首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to solve discrepancies between earlier assignments we have reinvestigated the stereoisomerism of the spheroidene molecule bound to reaction centers (RC) of Rhodobacter sphaeroides. A stable cis isomer could be extracted and purified from the reaction centres by working at very low ambient light. Resonance Raman spectroscopy showed that this cis isomer assumed the same configuration as that of the RC-bound molecule. Proton-NMR spectroscopy of the extracted isomer permitted to assign it the 15–15′ mono cis configuration. Comparisons between resonance Raman spectra of the native form and of the 15 cis extract showed that, in the reaction center, 15 cis spheroidene is in addition twisted into a non-planar conformation. Comparisons of extraction-induced changes in relative intensities of Raman bands of the 760–1060 cm−1 regions, which largely correspond to out-of-plane modes, further indicated that the out-of-plane twist of RC-bound spheroidene should predominantly affect C8–C12 and/or C8′–C12′ regions of the molecule rather than the central region. Comparisons between difference electronic absorption spectra of RC-bound spheroidene and of RC-bound methoxyneurosporene showed that the out-of-plane twisting of both these native forms results in a drastic weakening of their 1C ← 1A electronic transitions, compared with those of the planar, 15 cis forms. Finally, it is proposed, on the basis of their resonance Raman spectra, that spirilloxanthin bound to RCs of Rhodospirillum rubrum as well as dihydroneurosporene or dihydrolycopene bound to RCs of Rhodopseudomonas viridis shares 15 cis configurations and out-of-plane twisting with carotenoids bound to RCs of various strains of Rb. sphaeroides.  相似文献   

2.
The photosynthetic reaction center of Rhodobacter sphaeroides 2.4.1 contains one carotenoid that protects the protein complex against photodestruction. The structure around the central (15,15') double bond of the bound spheroidene carotenoid was investigated with low-temperature magic angle spinning 13C NMR, which allows an in situ characterization of the configuration of the central double bond in the carotenoid. Carotenoidless reaction centers of R. sphaeroides R26 were reconstituted with spheroidene specifically labeled at the C-14' or C-15' position, and the signals from the labels were separated from the natural abundance background using 13C MAS NMR difference spectroscopy. The resonances shift 5.2 and 3.8 ppm upfield upon incorporation in the protein complex, similar to the 5.6 and 4.4 ppm upfield shift occurring in the model compound beta-carotene upon trans to 15,15'-cis isomerization. Hence the MAS NMR favors a cis configuration, as opposed to the trans configuration deduced from X-ray data.  相似文献   

3.
4.
The spectroscopic and photochemical properties of the synthetic carotenoid, locked-15,15-cis-spheroidene, were studied by absorption, fluorescence, circular dichroism, fast transient absorption and electron spin resonance spectroscopies in solution and after incorporation into the reaction center of Rhodobacter (Rb.) sphaeroides R-26.1. HPLC purification of the synthetic molecule reveals the presence of several di-cis geometric isomers in addition to the mono-cis isomer of locked-15,15-cis-spheroidene. In solution, the absorption spectrum of the purified mono-cis sample was red-shifted and showed a large cis-peak at 351 nm compared to unlocked all-trans spheroidene. Molecular modeling and semi-empirical calculations reveal how geometric isomerization and structural factors affect the room temperature spectra. The spectroscopic studies of the purified locked-15,15-mono-cis molecule in solution reveal a more stable manifold of excited states compared to the unlocked spheroidene. Reaction centers of Rb. sphaeroides R-26.1 in which the locked-15,15-cis-spheroidene was incorporated show no difference in either the spectroscopic properties or photochemistry compared to reaction centers in which unlocked spheroidene was incorporated or to Rb. sphaeroides wild type strain 2.4.1 reaction centers which naturally contain spheroidene. The data suggest that the natural selection of a cis-isomer of spheroidene for incorporation into native reaction centers of Rb. sphaeroides wild type strain 2.4.1 is more determined by the structure or assembly of the reaction center protein than by any special quality of the cis-isomer of the carotenoid that would affect its ability to participate in triplet energy transfer or carry out photoprotection.  相似文献   

