首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opiate Receptor: Multiple Effects of Metal Ions   总被引:4,自引:4,他引:0  
Abstract: The opiate antagonist [3H]diprenorphine ([3H]dip), a universal ligand at the μ, δ, and k opiate receptor subtypes, was used to study the effects of Ca-II, Cu-II, Mg-II, Mn-II, and Na+ on the rat cerebral opiate receptor. Two categories of effects were observed: (a) those on the binding rate constants and (b) those on binding capacity. (a) Sodium ions increased on- and off-rates on [3H]dip with a rather small net change in receptor affinity. The effects of Na+ and the divalent ions Ca-II, Mg-II, and Mn-II were antagonistic to each other. Ca-II, Mg-II, and the more effective Mn-II decreased receptor association and dissociation rates, again with minimal changes in the overall binding affinity in washed membrane homogenates. Previous studies using equilibrium binding analysis alone failed to detect changes in [3H]dip binding kinetics caused by these metal ions. In untreated rat brain homogenates, however, Ca-II (and to a lesser extent Mg-II) decreased [3H]dip binding, an effect distinct from that on the binding rate constants in washed membrane homogenates. (b) In untreated, Tris-buffer homogenates not containing external metal ions, a gradual decline in [3H]dip binding was observed. Cu-II or an equivalent endogenous divalent metal ion was identified as a causative factor, and Mn-II partially reversed this effect. Moreover, the addition of Mn-II stabilized the [3H]dip binding sites at very low concentrations of the metal (nM to μM range) that did not change the binding rate constants and that were in the physiological range of Mn-II in rat brain. This unique effect of Mn-II may represent a physiological function in the regulation of the opiate receptor that is not shared by Mg-II and Ca-II. The opposite effects of Cu-II and Mn-II on the in vitro receptor stability may be related to their opposite pharmacological effect in vivo. Finally, multiple changes of the effects of the tested metal ions on [3H]dip binding were observed during in vitro membrane homogenate dilution, centrifugation, and washing. These changes indicate that the opiate receptor complex as it exists in vivo may lose some of its functions and control mechanisms in vitro.  相似文献   

2.
N-Ethylmaleimide (NEM) decreases opiate agonist binding presumably by blocking crucial sulfhydryl (SH) groups at receptor binding sites. At physiological pH, NEM decreased GTP and manganese regulation but increased sodium effects on [3H]D-Ala2-Met5-enkephalinamide (D-Ala enk) binding to rat brain membranes. To determine the apparent pK values of putative SH groups in opiate receptors that react with NEM, rat brain membranes were incubated with 100-250 microM NEM in buffers ranging from pH 4.5 to 8.0. Results showed that lowering pH below 6.5 reduced the NEM effect on opiate receptor functions and that the apparent pK values of NEM-reacting SH groups in binding and regulatory sites ranged between 5.4 to 6.0. Most of the total SH groups in brain membranes continued to react with NEM at low pH, so that when nonspecific SH groups were blocked by incubating membranes at pH 4.5 with NEM, opiate receptors became sensitive to very low concentrations (1 microM) of NEM.  相似文献   

3.
Neonatal treatment of rats with monosodium glutamate (MSG) has been demonstrated to destroy cell bodies of neurons in the arcuate nucleus including the brain beta-endorphin (B-END) system. The effects on opiate receptors of the loss of B-END is unknown. Neonatal rats were treated with MSG as previously described. After reaching maturity (7-9 months), MSG-treated rats and litter-matched untreated control rats were decapitated and brains dissected into brain regions. Opiate receptor assays were run with [3H]morphine (mu receptor ligand) and [3H]D-alanine2-D-leucine5 (DADL) enkephalin (delta receptor ligand) for each brain region for both MSG and control rats simultaneously. Scatchard plot analyses showed a selective increase in delta receptors in the thalamus only. No corresponding change in mu receptors in the thalamus was found. The cross-competition IC50 data supported this conclusion, showing a loss in the potency of morphine in displacing [3H]DADL enkephalin in the thalamus of MSG-treated rats. This shift in delta receptors produced an IC50 displacement pattern in thalamus, ordinarily a mu-rich area, similar to that of striatum or cortex, delta-rich areas, again indicating an increase in delta receptors. Similar changes in delta receptors in other brain regions were not found. These results represent one of the few examples of a selective and localized shift in delta with no change in mu sites. Furthermore, the delta increase may reflect an up-regulation of the receptors in thalamus after chronic loss of the endogenous opioid B-END.  相似文献   

