首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes the potential of oil-utilizing bacteria associated with live fish from the Arabian Gulf for hydrocarbon attenuation in seawater polluted with oil. Maintaining local live fish (grey mullet and tilapia) in seawater artificially polluted with crude oil or individual hydrocarbons for 3 w led to dramatic attenuation of those compounds. The same result was obtained when instead of live fish, the bacterial consortia scraped off from the fish surfaces were used. Almost similar hydrocarbon attenuation results were obtained irrespective of whether the system was fertilized with NH4NO3 or not. Parallel counting of oil-utilizing bacteria associated with fish on a nitrogen-containing and a nitrogen free-medium gave almost similar numbers, indicating that most of the hydrocarbon-utilizing bacteria could fix atmospheric nitrogen. The predominant hydrocarbon-utilizing bacteria isolated from fish grew well in nitrogen-free medium and gave positive nitrogenase test as revealed by their potential for acetylene reduction to ethylene. Molecular fingerprinting showed that crude oil-polluted seawater samples incubated for 3 w contained two new 16S rDNA bands probably corresponding to hydrocarbon-utilizing bacteria. It was concluded that fish individuals accommodate rich bacterial consortia with the combined potential for hydrocarbon-utilization and nitrogen-fixation, which makes them efficient in cleaning hydrocarbon pollutants in water without need for nitrogen fertilization.  相似文献   

2.
The rhizospheres and phyllospheres of peas, beans, tomatoes, and squash raised in a desert sand soil mixed with 0.5% crude oil were rich in oil-utilizing bacteria and accommodated large numbers of free-living diazotrophic bacteria, with potential for hydrocarbon utilization. According to their 16S rRNA-sequences, the cultivable oil-utilizing bacteria were affiliated with the following genera, arranged in decreasing frequency: Bacillus, Ochrobactrum, Enterobacter, Rhodococcus, Arthrobacter, Pontola, Nocardia, and Pseudoxanthomonas. Diazotrophic isolates were affiliated with Rhizobium, Bacillus, Rhodococcus, Leifsonia, Cellulosimicrobium, Stenotrophomonas, Kocuria, Arthrobacter, and Brevibacillus. The crude oil–utilizing and diazotrophic isolates grew, with varying growth intensities, on individual aliphatic (C8 to C40) and aromatic hydrocarbons, as sole sources of carbon and energy. Quantitative gas liquid chromatographic measurements showed that representative bacterial isolates eliminated pure n-hexadecane, n-decosane, phenanthrene, and crude oil from the surrounding liquid media. Cultivation of oily sand–soil samples with any of the four tested crops led to enhanced oil degradation in that soil, as compared with the degradation in uncultivated oily sand–soil samples.  相似文献   

3.
Kuwaiti habitats with two-decade history of oil pollution were surveyed for their inhabitant oil-utilizing bacterioflora. Seawater samples from six sites along the Kuwaiti coasts of the Arabian Gulf and desert soil samples collected from seven sites all over the country harbored oil-utilizing bacteria whose numbers made up 0.0001-0.01% of the total, direct, microscopic counts. The indigenous bacterioflora in various sites were affiliated to many species. This was true when counting was made on nitrogen-containing and nitrogen-free media. Seawater samples harbored species belonging predominantly to the Gammaproteobacteria and desert soil samples contained predominantly Actinobacteria. Bacterial species that grew on the nitrogen-free medium and that represented a considerable proportion of the total in all individual bacterial consortia were diazotrophic. They gave positive acetylene-reduction test and possessed the nifH genes in their genomes. Individual representative species could utilize a wide range of aliphatic and aromatic hydrocarbons, as sole sources of carbon and energy. Quantitative determination showed that the individual species consumed crude oil, n-octadecane and phenanthrene, in batch cultures. It was concluded that the indigenous microflora could be involved in bioremediation programs without bioaugmentation or nitrogen fertilization. Irrigation would be the most important practice in bioremediation of the polluted soil desert areas.  相似文献   

