首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The intracellular concentration of free leucine, isoleucine, and valine and their metabolism were studied in lymphoblast cultures established from peripheral blood of an individual with maple syrup urine disease (MSUD) and a control subject. Branched-chain -keto acid decarboxylase activity in the MSUD cells was 10% or less of the control value as measured by the ability of the cells to release 14CO2 from the corresponding [1-14C]labeled branched-chain amino acid. The intracellular concentrations of free leucine and isoleucine were increased three-fold in MSUD lymphoblasts as compared to control cells. Free valine was present in only trace amounts of less than 0.1 mMin both cell lines. Exposure of normal and mutant cells to a 10 mMload of leucine, isoleucine, and valine resulted in a comparable concentration within cells after 24 hr. Concentrations returned to base values in normal cells 12 hr after removal of load, but leucine remained elevated in MSUD cells after 3 days. Leucine and its keto acid, -ketoisocaproic acid, added to the culture medium gave significant growth inhibition of MSUD lymphoblasts but not of normal cells, in the millimolar range. Isoleucine, valine, and their keto acids had no effect.This investigation was supported in part by Grants AM-13622, AM-05646, and GM-17702 from the United States Public Health Service, Veterans Administration Grant M.R.I.S. No. 3181 to Dr. Nathan Gochman, and grants from the National Foundation and the Kroc Foundation. S. D. S. is a Postdoctoral Research Fellow supported by United States Public Health Service Training Grant AM-05646.  相似文献   

2.
A Nicotiana plumbaginifolia cell line able to grow in the presence of high doses of valine was isolated following -rays mutagenesis. The selected clone, named D5R5, showed a growth rate higher than that of wild-type. It was less sensitive also to an equimolar mixture of the three branched-chain amino acids, but did not display cross-resistance to isoleucine and leucine. The increased tolerance was due to neither a reduced valine uptake, nor a modification in the level or sensitivity to feed-back inhibition by valine of the first common enzyme (and the main regulative site) in isoleucine, leucine and valine synthesis, acetohydroxyacid synthase (AHAS). When wild-type cells were fed with valine or equimolar mixtures of the three aminoacids, a decrease in AHAS level was found. On the contrary, the level of extractable AHAS activity from D5R5 cells was significantly less affected by similar treatments, suggesting that some alteration in enzyme modulation mechanism(s) could account for valine resistance.Abbreviations AHAS acetohydroxyacid synthase - BCAA branched-chain amino acid - FAD flavin adenine dinucleotide - ILV equimolar mixture of isoleucine, leucine and valine - TPP thiamine pyrophosphate  相似文献   

3.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   

4.
  1. Succinic acid is formed in amounts of 0.2–1.7 g/l by fermenting yeasts of the genusSaccharomyces during the exponential growth phase. No differences were observed between the various species, respiratory deficient mutants and wild type strains.
  2. At low glucose concentrations the formation of succinic acid depended on the amount of sugar fermented. However, the nitrogen source was found to be of greater importance than the carbon source.
  3. Of all nitrogen sources, glutamate yielded the highest amounts of succinic acid. Glutamate led to an oxidative and aspartate to a reductive formation of succinic acid.
  4. A reductive formation of succinic acid by the citric acid cycle enzymes was observed with malate. This was partially inhibited by malonate. No evidence was obtained that the glyoxylate cycle is involved in succinic acid formation by yeasts.
  5. Anaerobically grown cells ofSaccharomyces cerevisiae contained α-ketoglutarate dehydrogenase. Its activity was found in the 175000 x g sediment after fractionated centrifugation. The specific activity increased 6-fold after growth on glutamate as compared with cells grown on ammonium sulfate.
  6. The specific activities of malate dehydrogenase, fumarase, succinate dehydrogenase, succinylcoenzymeA synthetase, α-ketoglutarate dehydrogenase and glutamate dehydrogenase (nicotinamide adenine dinucleotide dependent) were determined in yeast cells grown on glutamate or ammonium sulfate. Similar results were obtained with a wild type strain and a respiratory deficient mutant. The latter did not contain succinate dehydrogenase.
  7. In fermenting yeasts succinic acid is mainly formed from glutamate by oxidation.
  相似文献   