5.
Low-temperature resonance Raman spectroscopy was used to study the changes in the molecular structure and configuration of the major xanthophylls in thylakoid membranes isolated from mutants of pea with modified pigment content and altered structural organization of their pigment-protein complexes. The Raman spectra contained four known groups of bands, nu(1)-nu(4), which could be assigned to originate mainly from the long wavelength absorbing lutein and neoxanthin upon 514.5 nm and at 488 nm excitations, respectively. The overall configuration of these bound xanthophyll molecules in the mutants appeared to be similar to the wild type, and the configuration in the wild type was almost identical with that in the isolated main chlorophyll a/b light harvesting protein complex of photosystem II (LHCII). Significant differences were found mainly in the region of nu(4) (around 960 cm(-1)), which suggest that the macroorganization of PS II-LHCII supercomplexes and/or of the LHCII-only domains are modified in the mutants compared to the wild type.  相似文献   

6.
The resonance Raman spectrum of β-carotene in photosystem Ⅱ (PS Ⅱ )reaction center complex was characterized by four main bands, peaking at 1532 (νl), 1156 (ν2), 1010 (ν3) and 970 (ν4) cm -1, respectively, with several additional small Raman bands in the region between 1100 cm-1 and 1500 cm-1 It was suggested that β-carotene molecules of the reaction center complex were in all-trans configuration. The resonance Raman spectrum of an acetone extract from the reaction center complex also showed four main bands. The peak position of νl, ν3 and ν4 band shifted 5 cm-1 to the shorter wave number. The most dramatic changes were the reduction of the intensity of ν4. From the above results it was demon- strated that the conformation of β-carotene molecules in the PS Ⅰ reaction center was not the same as that of free β-carotene molecules in solution, but similar to that of carotenoid molecules in the photosynthetic bacterial reaction center, in other words, they are likely to be in a twisted conformation.  相似文献   

7.
Resonance Raman spectroscopy and quantum chemical calculations were used to investigate the molecular origin of the large redshift assumed by the electronic absorption spectrum of astaxanthin in alpha-crustacyanin, the major blue carotenoprotein from the carapace of the lobster, Homarus gammarus. Resonance Raman spectra of alpha-crustacyanin reconstituted with specifically 13C-labeled astaxanthins at the positions 15, 15,15', 14,14', 13,13', 12,12', or 20,20' were recorded. This approach enabled us to obtain information about the effect of the ligand-protein interactions on the geometry of the astaxanthin chromophore in the ground electronic state. The magnitude of the downshifts of the C==C stretching modes for each labeled compound indicate that the main perturbation on the central part of the polyene chain is not homogeneous. In addition, changes in the 1250-1400 cm(-1) spectral range indicate that the geometry of the astaxanthin polyene chain is moderately changed upon binding to the protein. Semiempirical quantum chemical modeling studies (Austin method 1) show that the geometry change cannot be solely responsible for the bathochromic shift from 480 to 632 nm of protein-bound astaxanthin. The calculations are consistent with a polarization mechanism that involves the protonation or another interaction with a positive ionic species of comparable magnitude with both ketofunctionalities of the astaxanthin-chromophore and support the changes observed in the resonance Raman and visible absorption spectra. The results are in good agreement with the conclusions that were drawn on the basis of a study of the charge densities in the chromophore in alpha-crustacyanin by solid-state NMR spectroscopy. From the results the dramatic bathochromic shift can be explained not only from a change in the ground electronic state conformation but also from an interaction in the excited electronic state that significantly decreases the energy of the pi-antibonding C==O orbitals and the HOMO-LUMO gap.  相似文献   

8.
The carotenoids bound to reaction centers of wild, Ga and GIC strains of Rhodopseudomonas spheroides, of Rhodospirrillum rubrum, strain S1 and of Rhodopseudomonas viridis, yield very similar, but unusual resonance Raman spectra. Through a comparison with resonance Raman spectra of 15,15'-cis-beta-carotene, these carotenoids are shown to assume cis conformations, while the corresponding chromatophores contain all-trans forms only. These cis conformations likely are identical for all the carotenoids studied. They remain unaffected by variations of temperature from 20 to 300 K as well as by the redox state of P-870. They are unstable, being rapidly isomerised towards the all-trans forms when extracted from the reaction centers. The possible nature of these conformers is discussed on the basis of their electronic and vibrational spectra.  相似文献   