4.
Green animate materials from the intertidal zone of the Arabian Gulf coast accommodated more alkaliphilic and halophilic bacteria than inanimate materials. The alkaliphilic oil-utilizing bacteria, as identified by their 16S ribonucleic acid sequences, belonged to the following genera arranged in decreasing frequences: Marinobacter, Micrococcus, Dietzia, Bacillus, Oceanobacillus, and Citricoccus. The halophilic oil-utilizing bacteria belonged to the genera: Marinobacter, Georgenia, Microbacterium, Stappia, Bacillus, Isoptericola, and Cellulomonas. Most isolates could grow on a wide range of pure n-alkanes and aromatic compounds, as sole sources of carbon and energy. Quantitative gas liquid chromatographic analysis showed that individual isolates attenuated crude oil and representative pure hydrocarbons in culture. The optimum pH for most of the alkaliphilic genera was pH 10, and the optimum salinity for the halophiles ranged between 2.5 and 5% NaCl (w/v). It was concluded that as far as their microbial makeup is concerned, oily alkaline and saline intertidal areas of the Kuwaiti coasts have a self-cleaning potential.  相似文献   

5.
The rhizosphere of two turf cover sorts; Bermuda grass and American grass contained high numbers, 8.1 to 16.8 x 10(6) g(-1) of cultivable oil-utilizing and diazotrophic bacteria belonging predominantly to the genera Agrobacterium, Arthrobacter, Pseudomonas, Gordonia, and Rhodococcus. Those bacteria also grew on a nitrogen-free medium and demonstrated the ability to reduce acetylene to ethylene. These isolates grew on a wide range of n-alkanes (C9 to C40) and aromatic hydrocarbons, as sole sources of carbon. Quantitative determinations revealed that predominant bacteria consumed crude oil and representative aliphatic (n-octadecane) and aromatic (phenanthrene) hydrocarbons efficiently. The fact that those organisms had the combined activities of hydrocarbon-utilization and nitrogen-fixation makes them suitable tools for bioremediating oily desert areas that are normally poor in nitrogenous compounds. Phytoremediation experiments showed that spreading turf cover on oily desert soil inhibited oil volatilization and enhanced oil loss in soil by about 15%. Oil loss was also enhanced in turf free soil samples fertilized with NH4NO3. In conclusion, covering this oil-polluted soil with turf cover minimized atmospheric pollution, increased the numbers of the oil-utilizing/nitrogen-fixing bacteria by about 20 to 46% thus, encouraging oil attenuation.  相似文献   

6.
Two experiments were conducted to investigate the effect of inoculating Vicia faba plants (broad beens) raised in clean and oily sand with nodule-forming rhizobia and plant-growth-promoting rhizobacteria (PGPR) on growth of these plants in sand and to test whether this can improve the phytoremediation potential of this crop for oily desert areas. It was found that crude oil in sand at concentrations < 1.0% (w/w) enhanced the plant heights, their fresh and dry weights, the total nodule weights per plant, and the nitrogen contents of shoots and fruits. Similar enhancing effects were recorded when roots of the young plants were inoculated with nodule bacteria alone, PGPR alone, or a mixture of one strain of nodule bacteria and one of the PGPR. Such plant growth effects were associated with a better phytoremediation potential of V. faba plants for oily sand. The total numbers of oil-utilizing bacteria increased in the rhizosphere and more hydrocarbons were eliminated in sand close to the roots. The nodule bacteria tested were two strains of Rhizobium leguminosarum and the PGPR were Pseudomonas aeruginosa and Serratia liquefaciens. The four strains were found to use crude oil, n-octadecane, and phenanthrene as sole sources of carbon and energy. It was concluded that coinoculation of V. faba plant roots in oily sand with nodule bacteria and PGPR enhances the phytoremediation potential of this plant for oily desert sand through improving plant growth and nitrogen fixation.  相似文献   

