首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract: Free-living bacteria are expert in adapting to variations in nutrient availability, often using an array of transport systems of different affinities to scavenge for particular substrates (multiport). This review concentrates on the regulation of expression of different transporters contributing to multiport in response to varying nutrient levels. A novel mechanism of controlling bacterial transport affinity under sugar limitation is described. In particular, switching from glucose-rich to glucose-limited conditions results in Escherichia coli orchestrating outer membrane changes as well as the induction of a periplasmic binding protein-dependent (ABC-type) transport system. The changes leading to the high affinity transport pathway are directed towards uptake of rapidly utilisable concentrations and are optimal close to 10−6 M medium glucose. High affinity transport is absent under both glucose-rich 'feast' and glucose-starved 'famine' conditions hence high affinity transporters are not simply repressed by excess nutrient. Rather, the improvement in glucose scavenging involves induction of genes in 2 distinct regulons ( mgl/gal and mal/lamB ) through synthesis of 2 different endogenous inducer molecules (galactose, maltotriose). Endoinducer levels are tightly controlled by extracellular glucose concentration at different glucose-limited growth rates. Aside from endoinducers, the elevated intracellular level of cAMP plays a role in induction of the high-affinity pathway but CAMP-mediated relief from catabolite repression is not itself sufficient for high affinity transport. In contrast to the repressive role of glucose when present at millimolar concentrations, micromolar glucose also leads to the induction of transport systems for other sugars, further broadening the scavenging potential of nutrient-limited bacteria for other substrates.  相似文献   

3.
4.
Sucrose is required for plant growth and development. The sugar status of plant cells is sensed by sensor proteins. The signal generated by signal transduction cascades, which could involve mitogen-activated protein kinases, protein phosphatases, Ca2+ and calmodulins, results in appropriate gene expression. A variety of genes are either induced or repressed depending upon the status of soluble sugars. Abiotic stresses to plants result in major alterations in sugar status and hence affect the expression of various genes by down- and up-regulating their expression. Hexokinase-dependent and hexokinase-independent pathways are involved in sugar sensing. Sucrose also acts as a signal molecule as it affects the activity of a proton-sucrose symporter. The sucrose transporter acts as a sucrose sensor and is involved in phloem loading. Fructokinase may represent an additional sensor that bypasses hexokinase phosphorylation especially when sucrose synthase is dominant. Mutants isolated on the basis of response of germination and seedling growth to sugars and reporter-based screening protocols are being used to study the response of altered sugar status on gene expression. Commoncis-acting elements in sugar signalling pathways have been identified. Transgenic plants with elevated levels of sugars/sugar alcohols like fructans, raffinose series oligosaccharides, trehalose and mannitol are tolerant to different stresses but have usually impaired growth. Efforts need to be made to have transgenic plants in which abiotic stress responsive genes are expressed only at the time of adverse environmental conditions instead of being constitutively synthesized.  相似文献   

5.
Monosaccharides available in the extracellular milieu of Agrobacterium tumefaciens can be transported into the cytoplasm, or via the periplasmic sugar binding protein, ChvE, play a critical role in controlling virulence gene expression. The ChvE-MmsAB ABC transporter is involved in the utilization of a wide range of monosaccharide substrates but redundant transporters are likely given the ability of a chvE-mmsAB deletion strain to grow, albeit more slowly, in the presence of particular monosaccharides. In this study, a putative ABC transporter encoded by the gxySBA operon is identified and shown to be involved in the utilization of glucose, xylose, fucose, and arabinose, which are also substrates for the ChvE-MmsAB ABC transporter. Significantly, GxySBA is also shown to be the first characterized glucosamine ABC transporter. The divergently transcribed gene gxyR encodes a repressor of the gxySBA operon, the function of which can be relieved by a subset of the transported sugars, including glucose, xylose, and glucosamine, and this substrate-induced expression can be repressed by glycerol. Furthermore, deletion of the transporter can increase the sensitivity of the virulence gene expression system to certain sugars that regulate it. Collectively, the results reveal a remarkably diverse set of substrates for the GxySBA transporter and its contribution to the repression of sugar sensitivity by the virulence-controlling system, thereby facilitating the capacity of the bacterium to distinguish between the soil and plant environments.  相似文献   

6.
The acido-and thermophilic red alga Galdieria sulphuraria (Galdieri)Merola grows under mixo- and heterotrophic conditions on 27different sugars and sugar alcohols as sole carbon source. Weseparated two strains from an isolate originally collected atMt. Lawu (Indonesia). These strains are indistinguishable ingrowth and pigmentation under autotrophic conditions. However,under heterotrophic conditions, strain 074 W lost most of itspigments whereas strain 074 G stayed green on all substratestested. Strain 074 G had the highest pigment content when grownon sugar alcohols. Usually the alga exhibited a short lag-phasefollowed by logarithmic growth. However, when transferred fromauto- to heterotrophic conditions a lag-period of about 45 dayswas observed with the sugar alcohol dulcitol. Similarly, longlag-periods were also noticed for strain 074 G grown on D-mannitoland for strain 074 W grown on D-ribose. The length of the lag-phaseis a function of the length of the previous culture under autotrophicconditions. This enormous versatility in the heterotrophic growthof Galdieria sulphuraria presents an ideal system to study themetabolism of rare sugars and sugar alcohols. (Received November 21, 1994; Accepted March 9, 1995)  相似文献   

