首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-day-old embryos from untreated ewes were transferred to the oviducts of ewes actively immunized against androstenedione (n=26, Group A), passively immunized against testosterone (n=19, Group B) or left untreated (n=25, Group C). Donor ewes superovulated after treatment with follicle-stimulating hormone and fluorogestone acetate (FGA). Recipient ewes were treated with FGA and pregnant mare serum gonadotropin (PMSG, 300 I.U.). Group A received two injections of Fecundin at a 4-wk interval. FGA sponges were inserted when the second injection was given. Group B was treated with antitestosterone antiserum (35 ml) at sponge withdrawal. Each recipient received two morphologically viable embryos 52 to 62 h after the onset of estrus. Antibody titre at embryo transfer and progesterone concentration on Days 2, 4, 6, and 12 after estrus were determined. Fertility was lower in Group A when compared to Group C (42.3 vs 84.1%; P<0.01) while that of Group B (63.2%) did not differ from those of Groups A and C. In immunized groups, most of the embryo losses occurring were complete (both embryos were lost), resulting in a decreased fertility, while in the untreated group embryo losses were mainly partial (only one embryo was lost), hence lowering prolificacy. Fertility in immunized groups changed according to the antibody titre reached. Ewes from Groups A and B with higher antibody titres displayed lower fertility than control ewes. On Days 4 and 12 of the cycle, Group A plasma progesterone concentrations positively correlated with antibody titres and were higher with respect to those of Group C (P<0.05). Progesterone levels in Group B were similar to those of Group C. These results indicate that ewes reaching higher antibody levels had more embryo losses, attributable to the adverse influences of the oviductal and/or uterine environment on embryo development.  相似文献   

2.
Sixteen native ram lambs weaned at 10 wk of age were divided into two groups. Eight animals were immunized against LHRH with a mixture of two fusion proteins: ovalbumin-LHRH-7 and thioredoxin-LHRH-7. The immunized lambs received a primary immunization plus two booster immunizations at 4 and 12 wks. Animals in the control group (n=8) were not treated. Scrotal measurements and blood samples were taken at 2-week intervals. Beginning at 25 wk of age, semen was collected and sexual behaviour was evaluated on a weekly basis. At 35 and 37 wk of age testes and accessory glands of all animals were subjected to ultrasound scanning. At 37 wk of age animals were slaughtered and testes were evaluated histologically. Serum LHRH antibodies (P<0.01) were detected in animals of the immunized group which had reduced serum testosterone concentrations (P<0.01). Testicular development was suppressed in the immunized animals (P<0.01). Immunized animals exhibited mounting activity 5 wks later than control animals. No mature spermatozoa containing ejaculates were collected from immunized animals. Control animals had moderately echogenic ultrasonographic appearance at 37 wk age, whereas immunized animals had hypoechogenic images. Mean seminiferous tubule diameter in immunized lambs was significantly smaller than that in control lambs. Basal membrane was thickened and hyalinized; there was an increase in peritubular connective tissue. No proliferating spermatogonia or mature spermatozoa were present in the tubules in these animals. There were no differences in the ultrasonographic appearance of prostate and vesicular gland between control and immunized animals. The LHRH recombinant fusion proteins were effective in immunological castration in ram lambs when started at 10 wk of age as noted by differences in serum testosterone, testicular histology and ultrasonographic appearance of testis and weight of accessory sex glands. Determining the effects of immunization on ultrasonographic appearance of the testis related to time after immunization requires further investigations.  相似文献   