7.
AIMS: The objective of this work was to study picocyanobacteria in the Arabian Gulf water in relation to oil pollution. METHODS AND RESULTS: Epifluorescent microscopic counting showed that offshore water samples along the Kuwaiti coast of the Arabian Gulf were rich in picocyanobacteria which ranged in numbers between about 1 x 10(5) and 6 x 10(5) ml(-1). Most dominant was the genus Synechococcus; less dominant genera were Synechocystis, Pleurocapsa and Dermocarpella. All isolates grew well in an inorganic medium containing up to 0.1% crude oil (w/v) and could survive in the presence of up to 1% crude oil. Hydrocarbon analysis by gas liquid chromatography (GLC) showed that representative strains of the four genera had the potential for the accumulation of hydrocarbons (the aliphatic n-hexadecane, aromatic phenanthrene and crude oil hydrocarbons) from aqueous media. Electron microscopy showed that the cells of these strains appeared to store hydrocarbons in their inter thylakoid spaces. Analysis by GLC of constituent fatty acids of total lipids and individual lipid classes from representative picoplankton strains grown in the absence and presence of hydrocarbons showed, however, that the fatty acid patterns were not markedly affected by the hydrocabon substrates, meaning that the test strains could not oxidize the accumulated hydrocarbons. CONCLUSION: The Arabian Gulf is among the water bodies of the world richest in picocyanobacteria. These micro-organisms accumulate hydrocarbons from the water body, but do not biodegrade these compounds. It is assumed that hydrocarbon-utilizing bacteria that were always found associated with all picocyanobacteria in nature may carry out the biodegradation of these compounds. SIGNIFICANCE AND IMPORTANCE OF THE STUDY: The results shed light on the potential role of picocyanobacteria in controlling marine oil pollution.  相似文献   

8.
N.A. SORKHOH, R.H. AL-HASAN, M. KHANAFER AND S.S. RADWAN. 1995. A unique natural microbial cocktail with promising potential for remediating oil-polluted desert in the Gulf region is reported. Oil-degrading micro-organisms immobilized within dense cyanobacterial mats on oily coasts of the Arabian Gulf were successfully established in oil-contaminated sand. Those micro-organisms biodegraded 50% of the oil within 10–20 weeks. Nocardioforms belonging to the genus Rhodcoccus predominated in the first few weeks, but after 22 weeks Pseudomonas spp. increased, sharing Rhodococcus in the predominance. Other oil-utilizing bacterial genera included Bacillus and Arthrobacter. Filamentous actinomycetes belonging to the genera Streptomyces and probably Thermoactinomyces , as well as fungi belonging mainly to Aspergillus and Penicillium increased in the contaminated sand during the experiment but declined later. Representative strains grew on spectra of the tested n -alkanes with chain lengths between C10 and C40, as sole sources of carbon and energy.  相似文献   

9.
Kuwaiti desert samples contaminated with crude oil contained Bacillus stearothermophilus strains capable of growth on crude oil as a sole source of carbon and energy, obligately at high temperature. No thermophilic oil utilizers were present in water samples collected from the Arabian Gulf. Most of the desert strains had an optimum temperature of 60°C and grew best on pentadecane (C15), hexadecane (C16) and heptadecane (C17). n-Alkanes with shorter and longer chains, n-alkenes, and aromatic hydrocarbons were less readily utilized. Correspondence to: N. A. Sorkhoh  相似文献   