7.
8.
Kinetic profiles for sucrose, glucose and 3-OMG glucose were determined in leaf discs of Phaseolus coccinius L. (cv. Scarlet). All three sugars exhibited identical uptake kinetics. At sugar concentrations below 25 m M , transport was due to an active, carrier-mediated transport system. A linear component was the dominant mode of uptake at sugar concentrations above 25 m M . Sucrose and glucose carriers were specific for these sugars, since no uptake inhibition was observed from competing sugars. Sucrose was not hydrolyzed by leaf tissue because the label in asymetrically labeled sucrose was not randomized. Furthermore, no label was present in hexose fractions when tissue was incubated with [84C]-sucrose. Therefore, [14C]-sucrose uptake did not reflect hexose uptake.
Both saturable and linear components of uptake contribute significantly to total uptake rates. The former, however, is more important when apoplastic sugar concentrations are low. The molecular nature of the linear component is not well understood but accounts for most of the uptake at high sugar concentrations.  相似文献   

9.
Specific growth rates of Bacteroides thetaiotaomicron NCTC 10582 with either glucose, arabinose, mannose, galactose or xylose as sole carbon sources were 0.42/h, 0.10/h, 0.38/h, 0.38/h and 0.16/h respectively, suggesting that hexose metabolism was energetically more efficient than pentose fermentation in this bacterium. Batch culture experiments to determine whether carbohydrate utilization was controlled by substrate-induced regulatory mechanisms demonstrated that mannose inhibited uptake of glucose, galactose and arabinose, but had less effect on xylose. Arabinose and xylose were preferentially utilized at high dilution rates (D > 0.26/h) in carbon-limited continuous cultures grown on mixtures of arabinose, xylose, galactose and glucose. When mannose was also present, xylose was co-assimilated at all dilution rates. Under nitrogen-limited conditions, however, mannose repressed uptake of all sugars, showing that its effect on xylose utilization was strongly concentration dependent. Studies with individual D-ZU-14C]-labelled substrates showed that transport systems for glucose, galactose, xylose and mannose were inducible. Measurements to determine incorporation of these sugars into trichloroacetic acid-precipitable material indicated that glucose and mannose were the principal precursor monosaccharides. Xylose was only incorporated into intracellular macromolecules when it served as growth substrate. Phosphoenolpyruvate:phosphotransferase systems were not detected in preliminary experiments to elucidate the mechanisms of sugar uptake, and studies with inhibitors of carbohydrate transport showed no consistent pattern of inhibition with glucose, galactose, xylose and mannose. These results indicate the existence of a variety of different systems involved in sugar transport in B. thetaiotaomicron.  相似文献   

10.
The influence of other hemicellulosic sugars (arabinose, galactose, mannose and glucose), oxygen limitation, and initial xylose concentration on the fermentation of xylose to xylitol was investigated using experimental design methodology. Oxygen limitation and initial xylose concentration had considerable influences on xylitol production by Canadida tropicalis ATCC 96745. Under semiaerobic conditions, the maximum xylitol yield was 0.62 g/g substrate, while under aerobic conditions, the maximum volumetric productivity was 0.90 g/l h. In the presence of glucose, xylose utilization was strongly repressed and sequential sugar utilization was observed. Ethanol produced from the glucose caused 50% reduction in xylitol yield when its concentration exceeded 30 g/l. When complex synthetic hemicellulosic sugars were fermented, glucose was initially consumed followed by a simultaneous uptake of the other sugars. The maximum xylitol yield (0.84 g/g) and volumetric productivity (0.49 g/l h) were obtained for substrates containing high arabinose and low glucose and mannose contents.  相似文献   

11.
Glucose and galactose uptake ability in Cyclotella cryptica (clone WT-1-8) and glucose uptake ability in Coscinodiscus sp. develop rapidly in the dark. Induction of sugar uptake ability in the dark does not require the presence of sugar in the medium. The sugars are taken up by carrier-mediated systems. In C. cryptica glucose and galactose are probably taken up by the same system. The capacity of glucose uptake in this recently isolated clone of C. cryptica is nearly 5 times that of a previously studied clone (0-3A). Other organic compounds, which by themselves do not support heterotrophic growth, can be taken up and respired by both diatoms at considerable rates compared, to glucose and galactose. Therefore, in nature, these diatoms may be able to utilize a variety of dissolved organic compounds as sources of intermediary metabolites and as respiratory substrates.  相似文献   