5.
Duckweed colonies were grown on 1 l of nutrient solution supplied with 10 M l-[14C]leucine or with 25 M l-[14C]valine. Under these conditions the exogenously supplied amino acid did not inhibit growth, but caused in the plants a moderately increased pool of that amino acid, which remained essentially constant during the culture period. The effect of the increased pool of valine or leucine on the biosynthesis of these amino acids was determined from isotope dilution in the protein-bound valine and-or leucine. An increase in the leucine pool from 1.1 to 5.0 nmol mg–1 dry weight resulted in a 21% reduction of metabolite flow through the common part of the valine-leucine biosynthetic pathway; leucine synthesis was reduced by 35%, but valine synthesis by only 5% and isoleucine synthesis was apparently unaffected. An increase in the valine pool from 3.2 to 6.6 nmol mg–1 dry weight reduced the metabolite flow through the valine-leucine pathway by 48%, valine synthesis by 70%, and leucine synthesis from pyruvate by 29%, which was compensated by leucine synthesis from exogenous valine, whereas the synthesis of isoleucine was not changed. It is concluded that the biosynthesis of valine and leucine is mainly controlled by feedback inhibition of acetohydroxyacid synthetase. In vivo, the feedback inhibition can be exerted in such a way that synthesis of acetolactate (the precursor of valine and leucine) is appreciably reduced, whereas synthesis of acetohydroxybutyrate (the isoleucine precursor) is not inhibited.  相似文献   

6.
The biotransformation of [2-14C](±)9, 10-dihydrojasmonic acid (DJA) was studied in excised shoots of 6-day-old barley seedlings after 72 h. From the ethyl acetate extract, some minor metabolites were isolated and purified by DEAE-Sephadex A-25 chromatography, thin-layer chromatography (TLC), C18-cartridges, and high-performance liquid chromatography (HPLC). The structural identification of these metabolites was performed by gas chromatography-mass spectrometry (GC-MS), circular dichroism (CD), and amino acid analysis, and the following amino acid conjugates were found:N-[(?)9,10-dihydrojasmonoyl]valine,N-[(?)9,10-dihydrojasmonoyl]isoleucine,N-[9,10-dihydrojasmonoyl]leucine,N-[11-hydroxy-9,10-dihydrojasmonoyl]valine,N-[11-hydroxy-9,10-dihydrojasmonoyl]isoleucine,N-[12-hydroxy-9,10-dihydrojasmonoyl]isoleucine; and the cucurbic acid-related compoundsN-{[3-hydroxy-2(4-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine andN-{[3-hydroxy-2(5-hydroxypentyl)-cyclopent-1-yl]-acetyl}isoleucine. The results suggest conjugation with isoleucine and valine, as well as preferential hydroxylation at position C-11 or hydrogenation at position C-6, as being important steps in the metabolism of (±)DJA in barley shoots.  相似文献   

7.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

8.
Summary During derepression of threonine deaminase and acetolactate synthetase due to valine deficiency—initiated by -aminobutyric acid limited growth of E. coli K12 or by limited valine supply to an ilv/leu auxotroph of E. coli K12—no alteration of the specific activity of isoleucyl-tRNA-synthetase occurs. Leucine limited growth of the auxotroph, leading to an even higher derepression of the isoleucine biosynthetic enzymes, also does not affect the specific activity of isoleucyl-tRNA-synthetase. However, under growth conditions where the same degree of derepression of threonine deaminase is due to isoleucine deficiency, as in E. coli K12B or two valine resistant mutants thereof grown in the presence of valine, or in the auxotroph during growth-limiting isoleucine supply, a specific two- to three-fold derepression of the isoleucyl-tRNA-synthetase takes place. But there is no strict correlation between the degree of derepression of threonine deaminase due to isoleucine deficiency and the degree of derepression of isoleucyl-tRNA-synthetase, as especially shown in case of the valine resistant mutant Val R4 and Val R5 grown in the presence of valine.These results demonstrate that the rate of formation of isoleucyl-tRNA-synthetase and of threonine deaminase are not regulated by the same molecular devices and that a certain degree of isoleucine deficiency is a prerequisite for a derepression of isoleucyl-tRNA-synthetase.  相似文献   