3.
Two experiments were undertaken to determine the hormonal response of Merino ewes to immunization against androstenedione (Fecundin). In Exp. 1 peripheral concentrations of LH, FSH and progesterone were monitored in spontaneously cycling ewes (20 immunized and 21 controls). In Exp. 2 (10 immunized and 10 controls) the same hormones were measured in ewes before and after prostaglandin (PG)-induced luteolysis and, in addition, the pattern of pulsatile LH secretion was determined during the luteal (PG + 12 days), early follicular (PG + 24 h) and late follicular (PG + 40 h) phase of the oestrous cycle. Ovulation rates were measured in both experiments. The results of these experiments indicate that androstenedione-immune animals have elevated ovulation rates (0.6-0.7 greater than control animals; P less than 0.05) associated with elevated plasma concentrations of LH and progesterone. The magnitude of the increase in plasma progesterone was correlated with androstenedione antibody titre (r = 0.6, P less than 0.001). LH pulse frequency of androstenedione-immune ewes tended to be higher at all stages of the oestrous cycle, but this difference was only significant (P less than 0.05) during the luteal phase. Mean plasma concentrations of FSH did not differ significantly between immunized and control ewes at any stage of the cycle. Analysis of periodic fluctuations in FSH during the luteal phase revealed that androstenedione-immune animals had a similar number of fluctuations of a similar amplitude to those of control animals, but the nadir of these fluctuations was lower (P less than 0.05) in immunized animals. A significant (P less than 0.05) negative correlation existed between androstenedione antibody titre and the interval between FSH peaks (r = -0.49) and androstenedione antibody titre and FSH nadir concentrations (r = -0.46). It is concluded that plasma FSH concentrations are not a determinant of ovulation rate in androstenedione-immune ewes and that increased LH concentrations, or perturbation of normal intraovarian mechanisms, may be responsible for the increase in ovulation rate observed in ewes immunized against androstenedione.  相似文献   

4.
The effect of immunoneutralization of gonadotropin-releasing hormone (GnRH) on serum concentrations of testosterone and sexual behavior was evaluated in sexually mature male sheep. In Experiment 1, GnRH1 rams (n=16) were passively immunized against GnRH (300 ml antiserum), control rams were either passively immunized against keyhole limpet hemocyanin (KLH, n=15) or surgically castrated (Wethers1, n=4). Sexual performance of the rams was assessed weekly for 3 weeks before and 6 weeks after immunization, using ovarihystertomized ewes actively immunized against GnRH. Experiment 2 evaluated the effects of repeated immunization. Rams were immunized with two aliquots (400 and 300 ml, respectively) of anti-GnRH sera (GnRH, n=5) or normal sheep serum (NSS, n=4), 2 weeks apart. Surgically castrated animals were used as a second control group (Wethers2). Administration of anti-GnRH sera, but neither anti-KLH nor NSS sera, resulted in marked reduction (P<0.05) in serum concentrations of testosterone. Sexual behavior was not consistently affected by administration of one aliquot of anti-GnRH sera, however repeated immunizations resulted in more persistent reduction in serum concentrations of testosterone and more consistent suppression of sexual behavior.  相似文献   

5.
Ewes were immunized against androstenedione (Fecundin) and assigned to be mated 14 days (179 ewes Group C) or 25 days (174 ewes Group B) after a booster immunization with Fecundin. The anti-androstenedione titres at these times were 6790 and 3240 respectively (P less than 0.01). The remaining 169 ewes were untreated controls (Group A). Ewes were mated to entire rams (12 rams to 180 ewes) at their second oestrus after synchronization of oestrus. Immunization against androstenedione caused a shortening of the time from sponge removal to mating (Day 0) and a decrease in the percentage of ewes mated by the rams. Also, ovulation rate was increased after immunization (P less than 0.01), being 1.42, 2.16 and 1.93 for Groups A, C and B respectively. Egg recovery rates on Day 2 were lower in immunized ewes and there was some indication that fertilization rates were lowered. On Day 13 after mating a higher proportion of blastocysts was recovered from ewes in Group A than from those in Groups B and C. Immunization resulted in lower fertilization rates and smaller blastocysts with lower mitotic indexes (P less than 0.01). At Days 24-32 of pregnancy fetal weight was lower in the immunized ewes. At all sampling stages, the proportion of ewes pregnant (fertility) was lowered in immunized ewes. The results of the present study show that significant reproductive wastage occurs in androstenedione-immunized Merino ewes, with lower rates of embryo recovery and delayed embryonic development being found in comparison to controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study was designed to evaluate the potential of using eCG or GnRH in restoring reproductive functions in GnRH immunized ewes. Thirty-three multiparous Kivircik ewes were randomly assigned into either control group (n=11) or immunization group (n=22). Ewes were immunized against GnRH by injecting with a cocktail of ovalbumin-LHRH-7 (ovalbumin-GnRH-7) and thioredoxin-LHRH-7 (thioredoxin-GnRH-7) fusion proteins generated by recombinant DNA technology in April. 500 IU eCG or 0.008 mg GnRH analogue was used to induce ovulations. Serum GnRH antibodies were present in animals of the immunized group beginning the second week after the first immunization and maintained throughout the study (14 months). Immunization caused anestrus in immunized ewes. eCG or GnRH analogue administration given after 14 days progestagen (20 mg fluorogestone acetate, FGA) treatment during breeding season (mid July) did not induce ovulation in these ewes. Two more attempts with single or multiple eCG injections failed to induce ovulation in this group as well. It appears that the gonadotropin stimulation was not of adequate time since neither eCG nor GnRH administration was able to restore reproductive function in immunized animals. The immunization effect lasted more than a year. These results suggest that GnRH immunization exerts its effect via the hypothalamo-pituitary axis and that more than such stimulation is required to overcome the reproductive suppression.  相似文献   

