release.  相似文献   

10.
11.
The transforming growth factor beta (TGF beta) family members are ubiquitously expressed and control a variety of cellular processes by interacting with at least two types of high affinity cell surface receptors. However, the primary signal transduction mechanism of the receptors is unknown. The ras-encoded 21-kDa GTP binding proteins have recently been shown to mediate the effects of other polypeptide growth factors. Here we show that both TGF beta 1 and TGF beta 2 (5 ng/ml) result in a rapid (within 6 or 12 min, respectively) stimulation of GTP bound to p21ras in TGF beta-sensitive intestinal epithelial cells. Further, the CCL64 epithelial cell line, extremely sensitive to growth inhibition by TGF beta, displayed a concentration-dependent increase in GTP bound to p21ras by TGF beta 1 and a rapid activation of p21ras by TGF beta 2. The results provide the first direct evidence for rapid activation of a receptor coupling component for TGF beta in epithelial cells.  相似文献   

12.
Expression of transforming growth factor alpha (TGF alpha) mRNA and protein can be stimulated by estrogens such as 17 beta-estradiol (E2) in estrogen-responsive rodent and human breast cancer cells. To ascertain if E2 can directly regulate TGF alpha expression through the 5'-flanking region of the human TGF alpha gene, E2-responsive MCF-7 or ZR-75-1 human breast cancer cells or E2-nonresponsive MDA-MB-231 breast cancer cells were transiently transfected with a plasmid containing an 1140-base pair (bp) Sac-I fragment of the TGF alpha 5'-flanking region ligated to the chloramphenicol acetyltransferase (CAT) gene. Cells that were transfected and subsequently treated with physiological concentrations of E2 (10(-11)-10(-8) M) for 24 h exhibited a 2- to 10-fold increase in CAT activity. The E2 stimulation of CAT activity was dose-dependent with an increase first found at 10(-10) M E2. The increase in CAT activity could be detected within 24-36 h after the addition of E2. There was no significant change in CAT activity in transiently transfected MDA-MB-231 cells as mediated through the TGF alpha 5'-flanking region after E2 treatment. MCF-7 cells were also transiently transfected with different fragments of the TGF alpha 5'-flanking region ligated to the luciferase gene. In the absence of E2 treatment, no detectable luciferase activity was found.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Both transforming growth factor beta (TGF beta) and TGF alpha mRNA are expressed in human breast cancer cell lines. We have investigated the relationship of mRNA abundance for these growth modulators to the proliferation rate of a number of human breast cancer cell lines. Furthermore, we have investigated the relationship of regulation of TGF beta and TGF alpha mRNA to growth inhibition caused by progestins and nonsteroidal antiestrogens in T-47D human breast cancer cells. The abundance of TGF beta and TGF alpha mRNA in human breast cancer cell lines was not related directly to proliferation rate of the cells in culture or estrogen receptor positivity or negativity. The relationship of TGF beta and TGF alpha mRNA to growth inhibition caused by antiestrogens and progestins was investigated in T-47D human breast cancer cells. We observed that in T-47D human breast cancer cells the abundance of TGF beta mRNA is decreased in a time- and dose-dependent fashion by progestins but remains unaltered by nonsteroidal antiestrogens. Treatment of T-47D cells for 24 h with 10 nM medroxyprogesterone acetate (MPA) reduced the level of TGF beta mRNA to one third that present in untreated cells. The same treatment increased TGF alpha mRNA 3-fold above untreated controls in a time- and dose-dependent fashion and nonsteroidal antiestrogens caused a small decrease. The regulation of both TGF alpha and TGF beta mRNA was not directly related to inhibition of growth by progestins and antiestrogens in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF beta were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. Moreover, electron microscopy excluded the presence of endothelial cells by the absence of Weibel-Palade bodies. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classes of sites were detected by Scatchard analysis with respectively 21,000 and 37,000 sites per cell, with a KD of 0.3 x 10(-10) M and KD of 0.5 x 10(-9) M. The stimulation of DNA synthesis by PDGF was quantified by [3H]thymidine incorporation. When PDGF was added alone at a concentration of 15 ng/ml, it induced a maximal DNA synthesis of 400%, which increased up to 900%, in the presence of platelet-poor plasma (PPP). On the other hand, PDGF-induced fibroblast proliferation was inhibited in a dose-dependent manner by TGF beta. This inhibition was related to a significantly decreased binding of 125I-labeled PDGF observed in the presence of TGF beta. Our results suggested that PDGF and TGF beta could modulate the growth of bone marrow fibroblasts.  相似文献   