9.
Summary In our laboratory, EAPc-7 a strain having higher aspartase activity was derived from Escherichia coli ATCC 11303. For the improvement of l-aspartic acid productivity using EAPc-7 cells immobilized in -carrageenan, it was necessary to eliminate the fumarase activity which converts fumaric acid to l-malic acid. Several treatments for specifically eliminating fumarase activity from EAPc-7 cells were tested and it was found that when EAPc-7 cells were treated in a culture broth (pH 4.9) containing 50 mM l-aspartic acid at 45° C for 1 h, fumarase activity was almost completely eliminated without inactivation of the aspartase.The treated cells, immobilized in -carrageenan, were used for continuous production of l-aspartic acid from ammonium fumarate. The formation of l-malic acid was negligible and the half-life of the immobilized preparation was 126 days.Productivity of immobilized preparation of treated EAPc-7 cells in l-aspartic acid production was six times of that of the parent cell preparation.  相似文献   

10.
When Corynebacterium glutamicum ATCC 14310 (leu-) was cultured with 200 mg/l leucine and 150 mM -hydroxybutyric acid the acetohydroxy acid synthase activity was increased to 0.17 U/mg as compared to 0.03 U/mg in the wildtype. This increase was a combined effect of the limiting amounts of leucine added, together with an apparent additional internal leucine/valine shortage resulting from accumulated -ketobutyric acid (5 mM) and the kinetic characteristics of the acetohydroxy acid synthase. The increase in the specific AHAS activity by the appropriate amino acid limitation resulted in an increased isoleucine yield of 71 mmol/l as compared to 27 mmol/l obtained under non-limiting conditions.Abbreviation AHAS Acetohydroxy acid synthase  相似文献   

11.
Summary The yeast fungus Dipodascus aggregatus was grown aerobically on 9 different nitrogen sources and the production of volatile compounds determined by a gas chromatographic head-space technique. Excellent growth was supported by glutamine, aspartic acid, asparagine, (NH4)2-tartrate and NH4H2PO4. Valine, leucine, and particularly isoleucine were utilized with a somewhat lower growth rate. Lysine was rapidly utilized after a prolonged lag phase.The highest production of volatile compounds was obtained from leucine and isoleucine. At least 20 volatile compounds were formed from each of them and many products were detected in high concentrations. Intermediate amounts of volatile compounds were produced from asparagine, the ammonium salts and valine, and low amounts from lysine, glutamine and aspartic acid.Ethyl acetate was a major product irrespective of the nitrogen source used. Regarding the pattern of volatile compounds produced, leucine, isoleucine and valine had much in common. Most of the volatile products formed from these amino acids contained a branched carbon chain and at least three high-boiling components eluted later than n-amyl acetate from the gas chromatographic column. The other six nitrogen sources could be grouped together. In general the same volatile compounds were formed from these sources, but the quantities of the individual compounds differed. Only one component eluted later than n-amyl acetate. No basic difference in production of volatile compounds was observed between the ammonium salts and -amino compounds like lysine and asparagine.  相似文献   

12.
Summary The time course for the synthesis of glutamic acid and by-products from glucose was investigated using immobilized cell reactor of the bacterium C.glutamicum. Lactic acid, succinic acid, alanine acid and aspartic acid were formed early in the fermentation and during the active growth phase, whereas gluconic acid, -ketoglutaric acid and proline were produced late and during the active phase of glutamic acid synthesis. Oxygen transfer rate in fermentation broth had a pronounced effect on the nature and quantities of fermentation products. In continuous fermentation and at OTR of 102.5 mMO2/l.h., formation of by-products greatly decreased and up to 58.5 g/l of glutamic acid were produced with a conversion efficiency of 74.6% of the theoretical value and volumetric productivity of 6.2 g/l.h.  相似文献   