7.
The effects of active immunization against oestradiol-17 beta on the ovarian response to pregnant mare serum gonadotrophin (PMSG) was investigated in Merino ewes. Immunized (79) and control (41) ewes were synchronized with intravaginal sponges, given either 750 or 1500 i.u. PMSG and then mated to rams or inseminated laparoscopically with fresh diluted semen. All control ewes mated naturally exhibited oestrus and 40 out of 41 control ewes ovulated. The ovulation rate was higher in the controls receiving 1500 i.u. PMSG than in those ewes which received 750 i.u. PMSG (10.2 v. 3.3). Immunization against oestradiol-17 beta resulted in antibody titres varying from 100 to more than 100 000 in plasma taken 1-4 days after mating. The ovarian response increased significantly in the lowest titre group (100-1000) in conjunction with stimulation with 1500 i.u. PMSG. In these ewes the ovulation rate increased over controls (16.7 v. 10.2) as did the total ovarian response, which includes follicles greater than 10 mm diameter (22.3 v. 11.1). The total ovarian response was also increased in those ewes given 750 i.u. PMSG which had titres in the 1000-10 000 and 10 000-100 000 range, but this was not accompanied by significant increases in the ovulation rate. In general, the higher titre levels (greater than 1000) were correlated with decreases in the proportion of ewes showing oestrus and ovulating and in the embryo recovery rate. The 1500 i.u. PMSG treatment group with the highest titres (greater than 10 000) also showed a significant drop in the ovulation rate as compared to the 1500 i.u. PMSG controls.  相似文献   