10.
White and orange mats are ubiquitous on surface sediments associated with gas hydrates and cold seeps in the Gulf of Mexico. The goal of this study was to determine the predominant pathways for carbon cycling within an orange mat in Green Canyon (GC) block GC 234 in the Gulf of Mexico. Our approach incorporated laser-scanning confocal microscopy, lipid biomarkers, stable carbon isotopes, and 16S rRNA gene sequencing. Confocal microscopy showed the predominance of filamentous microorganisms (4 to 5 mum in diameter) in the mat sample, which are characteristic of Beggiatoa. The phospholipid fatty acids extracted from the mat sample were dominated by 16:1omega7c/t (67%), 18:1omega7c (17%), and 16:0 (8%), which are consistent with lipid profiles of known sulfur-oxidizing bacteria, including Beggiatoa. These results are supported by the 16S rRNA gene analysis of the mat material, which yielded sequences that are all related to the vacuolated sulfur-oxidizing bacteria, including Beggiatoa, Thioploca, and Thiomargarita. The delta13C value of total biomass was -28.6 per thousand; those of individual fatty acids were -29.4 to -33.7 per thousand. These values suggested heterotrophic growth of Beggiatoa on organic substrates that may have delta13C values characteristic of crude oil or on their by-products from microbial degradation. This study demonstrated that integrating lipid biomarkers, stable isotopes, and molecular DNA could enhance our understanding of the metabolic functions of Beggiatoa mats in sulfide-rich marine sediments associated with gas hydrates in the Gulf of Mexico and other locations.  相似文献   

11.
【背景】石油作为一类混杂有机化合物,一旦产生污染就会对人类和环境造成严重的危害。【目的】从新疆石油污染土壤中分离筛选石油降解菌,为石油污染土壤的生物修复提供数据支持及技术参考。【方法】以石油为唯一碳源,通过富集培养、筛选分离得到123株单菌,根据菌落形态挑选出30个不同形态菌株,通过16S rRNA基因序列确定其种属,构建系统发育树;通过原油降解实验筛选出高效石油降解菌,以芳香烃的标志化合物萘为唯一碳源筛选出高效降解菌株,并分别筛选可降解水杨酸、邻苯二酚的菌株。【结果】分离筛选出5株高效石油降解菌,降解率高于85%;萘、水杨酸和邻苯二酚降解菌株各获得一株,将3种菌株按照1:1:1的接种比例对萘进行降解,萘的降解率从单菌60.74%提升到89.40%,菌株间的分工协作可以提高有机物的降解效率。【结论】筛选得到的菌株丰富了石油降解微生物菌种库,不同微生物菌株之间的分工协作为石油污染物的降解提供了新思路,为进一步研究石油污染治理提供参考。  相似文献   

12.
The biodegradation of Bonny light crude petroleum by bacteria in batch culture was enhanced by the addition to culture media, of 0.2 mg of urea and soya bean lecithin per 100 ml of crude oil, sediment and water mixture. Biodegradation was found to be purely an aerobic process. There was a direct relationship between hydrocarbon content and proportion (%) of total heterotrophic count that was capable of growing on crude petroleum as sole carbon and energy source.  相似文献   

13.
Two picocyanobacterial strains related to Acaryochloris were isolated from the Arabian Gulf, 3 m below the water surface, one from the north shore and the other from the south shore of Kuwait. Both strains were morphologically, ultrastructurally, and albeit to a less extend, phylogenetically similar to Acaryochloris. However, both isolates lacked chlorophyll d and produced instead chlorophyll a, as the major photosynthetic pigment. Both picocyanobacterial isolates were associated with oil-utilizing bacteria in the magnitude of 105 cells g?1. According to their 16S rRNA gene sequences, bacteria associated with the isolate from the north were affiliated to Paenibacillus sp., Bacillus pumilus, and Marinobacter aquaeolei, but those associated with the isolate from the south were affiliated to Bacillus asahii and Alcanivorax jadensis. These bacterial differences were probably due to environmental variations. In batch cultures, the bacterial consortia in the nonaxenic biomass as well as the pure bacterial isolates effectively consumed crude oil and pure aliphatic and aromatic hydrocarbons, including very high-molecular-weight compounds. Water and diethylether extracts from the phototrophic biomass enhanced growth of individual bacterial isolates and their hydrocarbon-consumption potential in batch cultures. It was concluded that these consortia could be promising in bioremediation of hydrocarbon pollutants, especially heavy sediments in the marine ecosystem.  相似文献   