4.
The calcium binding protein calmodulin and the opiate receptor binding sites are unevenly distributed in various subcellular fractions of neuroblastoma-glioma NG108-15 cells. The crude mitochondrial-membrane fraction of these cells contains two membrane fractions that are separable by sucrose gradient centrifugation. These two differ in the content of both calmodulin and opiate receptors. Leucine enkephalin and D-Ala2-methionine enkephalinamide decrease the amount of membrane-bound calmodulin in the NC108-15 cells in a time- and dose-dependent manner, whereas the opiate antagonists naloxone and levallorphan have an opposite effect. Naloxone blocks the effect of leucine enkephalin and dextrallorphan has no significant effect. The opiate alkaloids entorphine and phenazocine induce changes similar to that of the enkephalins whereas morphine is inactive even at high concentrations. The alteration in the amount of membrane-bound calmodulin after a short incubation (15 min) with the enkephalins or with naloxone is reflected as an opposite change in the amount of calmodulin in the cell cytosol. Naloxone and levallorphan also increase the number of opiate receptors in NG108-15 cells but dextrallorphan has no such effect. Modulation of the intracellular distribution of calmodulin by opioid peptides and alkaloids may control the activity of various membrane-bound and cytosolic systems that are calmodulin- and/or calcium-dependent.  相似文献   

5.
In continuing studies on smooth microsomal and synaptic membranes from rat forebrain, we compared the binding properties of opiate receptors in these two discrete subcellular populations. Receptors in both preparations were saturable and stereospecific. Scatchard and Hill plots of [3H]naloxone binding to microsomes and synaptic membranes were similar to plots for crude membranes. Both synaptic membranes and smooth microsomes contained similar enrichments of low- and high-affinity [3H]naloxone binding sites. No change in the affinity of the receptors was observed. When [3H]D-ala2-D-leu5-enkephalin was used as ligand, microsomes possessed 60% fewer high-affinity sites than did synaptic membranes, and a large number of low-affinity sites. In competition binding experiments microsomal opiate receptors lacked the sensitivity to (guanyl-5'-yl)imidodiphosphate [Gpp(NH)p] shown by synaptic and crude membrane preparations. In this respect microsomal opiate receptors resembled membranes that were experimentally guanosine triphosphate (GTP)-uncoupled with N-ethylmaleimide (NEM). Agonist binding to microsomal and synaptic membrane opiate receptors was decreased by 100 mM NaCl. Like NEM-treated crude membranes, microsomal receptors were capable of differentiating agonist and antagonists in the presence of 100 mM NaCl. MnCl2 (50-100 microM) reversed the effects of 100 mM NaCl and 50 microM GTP on binding of the mu-specific agonist [3H]dihydromorphine in both membrane populations. Since microsomal receptors are unable to distinguish agonists from antagonists in the presence of Gpp(NH)p, they are a convenient source of guanine nucleotide-uncoupled opiate receptors.  相似文献   

6.
In isolated bovine adrenal chromaffin cells, beta-endorphin, dynorphin, and levorphanol caused a dose-dependent inhibition of catecholamine (CA) secretion elicited by acetylcholine (ACh), with an ID50 of 50, 1.3, and 4.3 microM, respectively. The inhibition by the opiate compounds was specific for the release evoked by ACh and nicotinic drugs and was noncompetitive with ACh. Stereospecific binding sites for the opiate agonist [3H]etorphine were found in homogenates of bovine adrenal medulla (KD = 0.59 nM). beta-Endorphin, dynorphin, levorphanol, and naloxone were potent inhibitors of the binding of [3H]etorphine with an ID50 of 12, 0.4, 5.2, and 6.2 nM, respectively. However, [3,5-I2Tyr1]-beta-endorphin, [3,5-I2Tyr1]-dynorphin, and dextrorphan, three opiate compounds with no or little activity in the guinea pig ileum assay, were relatively ineffective in inhibiting the binding of [3H]etorphine (ID50 700, 600, and 10,000 nM, respectively). On the other hand, these three compounds were equipotent with beta-endorphin, dynorphin, and levorphanol, respectively, in inhibiting the ACh-evoked release of CA from the adrenal chromaffin cells (ID50 of 10, 1.5, and 6 microM, respectively). Inhibition of CA release was also obtained with naloxone (ID50 = 14) microM) and naltrexone (ID50 greater than 10(-4) M), two classical antagonists of opiate receptors, and this effect was additive to that of beta-endorphin. These data indicate that the opiate modulation of CA release from adrenal chromaffin cells is not related to the stimulation of the high affinity stereospecific opiate binding sites of the adrenal medulla. The physiological function of these sites remains to be determined.  相似文献   