9.
Strong light (800 μmol photons/m2 per s)-induced bleaching of the pigment in the isolated photosystem Ⅱ reaction center (PSII RC) under aerobic conditions (in the absence of electron donors or acceptors) was studied using high-pressure liquid chromatography (HPLC), absorption spectra, 77K fluorescence spectra and resonance Raman spectra. Changes in pigment composition of the PSll RC as determined by HPLC after light treatment were as follows: with increasing illumination time chlorophyll (Chi) a and β-carotene (β-car)content decreased. However, decreases in pheophytin (Pheo) could not be observed because of the mixture of the Pheo formed by degraded chlorophyll possibly. On the basis of absorption spectra, it was determined that, with a short time of illumination, the initial bleaching occurred maximally at 680 nm but that with increasing illumination time there was a blue shift to 678 nm. It was suggested that P680 was destroyed initially, followed by the accessory chlorophyll. The activity of P680 was almost lost after 10 min light treatment. Moreover, the bleaching of Pheo and β-car was observed at the beginning of illumination.After illumination, the fluorescence emission intensity changed and the fluorescence maximum blue shifted,showing that energy transfer was disturbed. Resonance Raman spectra of the PSII RC excited at 488.0 and 514.5 nm showed four main bands, peaking at 1 527 cm-1 (υ1), 1 159 cm-1 (υ2), 1 006 cm-1 (υ3), 966 cm-1 (υ4) for 488.0 nm excitation and 1 525 cm-1 (υ1), 1 159 cm-1 (υ2), 1 007 cm-1 (υ3), 968 cm-1 (υ4) for 514.5 nm excitation.It was confirmed that two spectroscopically different β-car molecules exist in the PSII RC. After light treatment for 20 min, band positions and bandwidths were unchanged. This indicates that carotenoid configuration is not the parameter that regulates photoprotection in the PSII RC.  相似文献   

10.
We present the first recorded Raman spectra of haemoglobin in both the R and T states from within a single living erythrocyte using 632.8 nm excitation. Bands characteristic of low spin haems are observed in oxygenated and carboxylated erythrocytes at approx. 1636 (nu(10)), 1562-1565 (nu(2)), 1250-1245 cm(-1) (nu(13)) and 1226-1224 cm(-1) (nu(5)+nu(8)). The spectra of deoxygenated and methaemoglobin erythrocytes have characteristic high spin bands at approx. 1610-1606 cm(-1) (nu(10)), 1582-1580 (nu(37)), 1547-1544 (nu(11)), 1230-1220 cm(-1) (nu(13)) and 1215-1210 cm(-1) (nu(5)+nu(8)). Bands at 1172 (nu(30)), 976 (nu(45)) and 672 (nu(7)) cm(-1) appear to be enhanced at 632.8 nm in low spin haems. The oxidation state marker band (nu(4)) at 1364-1366 cm(-1) appeared invariant within this domain in all single cells and conditions investigated contrary to other resonance Raman studies on haem isolates. The information gained by in vivo single erythrocyte molecular analysis has important ramifications to the understanding of fundamental physiological processes and may have applications in the diagnosis and treatment of red blood cell disorders.  相似文献   

11.
The carotenoids bound to reaction centers of wild, Ga and GlC strains of Rhodopseudomonas spheroides, of Rhodospirillum rubrum, strain S1 and of Rhodopseudomonas viridis, yield very similar, but unusual resonance Raman spectra. Through a comparison with resonance Raman spectra of 15,15′-cis-β-carotene, these carotenoids are shown to assume cis conformations, while the corresponding chromatophores contain all-trans forms only. These cis conformations likely are identical for all the carotenoids studied. They remain unaffected by variations of temperature from 20 to 300 K as well as by the redox state of P-870. They are unstable, being rapidly isomerised towards the all-trans forms when extracted from the reaction centers. The possible nature of these conformers is discussed on the basis of their electronic and vibrational spectra.  相似文献   