14.
The numbers of oil-utilizing bacteria in several samples of clean and oil-polluted soils counted on vitamin-containing media were severalfold higher than the numbers counted on vitamin-free media. Colonies that grew on a medium containing a vitamin mixture were tested for growth on the same medium lacking any vitamins. More than 90% of the total colonies failed to grow. The remaining 10% grew, yet their growth was enhanced, when vitamins were added. The predominant oil-utilizing bacteria in one of the test desert soil samples were various strains of Cellulomonas flavigena and Rhodococcus erythropolis. Minor organisms belonged to the genera Pseudomonas, Bacillus and Arthrobacter. Two vitamin-requiring biovars of C. flavigena and R. erythropolis were selected for further study. Their growth on n-octadecane and phenanthrene as sole sources of carbon and energy as well as their potential for hydrocarbon consumption were enhanced by added vitamins, e.g. folic acid, pyridoxine, vitamin B12, biotin and others. In a field experiment, it was confirmed that vitamin fertilization of an oil-polluted sand sample enhanced the biodegradation of constituent hydrocarbons of that sample.  相似文献   

15.
[目的]研究大连湾原油污染海域可培养原油降解菌的多样性,并获得新的原油降解菌.[方法]通过大连湾海水、海泥和海绵样品采集,以原油作为唯一碳源,培养、富集、分离筛选原油降解菌,根据16S rRNA基因序列确定其系统进化地位.[结果]通过形态观察和16S rRNA基因分析,共获得22个属的50株菌.其中,有6株菌的16S rRNA序列与最相近的菌株序列一致性仅为95%-97%,可能是潜在的新菌.单菌实验表明,45株菌具有石油降解能力.[结论]揭示了大连湾可培养原油降解菌的多样性,并获得了新的原油降解菌,为海洋石油污染的生物治理提供新资源.  相似文献   

16.
Most of the studies of microbial processes in response to the Deepwater Horizon oil spill focused on the deep water plume, and not on the surface communities. The effects of the crude oil and the application of dispersants on the coastal microbial food web in the northern Gulf of Mexico have not been well characterized even though these regions support much of the fisheries production in the Gulf. A mesocosm experiment was carried out to determine how the microbial community off the coast of Alabama may have responded to the influx of surface oil and dispersants. While the addition of glucose or oil alone resulted in an increase in the biomass of ciliates, suggesting transfer of carbon to higher trophic levels was likely; a different effect was seen in the presence of dispersant. The addition of dispersant or dispersed oil resulted in an increase in the biomass of heterotrophic prokaryotes, but a significant inhibition of ciliates, suggesting a reduction in grazing and decrease in transfer of carbon to higher trophic levels. Similar patterns were observed in two separate experiments with different starting nutrient regimes and microbial communities suggesting that the addition of dispersant and dispersed oil to the northern Gulf of Mexico waters in 2010 may have reduced the flow of carbon to higher trophic levels, leading to a decrease in the production of zooplankton and fish on the Alabama shelf.  相似文献   

17.
Aerobic heterotrophic bacteria were enriched and isolated from three oil storage caverns of the German national oil reserve at different distances from the oil/brine interface. Microscopically no bacteria were found in the original samples, but colony counts showed more than 100 colony-forming units (cfu)/ml in two samples, whereas 0 to 4 cfu/ml were found in the other samples. Enrichments using defined mineral salts medium or complex medium revealed culturable organisms in all samples. All colony types were isolated and further separation of organisms during isolation was completed microscopically. Enrichments in media containing complex organic compounds led to higher numbers of isolates in samples near the oil/brine interface than enrichments with oil as the sole source of carbon. Micro-organisms that could utilize oil as the sole source of carbon were isolated from all enrichment cultures. Identification of the isolates revealedBacillus strains in all samples and coryneform bacteria in the samples from cavern 123.  相似文献   