8.
Mature Merino ewes in which the left ovary and its vascular pedicle had been autotransplanted to the neck were divided into control (N = 5) and immunized groups (N = 6). The immunized ewes were treated (2 ml s.c.) with Fecundin 1 and 4 weeks before the start of blood sampling. Ovarian and jugular venous blood was collected every 10 min at two stages of the follicular phase (21-27 h and 38-42 h after i.m. injection of 125 micrograms of a prostaglandin (PG) analogue) and during the mid-luteal phase (8 h at 15-min intervals). The ewes were monitored regularly for luteal function and preovulatory LH surges. Hormone concentrations and anti-androstenedione titres were assayed by RIA and ovarian secretion rates of oestradiol-17 beta, progesterone and androstenedione were determined. After the booster immunization, progesterone increased simultaneously with titre in immunized ewes, reaching 30 ng/ml at the time of PG injection when median titre was 1:10,000. All ewes responded to PG with LH surges 42-72 h later: 2 of the immunized ewes then had a second LH surge within 3-4 days at a time when peripheral progesterone values were 2-3 ng/ml. The frequency of steroid and LH pulses was greater in immunized ewes (P less than 0.05) during the luteal phase but not the follicular phase. The secretion rate of androstenedione was 6-10 times greater (19-37 ng/min; P less than 0.001) in immunized ewes at all sampling stages. Progesterone secretion rates were 3 times greater (16 micrograms/min; P less than 0.001) during the luteal phase in immunized ewes. The amplitude of oestradiol pulses was significantly reduced in immunized ewes (4.8 vs 2.1 ng/min at +24 h and 6.5 vs 2.8 ng/min at +40 h in control and immunized ewes, respectively: P less than 0.05) during the follicular phase. However, the mean secretion rate of oestradiol at each phase of the cycle was not significantly different between treatment groups. Analysis of bound and free steroid using polyethylene glycol showed that greater than 98% of peripheral and ovarian venous androstenedione and 86% of peripheral progesterone was bound in immunized ewes but there was no appreciable binding (less than 0.1%) in control ewes. Similarly, 50% of ovarian venous oestradiol was bound in immunized ewes compared to 15% in control ewes. We conclude that immunization against androstenedione increases the secretion rate of androstenedione and progesterone but not of oestradiol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Immunization of ewes against growth differentiation factor 9 (GDF9) or bone morphogenetic protein 15 (BMP15) can lead to an increased ovulation rate; however, it is not known whether normal pregnancies occur following such treatments. The aims of the present study were to determine the effects of a short-term immunization regimen against BMP15 and GDF9 on ovulation rate, fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, and the ability of immunized ewes to carry a pregnancy to term. Ewes were given a primary and booster immunization against keyhole limpet hemocyanin (KLH; control, n = 50), a GDF9-specific peptide conjugated to KLH (GDF9, n = 30), or a BMP15-specific peptide conjugated to KLH (BMP15, n = 30). The estrous cycles of all ewes were synchronized, and ewes were joined with fertile rams approximately 14 days after the booster immunization. The number of corpora lutea was determined by laparoscopy 3-4 days following mating. Subsequently, about one-half of the ewes in each group underwent an embryo transfer procedure 4-6 days following mating, with the embryos being transferred to synchronized, nonimmunized recipients. The remaining ewes were allowed to carry their pregnancies to term. Short-term immunization against either BMP15 or GDF9 peptides resulted in an increase in ovulation rate with no apparent detrimental affects on fertilization of released oocytes, the ability of fertilized oocytes to undergo normal fetal development, or the ability of the immunized ewes to carry a pregnancy to term. Therefore, regulation of BMP15, GDF9, or both is potentially a new technique to enhance fecundity in some mammals.  相似文献   

10.
A total of 1200 ewes, two hundred from each of six dairy breeds-the Karagouniko (K), the Serres (S), the Vlachiko (V), the Florinis (F), the Kimis (Km) and the Chios (Ch)-were used to examine the efficacy of a new immunogen (androstenedione-7a-HSA + DEAE-dextran) in improving reproductive performance. Ewes of each breed were randomly allotted to two groups, the control and the treated. Treated ewes were given two injections of 2 ml immunogen three weeks apart, while the control ewes were untreated. Rams were introduced to all ewes after the second injection. Twenty ewes in each group for each breed were laparotimized 7 to 10 days post-mating. Incidence of estrus and mating, the ovulation rate (OR), lambing percentage (Lp. 100), litter size (LS), and lamb (LbW) and litter weight (LW) were recorded. The OR was increased in immunized ewes compared to controls from 1.60, 1.46, 1.50, 2.50, 2.50 and 2.90 to 2.50, 2.06, 2.20, 3.20 (P<0.05), 4.20 and 4.80 (P<0.01), respectively, in K, S, V, F, Km and Ch breeds. No significant difference on Lp. 100 was observed between control and treated ewes of all breeds. The LS was increased in immunized ewes by 17, 20, 18, 28, 57 and 0 lambs compared to control ewes in K, S, V, F, Km and Ch breeds, respectively; however, the increase was statistically significant (P<0.05) only in Km and F breeds. The LbW was decreased in immunized ewes compared to controls; however, the decrease was statistically significant (P<0.05) only in the V breed. When compared to control ewes the LW was greater in immunized ewes of S, K, Km and F breeds while in Ch and V breeds LW was smaller. It was concluded that an increase in ovulation rate by active immunization against androstenedione may not be reflected in an increase of litter size in dairy sheep. Breed differences must be considered when producers intend to use this technique to improve litter size.  相似文献   