13.
Amino acid profiles in some scented rice varieties   总被引:3,自引:0,他引:3  
Summary Twelve scented (basmati) and one non-scented variety were analysed for their amino acid composition. The essential amino acid profiles of scented varieties when compared with non-scented, revealed that these varieties exhibited higher values, which ranged from 2.82 to 4.86 gm/100 gm protein for lysine, 1.92 to 3.13 for methionine, 1.67 to 4.23 for tyrosine, 3.65 to 4.91 for phenylalanine, 5.50 to 8.95 for leucine, 2.25 to 3.40 for isoleucine, 2.84 to 3.46 for threonine, 3.36 to 5.33 for valine. When these values were compared to FAO recommended standards, it was observed that most of the scented varieties had comparable or superior values, while varieties such as, Type 3, Basmati sufaid 100, Likitimachi, Randhunipagalu and Basmati 370 showed superior lysine, phenylalanine, leucine, and methionine content. These observations suggest that the scented varieties posses better amino acid profiles and exhibit superior nutritional qualities, which could be utilised in breeding varieties with improved amino acid composition.  相似文献   

14.
  1. The influence of varying amounts of amino acids on the uptake of threonine, isoleucine, valine and leucine and their degradation to higher alcohols was investigated using a mutant strain of Saccharomyces cerevisiae, mating type a, genetic markers ade2, hom2, thr4, ilv2, leu1.
  2. The cell mass is increased by increasing concentrations of threonine, isoleucine, valine and leucine, the latter two resulting in a higher dry weight. The amino acids are completely utilised at low concentrations. At higher contents up to 20% of the amino acids remain in the medium. The uptake of threonine, isoleucine, valine and leucine depends on the relative amounts of the concentrations of these amino acids in the medium. A greater amount of an amino acid is taken up if its concentration is comparatively higher than those of the other amino acids. There is a competition between the amino acids for the uptake into the cells.
Higher amounts of intracellular isoleucine and leucine are converted to 2-and 3-methylbutanol when compared with the degradation of valine and threonine to isobutanol and n-propanol-1, isoleucine and leucine up to 90%, valine up to 24% and threonine up to 20%. There is a competition between the four amino acids for their degradation to the corresponding higher alcohols. This behaviour confirms the earlier assumption of a degradation of the four amino acids by unspecific enzymes.  相似文献   

15.
Summary For continuous production of 6-aminopenicillanic acid (6-APA) the microbial cells ofEscherichia coli ATCC 9637 having high penicillin amidase (penicillin amidohydrolase, E.C. 3. 5. 1. 11) activity were immobilized by entrapment in a polyacrylamide gel lattice.Enzymatic properties of penicillin amidase of the immobilizedE. coli cells were investigated and compared with those of the intact cells. With regard to optimal pH and temperature, no marked difference was observed. The heat stability was somewhat increased by immobilization of the cells.The enzyme activity of the immobilized cell column was stable, and its half-life was 17 days at 40°C and 42 days at 30°C. From the effluent of the column, 6-APA was easily obtained in a good yield.Abbreviations 6-APA 6-aminopenicillanic acid - BIS N,N-methylenebisacrylamide - DMAPN -dimethylaminopropionitrile - SV space velocity  相似文献   

16.
Summary We have previously shown that resistance to the -lactam mecillinam in Escherichia coli can be brought about by a high ppGpp pool, as observed under conditions of partial amino acid starvation and ReIA-dependent induction of the stringent response. We show here that our E. coli wild-type strain, which is sensitive to mecillinam on minimal glucose plates, becomes resistant in the presence of lleucine or L-serine (or cysteine, which inactivates the antibiotic). The resistance, which is not a transient effect and does not depend on the physiological state of the cells when plated, is specific for mecillinam and is reversed by the presence of isoleucine and valine in the medium. At least in the case of serine, the resistance is ReIA-dependent. We conclude that the presence of leucine and serine in the growth medium cause partial starvation for isoleucine/valine, leading to induction of the stringent response and concomitant resistance to mecillinam.  相似文献   