15.
An endothelial cell line (M40) resistant to growth inhibition by transforming growth factor-beta type 1 (TGF beta 1) was isolated by chemical mutagenesis and growth in the presence of TGF beta 1. Like normal endothelial cells, this mutant is characterized by high expression of type II TGF beta receptor and low expression of type I TGF beta receptor. However, the mutant cells display a type II TGF beta receptor of reduced molecular weight as a result of a general defect in N-glycosylation of proteins. The alteration does not impair TGF beta 1 binding to cell surface receptors or the ability of TGF beta 1 to induce fibronectin or plasminogen activator inhibitor-type I production. M40 cells were also resistant to growth inhibition by tumor necrosis factor alpha (TNF alpha) and interleukin-1 alpha (IL-1 alpha) but were inhibited by interferon-gamma (IFN gamma) and heparin. These results imply that TGF beta 1, TNF alpha, and IL-1 alpha act through signal transducing pathways that are separate from pathways for IFN gamma and heparin. Basic fibroblast growth factor was still mitogenic for M40, further suggesting that TGF beta 1, TNF alpha, and IL-1 alpha act by direct inhibition of cell growth rather than by interfering with growth stimulatory pathways.  相似文献   

16.
The effect of transforming growth factor-alpha (TGF alpha) on granulosa cell differentiation, as assessed by the acquisition of aromatase activity, was evaluated in vitro by using a primary culture of rat granulosa cells. Harvested from immature, diethylstilbestrol-treated rats, granulosa cells were cultured under serum-free conditions for 72 hr in the presence of saturating concentrations (10(-7)M) of aromatase substrate androstenedione with or without the specific experimental agents. Basal aromatase activity, as assessed by the generation of radioimmunoassayable estrogen was negligible, remaining unaffected by treatment with TGF alpha (10 ng/ml) by itself. Whereas treatment with follicle-stimulating hormone (FSH) resulted in a substantial increase in the extent of aromatization, concurrent treatment with TGF alpha (10 ng/ml) resulted in significant (P less than 0.05), yet reversible inhibition (78 +/- 5.6%) of FSH action. Significantly, this effect of TGF alpha could not be accounted for by a decrease in cellular viability or plating efficiency nor by a decrease in the number of cells or their DNA content. Although independent of the FSH dose employed, the TGF alpha effect proved dose- and time-dependent, with an apparent median inhibitory dose (EC50) of 0.33 +/- 0.04 ng/ml, and a minimal time requirement of 48 hr. Capable of substantial inhibition of the forskolin-stimulated accumulation of extracellular adenosine 3', 5' cyclic monophosphate (cAMP) and estrogen, TGF alpha had a measurable albeit limited effect on N6, 2-'O-Dibutyryladenosine 3':5'-cyclic monophosphate-supported estrogen production. Relative potency comparison revealed epidermal growth factor (EGF; EC50 = 0.24 +/- 0.03 ng/ml) and TGF alpha to be virtually equipotent as regards the attenuation of FSH-stimulated estrogen biosynthesis. Taken together, our findings indicate that TGF alpha, like EGF, acting at subnanomolar concentrations, is capable of attenuating the FSH-stimulated (but not basal) accumulation of estrogen. This effect of TGF alpha proved time- and dose-dependent, involving virtually complete neutralization of FSH action at site(s) both proximal and distal to cAMP generation. As such, these findings provide yet another example of the remarkable qualitative and quantitative similarities between EGF and TGF alpha, thereby reaffirming the prospect that ligands of the EGF/TGF alpha receptor may play a modulatory role in the course of granulosa cell ontogeny.  相似文献   

17.
We have examined the effect of Transforming Growth Factor (TGF) beta on proliferation of L6 and embryonic porcine myogenic cells. Proliferation of L6 cells was suppressed by both TGF beta-1 and TGF beta-2 in a dose-dependent manner. Half-maximal suppression of proliferation occurred at .036 ng TGF beta-1/ml and .06 ng TGF beta-2/ml. Maximal inhibition (60% suppression of proliferation for TGF beta-1 and 52% for TGF beta-2) occurred between .1 and .3 ng/ml for each growth factor. Suppression of proliferation was completely abolished in the presence of an anti-TGF beta antibody that inhibited the biological activity of TGF beta-1 and TGF beta-2. When we evaluated the effect of TGF beta-1 on proliferation of embryonic porcine myogenic cells we obtained results which were very similar to those obtained for L6 cells. Insulin-like growth factor (IGF)-I stimulated proliferation of L6 cells in a dose-dependent manner in serum-free, defined medium. However as little as .02 ng TGF beta-1/ml detectably suppressed this stimulation and .3 ng TGF beta-1/ml caused a 60% reduction in cell number in cultures treated with 30 ng IGF-l/ml. Thus TGF beta-1 significantly suppressed IGF-I-stimulated proliferation of L6 cells.  相似文献   