11.
The effects of passive immunization of ewes against progesterone on plasma progesterone concentrations and on the metabolic clearance rate (MCR) and production rate (PR) of progesterone were investigated. Three treatment groups were studied: 1) nonimmunized controls, 2) ewes passively immunized with antiprogesterone serum, and 3) immunized progestagen-treated ewes, treated concomitantly with anti-serum and with a synthetic progestagen that is not bound by the antiserum. Progesterone levels in the immunized ewes reached a maximum of 27.7+/-4.8 nmol/l and were significantly higher (P<0.05) than in the nonimmunized controls (9.2+/-1.1 mol/l) or the immunized progestagen-treated ewes (15.6+/-1.6 nmol/l). Mean progesterone MCR in the immunized ewes was 1.6+/-0.5 and 2.1+/-0.3 liter/min on Days 7 and 13 of the estrous cycle, respectively, compared with 0.8+/-0.2 and 1.4+/-0.3 liter/min, respectively, in nonimmunized controls. The progesterone production rate in the immunized ewes was significantly higher than in nonimmunized controls, and reached 12.0+/-2.2 and 19.7+/-1.6 nmol/min on Days 7 and 13 of the estrous cycle, respectively, compared with 4.6+/-0.6 and 10.0+/-2.5 nmol/min in nonimmunized controls (P<0.03 for both comparisons). Treatment with progestagen had no significant effect on progesterone MCR or PR of immunized ewes. The LH pulse frequency on Days 10 to 11 of the cycle was 0.7+/-0.3, 1.8+/-0.3 and 0.0+/-0.0 pulses/6 h in the control, immunized and immunized progestagen-treated groups, respectively (P<0.05). It is concluded that the increased plasma progesterone levels in the immunized ewes are the result of an increased progesterone production rate, which may have been induced by an increase in gonadotrophin secretion or by a direct effect of the anti-progesterone serum on the ovary.  相似文献   

12.
Two experiments were designed to determine the effects of active immunization against one of two synthetic peptides from humans (inhibin-like peptide) or pigs (inhibin alpha-subunit) on antibody titres, ovulation rate and embryo production in ewes superovulated with 16 U ovine FSH. In Expt 1, during the breeding season, 30 ewes were subdivided into three groups: group I served as the non-immunized control; group II was immunized against inhibin-like peptide (100 micrograms inhibin-like peptide equivalent, followed by three booster injections); group III was immunized against pig inhibin alpha-subunit conjugated to human serum albumin (96 micrograms for the primary administration and 46 micrograms for the booster). In Expt 2, the efficiency of immunization against pig inhibin alpha-subunit on ovarian response and embryo production was evaluated during the non-breeding season in two groups of ewes (n = 12): group IV was a non-immunized control; Group V was immunized against pig inhibin alpha-subunit. During the breeding season, the ewes immunized against pig inhibin alpha-subunit showed higher antibody titres compared with the group immunized against inhibin-like peptide (P < 0.01) and a significant increase in ovulation rate (12.1) compared with both the control (5.0; P < 0.05) and the inhibin-like peptide-immunized group (3.1; P < 0.01). Immunization against pig inhibin alpha-subunit increased transferable embryo yield 4.5-fold (6.7 versus 1.5; P < 0.01) and improved embryo quality (94.6 versus 40.6%; P < 0.01). During the non-breeding season, immunization against pig inhibin alpha-subunit enhanced ovulation rate from 2.6 in the controls to 9.4 (P < 0.01) but did not affect transferable embryo production (3.9 versus 2.1; P > 0.05) and significantly lowered their quality (54.1 versus 100%; P < 0.01). In conclusion, active immunization against pig inhibin alpha-subunit can improve superovulatory response during the breeding season, while it appears to be unable to increase embryo yield during the seasonal anoestrus.  相似文献   