7.
Abstract: Membrane-bound opiate receptors from neuroblastoma-glioma hybrid cells and from different parts of the rat brain (whole brain minus cerebellum, cortex, thalamus-hypothalamus and cerebellum) were labeled with the methionine-enkephalin analogue, D-[3H]Ala2-Met-enkephalinamide, and solubilized with the nonionic detergent Brij 36T. The protease inhibitors bacitracin, phenylmethylsulfonyl fluoride, Trasylol, and leupeptin were included in the solubilization buffer to minimize proteolysis. Two simple techniques, ammonium sulfate precipitation and activated charcoal absorbence, were adapted to separate the free and the macromolecule-bound ligands. The solubilized receptor-[3H]enkephalin complexes were partially purified by consecutive passages through Sephadex G-75 and Sepharose 6B columns. Of the three peaks of radioactivity that were observed in the effluent of the Sepharose column, two contained proteins, and one of them, with a Stokes radius of 59 Å, seemed to contain the specific opiate receptor, as evidenced by additional experiments. This peak was further purified on thiol-Sepharose or diethylaminoethanol-Sephadex columns that were eluted with a gradient of 0–50 mM dithiothreitol or with 1.0 M KCI, respectively. The receptor-[3H]enkephalin complex from neuroblastoma-glioma cells (apparent δ-type receptors) binds less to the thiol-Sepharose beads than receptor-(3H]enkephalin prepared from the hypothalamus-thalamus, which is rich in μ receptors. The [3H]enkephalin receptor complexes of the various sources also differed in their stability. The dissociation of the ligand from the neuroblastoma-glioma receptor was monophasic, with a half- life of 250 min, whereas that of two brain regions was biphasic, with half-lives of 195–330 min and 10,000 min. The methods described may be of use for further purification of soluble opiate receptors, either active or cross-linked to the ligand.  相似文献   

8.
A modified filtration method for in vitro receptor binding was used to determine specific binding of [3H]naloxone to small regions of adult rat brain. Reliable determinations of ligand binding were quantified with about 50 micrograms of protein per assay tube. Large differences in [3H]naloxone binding were obtained between various brain nuclei, and these differences were consistent with prior determinations of opiate receptor densities in various rat brain nuclei using autoradiographic techniques.  相似文献   

9.
10.
A number of opiate antagonists and the dextro isomers of some of these drugs were studied for antagonism of acute opiate effects on ilea isolated from opiate-naive guinea pigs, precipitation of a withdrawal contraction of ilea isolated from morphine-dependent guinea pigs, precipitation of withdrawal in morphine-dependent rhesus monkeys and stereospecific displacement of 3H-etorphine binding to rat-brain membranes. With the exception of d-naloxone, all of the compounds displaced 3H-etorphine. With the exception of d-naloxone, nalorphine, and quaternary nalorphine, all of the antagonists caused a contraction of ilea isolated from morphine-dependent guinea pigs. Moreover, the IC 50 values of the compounds for displacing 3H-etorphine binding were well correlated with both their Ke values for antagonism in the ileum (r = 0.95) and with their EC 50 values for precipitating a contraction in this preparation (r = 0.92). Generally, the concentration of antagonist necessary to precipitate half maximal contracture was 30-fold greater than the Ke value of the antagonist. Most of the opiate antagonists also precipitated withdrawal when administered to morphine-dependent rhesus monkeys and their in vivo potencies were well correlated with their in vitro potencies in ileum (with Ke: r = 0.95; with EC 50: r = 0.99) and in displacing 3H-etorphine (r = 0.95). The quaternary derivative of naltrexone, however, was an effective opiate antagonist only in vitro, and was ineffective in precipitating withdrawal in morphine-dependent rhesus monkeys. These results suggest that the receptor sites labeled by 3H-etorphine are the same as those involved in antagonism of acute opiate actions and in precipitation of withdrawal.  相似文献   