12.
Xiao Y  Tan ML  Ichiye T  Wang H  Guo Y  Smith MC  Meyer J  Sturhahn W  Alp EE  Zhao J  Yoda Y  Cramer SP 《Biochemistry》2008,47(25):6612-6627
We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study the Fe(2)S(2)(Cys)(4) sites in oxidized and reduced [2Fe-2S] ferredoxins from Rhodobacter capsulatus (Rc FdVI) and Aquifex aeolicus (Aa Fd5). In the oxidized forms, nearly identical NRVS patterns are observed, with strong bands from Fe-S stretching modes peaking around 335 cm(-1), and additional features observed as high as the B(2u) mode at approximately 421 cm(-1). Both forms of Rc FdVI have also been investigated by resonance Raman (RR) spectroscopy. There is good correspondence between NRVS and Raman frequencies, but because of different selection rules, intensities vary dramatically between the two kinds of spectra. For example, the B(3u) mode at approximately 288 cm(-1), attributed to an asymmetric combination of the two FeS(4) breathing modes, is often the strongest resonance Raman feature. In contrast, it is nearly invisible in the NRVS, as there is almost no Fe motion in such FeS(4) breathing. NRVS and RR analysis of isotope shifts with (36)S-substituted into bridging S(2-) ions in Rc FdVI allowed quantitation of S(2-) motion in different normal modes. We observed the symmetric Fe-Fe stretching mode at approximately 190 cm(-1) in both NRVS and RR spectra. At still lower energies, the NRVS presents a complex envelope of bending, torsion, and protein modes, with a maximum at 78 cm(-1). The (57)Fe partial vibrational densities of states (PVDOS) were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields. Progressively more complex D(2h) Fe(2)S(2)S'(4), C(2h) Fe(2)S(2)(SCC)(4), and C(1) Fe(2)S(2)(Cys)(4) models were optimized by comparison with the experimental spectra. After modification of the CHARMM22 all-atom force field by the addition of refined Fe-S force constants, a simulation employing the complete protein structure was used to reproduce the PVDOS, with better results in the low frequency protein mode region. This process was then repeated for analysis of data on the reduced FdVI. Finally, the degree of collectivity was used to quantitate the delocalization of the dynamic properties of the redox-active Fe site. The NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.  相似文献   

13.
We report the implementation of the transnasal image-guided high wavenumber (HW) Raman spectroscopy to differentiate tumor from normal laryngeal tissue at endoscopy. A rapid-acquisition Raman spectroscopy system coupled with a miniaturized fiber-optic Raman probe was utilized to realize real-time HW Raman (2800-3020 cm(-1)) measurements in the larynx. A total of 94 HW Raman spectra (22 normal sites, 72 tumor sites) were acquired from 39 patients who underwent laryngoscopic screening. Significant differences in Raman intensities of prominent Raman bands at 2845, 2880 and 2920 cm(-1) (CH(2) stretching of lipids), and 2940 cm(-1) (CH(3) stretching of proteins) were observed between normal and cancer laryngeal tissue. The diagnostic algorithms based on principal components analysis (PCA) and linear discriminant analysis (LDA) together with the leave-one subject-out, cross-validation method on HW Raman spectra yielded a diagnostic sensitivity of 90.3% (65/72) and specificity of 90.9% (20/22) for laryngeal cancer identification. This study demonstrates that HW Raman spectroscopy has the potential for the noninvasive, real-time diagnosis and detection of laryngeal cancer at the molecular level.  相似文献   

14.
1. Erythrocyte ghosts exhibit resonance-enhanced Raman bands at 1530 cm(-1) and 1165 cm(-1) attributable to v(-C=C-) and v(=C-C=), respectively, of the conjugated polyene chains in carotenoids. In lipid extract of ghosts, these resonance-enhanced bands lie at 1527 and 1158 cm(-1). The spectra indicate the presence of membrane-bound beta-carotene. 2. The resonance-enhanced Raman spectrum of beta-carotene in lecithin liposomes is identical to that obtained with hexane or chloroform solutions. 3. Increasing proportions of cholesterol in cholesterol-lecithin liposomes up to a cholesterol: phospholipid molar ratio of 0.8-0.9 drastically decreases the intensity of both resonance-enhanced bands. 4. In ghosts the carotenoid bands respond to membrane perturbations. Trypsinization, lysolecithin treatment and reduction of pH increase the intensities of the 1530 and 1165 cm(-1) bands. In contrast, a decrease in the intensity of both bands follows equilibration of ghosts for 15 min at approx. 50 degrees C or addition of (0.1%) sodium dodecyl sulfate. 5. We suggest that perturbants known to change lipid-protein interactions in erythrocyte membranes modify the microenvironment and/or configuration of the membrane-bound carotenoid.  相似文献   