13.
The gonadotrope cells of the ovine anterior pituitary were insulated from hypothalamic inputs by imposing an immunologic barrier generated by active immunization of ovariectomized ewes against gonadotropin-releasing hormone (GnRH) conjugated to keyhole limpet hemocyanin (KLH) through a p-aminophenylacetic acid bridge. All GnRH-KLH animals immunized developed titers of anti-GnRH that exceeded 1:5000. The antisera were specific for GnRH and cross-reacted with GnRH agonists modified in position 10 to an extent that was less than 0.01%. Ewes actively immunized against GnRH-KLH displayed levels of basal and GnRH agonist-induced gonadotropin secretion that were markedly lower (p less than 0.05) than comparable parameters in ewes actively immunized against KLH. In contrast, basal and thyrotropin-releasing hormone (TRH)-induced prolactin (PRL) secretion were not compromised by active immunization. Immunization against the GnRH-KLH conjugate, but not KLH alone, prevented expression of the positive feedback response to exogenous estradiol (E2). Pituitary stores of immunoactive luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were significantly (p less than 0.001) reduced in ewes immunized against GnRH-KLH but stores of PRL were not affected by such immunization. Further, the biopotency of the residual LH stores in tissue of animals from the anti-GnRH group was significantly (p less than 0.05) lower than LH biopotency in anti-KLH animals. Serum levels of LH in anti-GnRH ewes were restored by circhoral administration of a GnRH agonist that did not cross-react with the antisera generated. Pulsatile delivery of GnRH agonist in anti-GnRH ewes significantly (p less than 0.05) elevated serum LH within 48 h and reestablished LH levels comparable to anti-KLH ewes within 6 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Groups of bull calves received a primary immunization against testosterone (Group T; N = 7) or oestradiol-17 beta (Group E; N = 9) at 3 months of age and booster injections on four occasions at approximately 2 month intervals. Controls (Group C, N = 7) were immunized against human serum albumin alone using the same protocol. Immunity was achieved against both steroids as judged by the secondary antisteroid antibody titres in Group T (730 +/- 231; reciprocal of titre) and Group E (12,205 +/- 4366) bulls; however, peak antibody titres generally declined with successive booster injections. Mean plasma concentrations of LH, FSH and testosterone during the period from 3 to 10 months of age were higher (P less than 0.05) in Group T bulls than in Groups C and E. Group T bulls had larger testes compared with controls from 6 months of age onwards. At castration at 14 months of age, testes of Group T bulls were heavier (P less than 0.05) than those of Groups C and E (179 +/- 13, 145 +/- 8 and 147 +/- 6 g, respectively). At 10 months of age, there were no differences among treatment groups in LH responses to LHRH, but the testosterone responses were greater (P less than 0.05) in bulls in Group T (26.2 +/- 4.9 ng/ml) and Group E (16.6 +/- 1.8 ng/ml) compared with those in Group C (6.9 +/- 0.6 ng/ml). Testosterone responses to hCG determined at 13 months of age were also greater (P less than 0.05) in Groups T and E relative to controls. At 14 months of age daily sperm production rates per bull (X 10(-9)) were higher (P less than 0.10) in Group T bulls (2.2 +/- 0.1) than those in Groups C (1.6 +/- 0.2) and E (1.6 +/- 0.1). These results indicate that early immunity against testosterone is associated with increased gonadotrophin secretion and accelerated growth of the testes in prepubertal bulls. Also, chronic immunity against testosterone or oestradiol-17 beta enhances the steroidogenic response of bull testes to gonadotrophic stimulation. If the above responses observed in young bulls are shown to be sustained, then immunity against gonadal steroids early in life may confer some reproductive advantage in mature animals.  相似文献   

15.
Plasma FSH concentrations were measured in Merino ewes immunized with either an inhibin-enriched preparation from bovine follicular fluid (bFFI) or bovine serum albumin. When compared during the normal oestrous cycle, ewes reimmunized three times with bFFI and which showed increased ovulation rates before the experiment had significantly elevated plasma FSH concentrations on Day 13–14 and at Day 2 of the subsequent cycle. There was a positive correlation (P < 0.05) between plasma FSH concentration and the ovulation rate of the ewes in previous cycles (during the period of immunization) and in the cycle under investigation. In a larger group of ewes immunized against bFFI, which showed a variable increase in ovulation rate, there was no comparable increase in plasma FSH concentration when compared with control ewes in the follicular phase of the cycle.By contrast, when luteolysis was induced by a prostaglandin analogue the bFFI-immunized ewes had lower plasma FSH concentrations than control ewes immediately before and after the preovulatory LH surge. This decrease was significant in the period 9–21 h after the LH surge (P < 0.05–0.01) so that the onset of the second FSH peak was delayed.When the ewes were ovariectomized, the post-castration rise in plasma FSH concentration (but not LH) was delayed for a period of 24 h in bFFI-immunized ewes relative to controls.These experiments show that immunization of ewes with an inhibin-like fraction of bFF does not lead to consistently elevated plasma FSH. However, such ewes have altered feedback regulation leading to differential responses of FSH to prostaglandin-induced luteolysis and to castration.  相似文献   