18.
Transforming growth factor beta (TGF beta) alters the cellular response to epidermal growth factor (EGF) in a number of systems, but the underlying mechanisms for these alterations are largely unknown. We have examined second messenger formation in Rat-1 cells following treatment with EGF and/or TGF beta to determine whether the ability of TGF beta to potentiate some EGF-stimulated processes might be mediated by TGF beta-induced alterations in the signal transduction mechanism. Incubation of serum-deprived confluent Rat-1 cells with 10 ng/ml TGF beta resulted in a marked elevation of cellular inositol trisphosphate and inositol tetrakisphosphate levels, which were maximal at 4 h and maintained for at least 8 h. The effect of TGF beta on levels of inositol trisphosphate and inositol tetrakisphosphate was blocked by actinomycin D, suggesting that RNA synthesis was required for the TGF beta effect. While EGF stimulation induced a rapid and transient (5 min) rise in inositol phosphate levels in control cells, the EGF effect was considerably increased, both in magnitude and duration, by TGF beta treatment. Measurement of intracellular free Ca2+ with fura-2 demonstrated that TGF beta treatment markedly increased the EGF-stimulated rise in free Ca2+ and increased the duration of the response. The positive effects of TGF beta on EGF stimulation could not be explained on the basis of increased EGF binding to cells. We conclude that TGF beta treatment can both activate phosphatidylinositol turnover independently and also sensitize Rat-1 cells to stimulation by EGF.  相似文献   

19.
We have characterized the expression of transforming growth factor alpha (TGF alpha) and its receptor, the epidermal growth factor receptor (EGF-R), in normal and malignantly transformed human mammary epithelial cells. Human mammary epithelial cells were derived from a reduction mammoplasty (184), immortalized by benzo-a-pyrene (184A 1N4), and further transformed by the oncogenes simian virus 40 T (SV40 T), v-Ha-ras, and v-mos alone or in combination using retroviral vectors. 184 and 184A 1N4 cells require EGF for anchorage-dependent clonal growth. In mass culture, they secrete TGF alpha at high concentrations and exhibit an attenuated requirement for exogenous EGF/TGF alpha. SV40 T transformed cells have 4-fold increased EGF-R, have acquired the ability to clone in soft agar with EGF/TGF alpha supplementation, but are not tumorigenic. Cells transformed by v-mos or v-Ha-ras are weakly tumorigenic and capable of both anchorage dependent and independent growth in the absence of EGF/TGF alpha. Cells transformed by both SV40 T and v-Ha-ras are highly tumorigenic, are refractory to EGF/TGF alpha, and clone with high efficiency in soft agar. The expression of v-Ha-ras is associated with a loss of the high (but not low) affinity binding component of the EGF-R. Malignant transformation and loss of TGF alpha/EGF responsiveness did not correlate with an increase in TGF alpha production. Thus, TGF alpha production does not appear to be a tumor specific marker for human mammary epithelial cells. Differential growth responses to EGF/TGF alpha, rather than enhanced production of TGF alpha, may determine the transition from normal to malignant human breast epithelium.  相似文献   

20.
We have investigated the effects of transforming growth factor alpha (TGF alpha) in C3H10T1/2 cells, on S phase entry and early gene activation events associated with cell cycle progression. We find that EGF and TGF alpha, which both utilize the EGF receptor for signal generation, are able to stimulate DNA synthesis in these cells with nearly superimposable kinetics; however, the stimulation by TGF alpha was slightly greater at nearly all time points assayed. This report is the first showing that TGF alpha, like EGF, vigorously induces c-myc and c-fos gene expression in these cells. A significant stimulation of c-myc and c-fos mRNA levels is observed with both TGF alpha and EGF; c-myc mRNA levels show an 8-fold induction with both mitogens, while c-fos inductions were on the order of 12 to 14-fold at maximum. However, the induction of c-myc mRNA by TGF alpha has slower kinetics than by EGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号