18.
Evidence for in situ crude oil biodegradation after the Prestige oil spill   总被引:1,自引:0,他引:1  
In November 2002, the oil tanker Prestige sank off the Spanish coast after releasing approximately 17,000 tones of heavy fuel, coating several hundred kilometers of coastline in oil sludge. In December 2002 and February 2003, samples were collected from the shore of the Galician coast to analyse the indigenous population ability to carry out crude oil degradation in situ. Carbon isotopic ratio of the dissolved inorganic carbon (DIC) in seawater samples was used as a rapid method to directly assess activity of microbes on the oil components. 12CO2/13CO2 ratio in samples from certain locations along the coast revealed degradation of a very delta13C-negative source such as the Prestige crude oil (-30.6 per thousand). Putative biodegradation processes taking place at areas with high income of fresh seawater could not be detected with this technique. Laboratory-scale biostimulation processes carried out in samples with the highest oil biodegradation activity showed that N/P deficiency in seawater is a limiting factor for crude oil degradation. The most probable number (MPN) of crude oil component degraders was estimated for several aromatic compounds (naphthalene, anthracene, phenanthrene, pyrene) and for undecane. Our results clearly show that bacteria present in the contaminated water are readily able to transform components of the crude oil into inorganic carbon.  相似文献   

19.
The Deepwater Horizon blowout in April 2010 represented the largest accidental marine oil spill and the largest release of chemical dispersants into the environment to date. While dispersant application may provide numerous benefits to oil spill response efforts, the impacts of dispersants and potential synergistic effects with crude oil on individual hydrocarbon-degrading bacteria are poorly understood. In this study, two environmentally relevant species of hydrocarbon-degrading bacteria were utilized to quantify the response to Macondo crude oil and Corexit 9500A-dispersed oil in terms of bacterial growth and oil degradation potential. In addition, specific hydrocarbon compounds were quantified in the dissolved phase of the medium and linked to ecotoxicity using a U.S. Environmental Protection Agency (EPA)-approved rotifer assay. Bacterial treatment significantly and drastically reduced the toxicity associated with dispersed oil (increasing the 50% lethal concentration [LC50] by 215%). The growth and crude oil degradation potential of Acinetobacter were inhibited by Corexit by 34% and 40%, respectively; conversely, Corexit significantly enhanced the growth of Alcanivorax by 10% relative to that in undispersed oil. Furthermore, both bacterial strains were shown to grow with Corexit as the sole carbon and energy source. Hydrocarbon-degrading bacterial species demonstrate a unique response to dispersed oil compared to their response to crude oil, with potentially opposing effects on toxicity. While some species have the potential to enhance the toxicity of crude oil by producing biosurfactants, the same bacteria may reduce the toxicity associated with dispersed oil through degradation or sequestration.  相似文献   

20.
Fresh leaves of American grass and broad beans grown in pristine soil were naturally colonized with cultivable volatile oil hydrocarbon-utilizing bacteria, whose numbers increased significantly in plants grown in oily soil. According to their 16S rRNA gene sequences those bacteria were affiliated to various species of the genera Rhodococcus and Pseudomonas. Qualitative growth studies revealed that pure cultures of these phyllospheric bacteria could grow successfully on a solid mineral medium containing individual alkanes with chain lengths of C9 through C40 and the aromatics phenanthrene, naphthalene, and biphenyl as sole sources of carbon and energy. Quantitative measurements showed that the individual pure bacterial isolates degraded between about 20 and 30% of crude oil, n-hexadecane, or phenanthrene in batch culture after a one-week incubation. These results reflect the high hydrocarbon degradation potential of those bacteria. The isolates were diazotrophic (nitrogen fixers), meaning that they were self-dependent in covering their nitrogen requirements. Incubating fresh leaves in closed microcosms containing volatile oil hydrocarbons resulted in up to more than 80% attenuation of these compounds after two weeks. Experimental evidence was provided that the leaf tissues did not contribute to this attenuation, which was exclusively due to the bacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号