17.
An anaerobic fermentation process was developed for production of natural propionic, acetic and succinic acids froml-lactic acid usingSelenomonas ruminantium. Thel-lactic acid was quickly converted to a racemic mixture and there was no enantiomeric preference for further metabolism. The lactic acid was metabolized to propionic, acetic and succinic acids typically in a molar ratio of about 531. However, the ratio of propionate: succinate started high (as much as 221), before declining to as low as 51 after the first 48 h. Nutrients in corn steep liquor and yeast extract were necessary for optimal production of propionic acid. The corn steep liquor and yeast extract were heat stable at neutral pH, but some nutritional qualities were lost when heated at pH 2.4. In fed-batch fermentation on lactic acid 2.0% propionic acid was produced in 48 h and 2.3% in 68 h. A continuous culture operated at a dilution rate of 0.055 h–1 and a lactic acid feed concentration of 30 gL–1 had a propionic acid productivity of 0.59 gL–1h–1. The steady state results were: lactic acid 0.6%, propionic acid 1.1%, acetic acid 0.50%, and succinic acid 0.33%.  相似文献   

18.
Summary A rapid and accurate method is described for the determination of succinic acid allowing direct application of the fermentation broth filtrate to TLC plate. Subsequent chromatographic separation on silica gel thin-layer and detection of succinic acid by a copper salt reagent, permits quantitative densitometric evaluation of succinic acid in the concentration range from 10 to 40 g. The quantitative analyses are reproducible and the assay has a coefficient of variation of 3.2%.  相似文献   

19.
Partly biosynthetic site-directed isotopically 13C enriched photosynthetic light-harvesting 2(LH2) complexes have been prepared from Rhodopseudomonas acidophila strain 10050 by using chemically labeled [1,2,3,4–13C], [1,4–13C] and [2,3–13C] succinic acid as a precursor in the growth medium. Two-dimensional proton driven spin diffusion (PDSD) solid state NMR correlation spectroscopy has been used to trace each individual 13C isotope from the labeled succinic acid precursor to its destination into the protein and into the embedded major light-absorbing bacteriochlorophyll cofactors. For both the residues of the protein and for the cofactors distinct labeling patterns have been deduced, for protein complexes prepared from [1,4–13C]-succinic acid or [2,3–13C]-succinic labeled media. All residues, except isoleucine and leucine, have been labeled almost homogeneously by the succinic acid precursor. Carbonyl carbons in the protein backbone were labeled by [1,4–13C]-succinic acid, while the C and C carbons of the residues were labeled by [2,3 13C]-succinic acid. Leucine and isoleucine residues were labeled using a uniformly labeled amino acid mixture in the medium. The pattern labeling yields an increase of the resolution and less spectral crowding. The partial labeling technique in combination with conventional solid state NMR methods at ultra high magnetic fields provides an attractive route to resolve chemical shifts for -helical transmembrane protein structures.  相似文献   

20.
发酵产丁二酸过程中废弃细胞的循环利用   总被引:1,自引:0,他引:1  
对厌氧发酵产丁二酸后的废弃细胞进行破壁处理,考察了以细胞水解液作为有机氮源重新用于丁二酸发酵的可行性。比较了超声破碎、盐溶、酶解3种方法破碎细胞获得的水解液作为氮源发酵产丁二酸的效果,结果表明酶解制得的细胞水解液效果最佳。以总氮含量为1.11g/L的酶解液(相当于10g/L酵母膏)作为氮源发酵,丁二酸产量可达42.0g/L,继续增大酶解液用量对耗糖、产酸能力没有显著提高。将细胞酶解液与5g/L酵母膏联用发酵36h后,丁二酸产量达75.5g/L,且丁二酸生产强度为2.10g/(L·h),比使用10g/L酵母膏时提高了66.7%。因此,厌氧发酵产丁二酸结束后的废弃细胞酶解液可以替代原培养基中50%的酵母膏用于发酵。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号