11.
Abstract: Guanine nucleotides differentiate binding of tritium-labeled agonists and antagonists to rat brain membranes. In the absence of sodium, GTP (50 μM) decreased binding of [3H]-labeled agonists by 20–60% and [3H]-labeled antagonists by 0–20%. In the presence of 100 mM-NaCl, GTP had no effect on antagonist binding, but decreased agonist binding by 60–95%. GMP was less potent than either GTP or GDP in decreasing agonist binding. GTP (50 μM) reduced high-affinity [3H]dihydromorphine sites by 52% and low-affinity sites by 55%. Without sodium, GTP reduced high-affinity [3H]-naloxone sites by 36%; in the presence of 100 mM-NaCl, GTP had no effect on either high- or low-affinity [3H]naloxone sites. GTP increased the association rate of [3H]dihydromorphine twofold and the dissociation rate by fourfold, while having no effect on association or dissociation rates of the antagonist [3H]diprenorphine. The affinities of uniabeled antagonists in inhibiting [3H]-diprenorphine binding were not affected by GTP or sodium, but the affinities of agonists were reduced 40- 120-fold, with met- and leu-enkephalin affinities reduced by the greatest degree. GTP and sodium lowered [3H]dihydromorphine binding in an additive fashion, while divalent cations, especially manganese, reversed the effects of GTP on [3H]-labeled agonist binding by stimulating membrane-bound phosphatases that hydrolyze GTP to GMP and guanosine. These results suggest that by affecting binding of agonists, but not antagonists, GTP may regulate opiate receptor interactions with their physiological effectors.  相似文献   

12.
部分纯化的人胎盘膜经DTT还原,NEM,DTNB修饰蛋白巯基后,改变了胰岛素受体的结合活性。Scatchard分析表明,当DTT浓度较低时,亲和常数基本不变;高亲和位点数略微升高,较高浓度的DTT处理时,结合位点数和亲和常数均有所下降。DTT还原膜蛋白二硫键后再用NEM,DTNB修饰巯基,胰岛素结合活性进一步下降。NEM或DTNB单独处理结合活性下降较少。胰岛素与受体结合后,用DTT洗后剩余的结合胰岛素比缓冲液洗低,表明有一部分胰岛素以二硫键与受体共价结合。在0—5mmol/L浓度范围内,随着DTT处理浓度的升高,这种以二硫键共价结合胰岛素增加。  相似文献   

13.
Ethanol can alter the affinity of mouse striatal opiate receptors for their ligands, and the present studies were aimed at determining the importance of the receptor microenvironment for this effect of ethanol. Changing the temperature of the binding assay, and thus altering the properties of neuronal membrane lipids, resulted in changes in the observed affinity of striatal binding sites for dihydromorphine (DHM), but not for D-Ala2, D-Leu5-enkephalin (ENK). The changes in temperature also differentially altered the response of the two binding sites to ethanol. Two other factors that regulate opiate receptor affinity, Na+ and GTP, also affected the response to ethanol. High concentrations of ethanol were more effective at decreasing receptor affinity for both DHM and ENK when the binding assays were performed in the presence of GTP or Na+. In addition, at 37 degrees C and in the presence of GTP or Na+, DHM binding, but not ENK binding, was significantly inhibited by a low, physiologically attainable concentration of ethanol. Our results suggest that the response of opiate receptors to ethanol is influenced by the microenvironment of the receptors, including the physical state of the membrane lipids and/or by the nature of the interactions of receptors with "coupling proteins" within the membrane. The differential responses of mu and delta receptors to temperature and to ethanol suggest that these receptors reside in specific membrane environments. Under physiological conditions, several different factors may contribute to a selective action of ethanol on particular subtypes of opiate receptors.  相似文献   