12.
We report the isolation and characterization of two sucrose transporter cDNAs (CitSUT1 and CitSUT2) from citrus. CitSUT1 and CitSUT2 encode putative proteins (CitSUT1 and CitSUT2) of 528 and 607 amino acids, respectively. CitSUT1 and CitSUT2 share high similarities with sucrose transporters isolated from other plants. The expression of CitSUT1 in mature leaf discs is repressed by exogenous sucrose, glucose, mannose, and the glucose analog 2-deoxyglucose but not by another glucose analog 3-O-methylglucose, indicating a hexokinase (HXK)-mediated signaling pathway. CitSUT2 expression is not affected by exogenous sugars. Whereas CitSUT1 expresses strongly in source, sugar exporting organs, CitSUT2 expresses more strongly in sink, sugar importing organs, suggesting different physiological roles for these sucrose transporters.  相似文献   

13.
14.
15.
16.
The transporters responsible for sugar uptake into non-photosynthetic sink tissues in plants, such as roots and flowers, have not been fully identified and analyzed. Plants encode around 100 putative sugar transporters within the major facilitator superfamily, yet only a few have been studied. Here we report the analysis of a sugar alcohol permease homolog (AtPLT5, At3g18830) from Arabidopsis. A wide range of sugars including hexoses, pentoses, tetroses, a sugar acid, and sugar alcohols but not disaccharides induced inward currents in oocytes expressing AtPLT5. AtPLT5 expression also resulted in 14C-labeled substrate uptake in oocytes, indicating that AtPLT5 encodes an ion-coupled uptake transporter. K(0.5) values for glucose and sorbitol were highly dependent on external pH. Expression of AtPLT5 was found primarily in sink tissues: in the elongation zone of roots, in the inflorescence stem, and several floral structures, especially in the floral abscission zone. Expression was induced by mechanical wounding and insect feeding. Analysis of transport properties and expression in Arabidopsis indicate that AtPLT5 functions to transport a wide range of sugars into specific sink tissues in the plant.  相似文献   

17.
Short-term transport studies were conducted using excised whole Zea mays kernels incubated in buffered solutions containing radiolabeled sugars. Following incubation, endosperms were removed and rates of net 14C-sugar uptake were determined. Endogenous sugar gradients of the kernel were estimated by measuring sugar concentrations in cell sap collected from the pedicel and endosperm. A sugar concentration gradient from the pedicel to the endosperm was found. Uptake rates of 14C-labeled glucose, fructose, and sucrose were linear over the concentration range of 2 to 200 millimolar. At sugar concentrations greater than 50 millimolar, hexose uptake exceeded sucrose uptake. Metabolic inhibitor studies using carbonylcyanide-m-chlorophenylhydrazone, sodium cyanide, and dinitrophenol and estimates of Q10 suggest that the transport of sugars into the developing maize endosperm is a passive process. Sucrose was hydrolyzed to glucose and fructose during uptake and in the endosperm was either reconverted to sucrose or incorporated into insoluble matter. These data suggest that the conversion of sucrose to glucose and fructose may play a role in sugar absorption by endosperm. Our data do not indicate that sugars are absorbed actively. Sugar uptake by the endosperm may be regulated by the capacity for sugar utilization (i.e. starch synthesis).  相似文献   

18.
The Hgt4 protein of Candida albicans (orf19.5962) is orthologous to the Snf3 and Rgt2 glucose sensors of Saccharomyces cerevisiae that govern sugar acquisition by regulating the expression of genes encoding hexose transporters. We found that HGT4 is required for glucose induction of the expression of HGT12, HXT10, and HGT7, which encode apparent hexose transporters in C. albicans. An hgt4Delta mutant is defective for growth on fermentable sugars, which is consistent with the idea that Hgt4 is a sensor of glucose and similar sugars. Hgt4 appears to be sensitive to glucose levels similar to those in human serum ( approximately 5 mM). HGT4 expression is repressed by high levels of glucose, which is consistent with the idea that it encodes a high-affinity sugar sensor. Glucose sensing through Hgt4 affects the yeast-to-hyphal morphological switch of C. albicans cells: hgt4Delta mutants are hypofilamented, and a constitutively signaling form of Hgt4 confers hyperfilamentation of cells. The hgt4Delta mutant is less virulent than wild-type cells in a mouse model of disseminated candidiasis. These results suggest that Hgt4 is a high-affinity glucose sensor that contributes to the virulence of C. albicans.  相似文献   

19.
Sugar utilization and its control in hyperthermophiles   总被引:5,自引:0,他引:5  
Many hyperthermophilic microorganisms show heterotrophic growth on a variety of carbohydrates. There has been considerable fundamental and applied interest in the utilization of glucose and its α- and β-polymers by hyperthermophiles. While glycolysis by Bacteria at high temperatures shows conventional characteristics, it has been found that glucose catabolism by hyperthermophilic Archaea differs from the canonical glycolytic pathways, involves novel enzymes, and shows a unique control. This review addresses these aspects with specific attention to Pyrococcus furiosus, which is one of the best studied hyperthermophilic Archaea, has the capacity to grow on a variety of sugars including the marine β-(1,3)-linked glucose polymer laminarin, and has been found to contain three novel glycolytic enzymes, two ADP-dependent kinases, and a ferredoxin-dependent glyceraldehyde-3-phosphate oxidoreductase. Received: January 22, 1998 / Accepted: February 16, 1998  相似文献   

20.
There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号