15.
The photoconversion of phytochrome (phytochrome A from Avena satina) from the inactive (Pr) to the physiologically active form (Pfr) was studied by near-infrared Fourier transform resonance Raman spectroscopy at cryogenic temperatures, which allow us to trap the intermediate states. Nondeuterated and deuterated buffer solutions were used to determine the effect of H/D exchange on the resonance Raman spectra. For the first time, reliable spectra of the "bleached" intermediates meta-R(A) and meta-R(C) were obtained. The vibrational bands in the region 1300-1700 cm(-)(1), which is particularly indicative of structural changes in tetrapyrroles, were assigned on the basis of recent calculations of the Raman spectra of the chromophore in C-phycocyanin and model compounds [Kneip, C., Hildebrandt, P., Németh, K., Mark, F., Schaffner, K. (1999) Chem. Phys. Lett. 311, 479-485]. The experimental resonance Raman spectra Pr are compatible with the Raman spectra calculated for the protonated ZZZasa configuration, which hence is suggested to be the chromophore structure in this parent state of phytochrome. Furthermore, marker bands could be identified that are of high diagnostic value for monitoring structural changes in individual parts of the chromophore. Specifically, it could be shown that not only in the parent states Pr and Pfr but also in all intermediates the chromophore is protonated at the pyrroleninic nitrogen. The spectral changes observed for lumi-R confirm the view that the photoreaction of Pr is a Z --> E isomerization of the CD methine bridge. The subsequent thermal decay reaction to meta-R(A) includes relaxations of the CD methine bridge double bond, whereas the formation of meta-R(C) is accompanied by structural adaptations of the pyrrole rings B and C in the protein pocket. The far-reaching similarities between the chromophores of meta-R(A) and Pfr suggest that in the step meta-R(A) --> Pfr the ultimate structural changes of the protein matrix occur.  相似文献   

16.
17.
We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins.  相似文献   

18.
We report the setup of an electrochemical cell with chemical-vapor deposition diamond windows and the use of a Bruker 66 SX FTIR spectrometer equipped with DTGS and Si-bolometer detectors and KBr and mylar beam splitters, to record on the same sample, FTIR difference spectra corresponding to the structural changes associated with the change in redox state of active sites in proteins in the whole 1800-50 cm(-1) region. With cytochrome c we show that reliable reduced-minus-oxidized FTIR difference spectra are obtained, which correspond to single molecular vibrations. Redox-sensitive IR modes of the cytochrome c are detected until 140 cm(-1) with a good signal to noise. This new setup is promising to analyze the infrared spectral region where metal-ligand vibrations are expected to contribute and to extend the analysis of vibrational properties to metal sites or redox states not accessible to (resonance) Raman spectroscopy.  相似文献   

19.
A set of arabinoxylan samples differing in their arabinose composition and various samples of arabino-xylo-oligosaccharide samples were analysed by Raman spectroscopy. Specific signatures for arabinose substitution were found in several spectral regions, that is, 400-600, 800-950 and 1030-1100 cm(-1). A linear relationship was observed between the peak ratio 855/895 cm(-1) of the second derivative spectra and the A/X ratio determined by chemical analysis. Moreover, spectral changes were observed in the 400-600 cm(-1) region assigned to the coupled vibrations mode in the skeleton: while the intensity of the band at 570 cm(-1) increased with the degree of substitution, that at 494 cm(-1) decreased. Similarly, a linear relationship was observed between the peak intensity ratio 570/494 cm(-1) calculated on the second derivative spectra and the composition data. Analysis of Raman spectra of arabino-xylo-oligosaccharides allowed to identify specific spectral features of disubstitution.  相似文献   

20.
Two reconstituted carotenoproteins have been studied by resonance Raman spectroscopy. They were prepared from the apoprotein of the Asterias rubens carotenoprotein, asteriarubin and either astaxanthin or 15,15'-didehydroastaxanthin. Spectral properties of dehydrocarotenoids are first discussed. The spectral properties of the complexes are compared to those of the free carotenoids and of other carotenoproteins containing astaxanthin, and possible protein-carotenoid interactions are discussed. Greater delocalisation of the pi-electron system in the central part of the polyene chain, and the role of lateral methyl groups in binding is emphasised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号