14.
Abstract: The effects of opiate drugs (heroin, morphine, and methadone) on the levels of G protein-coupled receptor kinase 2 (GRK2) were studied in rat and human brain frontal cortices. The density of brain GRK2 was measured by immunoblot assays in acute and chronic opiate-treated rats as well as in opiate-dependent rats after spontaneous or naloxone-precipitated withdrawal and in human opiate addicts who had died of an opiate overdose. In postmortem brains from human addicts, total GRK2 immunoreactivity was not changed significantly, but the level of the membrane-associated kinase was modestly but significantly increased (12%) compared with matched controls. In rats treated chronically with morphine or methadone modest increases of the enzyme levels (only significant after methadone) were observed. Acute treatments with morphine and methadone induced dose- and time-dependent increases (8–22%) in total GRK2 concentrations [higher increases were observed for the membrane-associated enzyme (46%)]. Spontaneous and naloxone-precipitated withdrawal after chronic morphine or methadone induced a marked up-regulation in the levels of total GRK2 in the rat frontal cortex (18–25%). These results suggest that GRK2 is involved in the short-term regulation of μ-opioid receptors in vivo and that the activity of this regulatory kinase in brain could have a relevant role in opiate tolerance, dependence, and withdrawal.  相似文献   

15.
Abstract: Electron inactivation analysis revealed that the opiate (enkephalin) binding site in neurotumor cell lines NG108-15 and NCB-20 had an apparent target size of 200,000 daltons. Expression of functional opiate receptors in neurotumor cells appeared to require glycosylation, as treatment of such cells with tunicamycin (TM; under conditions where de novo glycosylation of asparagine residues in protein was reduced by 80%, but overall protein and DNA synthesis were inhibited by <10%) resulted in the loss of 50% of the opiate binding sites. The loss of binding sites could not be prevented by addition of protease inhibitors to cell cultures, but binding sites were partially restored 48–60 h after removal of the TM. In addition, the number of enkephalin binding sites in TM-treated cells was also restored to near-normal levels by addition of physiological concentrations (1-10 mM) of manganese ions to the in vitro receptor binding incubation mixture. TM treatment resulted in receptor supersensitivity to manganese ions for both opiate agonists and antagonists, no change in the sodium effect for either agonists or antagonists, and subsensitivity to GTP for both agonists and antagonists. However, opiate binding to cell membranes was not substantially inhibited by either neuraminidase treatment or short-term incubation with lectins such as wheat germ agglutinin, ricin, or concanavalin A. Thus, the data suggest that oligosaccharide units are not directly involved in opiate receptor-ligand interactions, but protein glycosylation is required for functional expression of receptors.  相似文献   

16.
In the course of our studies on lipidoses induced by amphiphilic drugs, we have investigated the ef- of desipramine, a tricyclic antidepressant, on glial cells in culture. We noted that the addition of desipramine to the culture medium of C6 glioma cells resulted in the modification of the lipid profile of the cell membranes. Of particular interest was the presence, in the desipramine-treated cells, of an additional lipid comigrating on thin layer chromatography with sulfogalactosylceramide (S-GalCer). Addition of radiolabelled sulfuric acid in the culture medium of the desipramine-treated cells resulted in the incorporation of [35S]sulfate in the newly synthesized lipid. Furthermore, this lipid was localized selectively by indirect immunofluorescence using a specific rabbit anti-S-GalCer antibody on the cell surface of desipramine-treated, but not control, C6 cells. Desipramine also increased the activity of 3'-phosphoadenosine-5'-phosphosulfate sulfotransferase (the enzyme responsible for the synthesis of S-GalCer). Since it has been suggested that S-GalCer may be involved in opiate receptors, we looked for opiate binding sites on C6 glioma cells after exposure to desipramine. We found that dihydromorphine was able to bind to the desipramine-treated C6 cell membrane. The binding of [3H]dihydromorphine (180 fmol/mg protein) was stereospecific and had a KD of 30-60 nM. Furthermore, morphine reduced both the basal and isoproterenol-stimulated cyclic AMP levels of the desipramine-treated C6 cells. This effect was blocked by naloxone. In these respects, the opiate binding sites induced after treatment of C6 glioma cells with desipramine fulfill the requirements of a true opiate receptor.  相似文献   

17.
The benozomorphan derivative (-)-2-[2-(p-bromoacetamidophenyl)ethyl]-5,9 alpha-dimethyl-2'-hydroxy-6,7-benzomorphan (BAB), capable of reacting with nucleophilic groups, acts on neuroblastoma X glioma hybrid cells as a potent, irreversible opiate agonist. Its potency in inhibiting the increase in cellular cyclic AMP, evoked by prostaglandin E1, is comparable to that of Leu-enkephalin. This also applies to its capacity to compete with [3H]D-Ala2-Met-enkephalinamide ([3H]DAEA) in binding on cell membrane preparations. The comparatively lower potency of (-)-2-[2-(p-acetamidophenyl)-ethyl]-5,9 alpha-dimethly-2'-hydroxy-5,7-benzomorphan (AB), which differs from BAB in the substitution of the bromoacetamido group by an acetamido group, is of the same order of magnitude as that of morphine. The covalent interaction of BAB with the opiate receptors is deduced from the observations that (1) it is not possible to wash away this compound from the receptors, (2) the potency of BAB in inhibiting the specific binding of [3H]DAEA increases with prolonged preincubation time, and (3) AB behaves as a reversible agonist.  相似文献   

18.
Characterization of Opioid Receptor Subtypes in Solution   总被引:7,自引:5,他引:2  
Stable opioid receptor binding activity that retains distinct subtype specificities (mu, delta, and kappa) has been obtained in high yields in digitonin extracts of rat brain membranes that had been preincubated with Mg2+ prior to solubilization. The dependence on Mg2+ ions for receptor activity is also expressed in the soluble state, where the presence of Mg2+ leads to high-affinity and high-capacity opioid peptide binding to the delta, mu, and kappa sites (the latter subtype measured by the binding of [3H]dynorphin1-8). Binding of opiate alkaloids to soluble receptor sites is less dependent on Mg2+ than is opioid peptide binding. Soluble opioid binding activity shows the same sensitivity to Na+ ions and guanine nucleotides as the membrane-bound receptor. The ligand-receptor interactions give evidence of strong positive cooperativity, which is interpreted in terms of association-dissociation of receptor subunits on ligand binding in solution. Binding of enkephalin peptides is associated with the large macromolecules present (apparent Stokes radii greater than 60 A), whereas both those and several small species present (less than 60 A) bind opiate alkaloids and dynorphin1-8.  相似文献   

19.
DAGO-enkephalin ([ D-Ala2, MePhe4, Gly-ol5]enkephalin), a highly selective ligand for mu opiate receptors, was dimerized with a series of alpha,omega-alkanedioic acids (n = 2-12) at the OH-terminus. In the radioligand receptor binding assays with rat brain, most of the DAGO-enkephalin dimers with cross-linking methylene chain n (DEDn) were more potent than DAGO monomer. For delta receptors, affinity of DEDn was maximized with n = 8, which might be related to an optimal distance between two binding sites. For mu receptors, an increase in chain length resulted in a progressive loss of potency. Although all of DEDn are considerably mu-selective, with a mu/delta ratio of 15-50, DEDn exhibited fairly flat binding curves with 15-50% smaller sloped than that of DAGO, suggesting that the dimers interact more strongly with one of the possible two mu binding sites.  相似文献   

20.
The binding levels and opiate receptor binding parameters were determined for 3H-naloxone in rat brain in the presence of NaCl added in vitro. An addition of NaCl at concentrations of 5-35 mM to the reaction medium caused an increase in the level of the antagonist receptor binding. The maximal level of 3H-naloxone reception activation was observed in the presence of 10-20 mM NaCl and was, on the average, 25%. Both the increase in the NaCl dose in vitro and its decrease caused a gradual diminution of the Na+ effect. An analysis of opiate receptor saturation with 3H-naloxone revealed that the label interacted with one type of the binding sites irrespective of NaCl concentration. The affinity of receptor binding sites for 3H-naloxone increased already at NaCl concentration of 2.5 mM. In contrast, the apparent maximal number of binding sites did not change after NaCl addition at concentrations which coincided with the intracellular Na+ level but was decreased with an increase (up to 50-100 mM) in NaCl present in the reaction mixture. The results obtained point to the existence of two different binding sites that are coupled with the 3H-naloxone reactive opiate receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号