16.
Active immunization against inhibin has been shown to advance puberty and increase ovulation rate in ewe lambs; but in ram lambs, effects on puberty and sperm production are equivocal. The objective of the present study was to determine whether active immunization against an inhibin alpha-subunit peptide advances the onset of puberty in ram lambs. St. Croix hair sheep ram lambs were assigned to inhibin-immunized (n = 7) and control (n = 8) treatment groups. Lambs in the inhibin-immunized group were immunized against a synthetic peptide-carrier protein conjugate, alpha-(1-25)-human alpha-globulin (halpha-G), and control lambs were immunized against halpha-G. Lambs were immunized at 3, 7, 13, 19, 25, 31, and 37 weeks of age. On the day of immunization a blood sample was collected and lambs were weighed. Another blood sample was collected 1 week following each immunization. At 20 weeks of age additional blood samples were collected at 20 min intervals for 8h. Beginning at 20 weeks of age and at weekly intervals thereafter, scrotal circumference (SC) was measured and semen was collected using electroejaculation. A subsequent ejaculate was collected 1 week following onset of puberty, which was defined as the week of age when an ejaculate first contained > or =50 x 10(6) sperm cells. In control lambs, plasma alpha-(1-25)-antibody (Ab) was nondetectable. In inhibin-immunized lambs, alpha-(1-25)-Ab titer increased from 7 to 25 weeks of age and then plateaued at a level that varied (P<0.001) among animals. Body weight and SC of control and inhibin-immunized lambs were similar at the onset of puberty. At pubertal onset inhibin-immunized lambs were older than control lambs (31.9+/-0.5 vs. 29.5+/-0.7 weeks of age, P<0.05). Plasma FSH concentrations were similar in control and inhibin-immunized lambs from 3 to 38 weeks of age. Plasma LH levels were lower (P<0.01) in inhibin-immunized than control lambs. During the 8-h blood sampling period at 20 weeks of age, LH and testosterone concentrations were lower (P<0.05) in inhibin-immunized than control ram lambs, and the LH pulse frequency was similar in the two groups of animals. The decreased LH secretion is consistent with the immunoneutralization of a putative inhibin alpha-subunit-related peptide that stimulates LH secretion in ram lambs. Present findings show that active immunization against an inhibin alpha-peptide delays rather than advances puberty in ram lambs.  相似文献   

17.
The role of testosterone in the ovulatory process in hens has been largely neglected. The aim of the present study was to evaluate if testosterone plays an important role on the ovulatory process in laying hens. The effect of active and passive immunization against testosterone on ovarian follicular development and oviposition was studied. Egg laying percentage was evaluated in hens actively immunized against testosterone-BSA (T-AI; n = 6) or BSA (BSA-AI; n = 6). Oviposition was reduced as antibody titer increased in T-AI hens (r = -0.67; P < 0.01). Ovarian structures were assessed in three animals from each group. Follicles reached preovulatory size in both groups, nonetheless, in T-AI hens follicles at different stages of regression indicated that ovulation was blocked by treatment. In the remaining animals, preovulatory concentrations of progesterone and testosterone were determined. A preovulatory surge release of progesterone, preceded by a testosterone peak, was observed in the BSA-AI group (P < 0.05). In contrast, progesterone in T-AI animals remained at basal concentrations. Whereas, testosterone concentrations were significantly greater in T-AI as compared with BSA-AI animals (P < 0.05). Finally, to study the effect of passive immunization on oviposition, hens were passively immunized (PI) on four occasions, on alternate days with anti-T serum (T-PI; n = 10) or anti-BSA serum (BSA-PI; n = 8). During the 13-day period that preceded treatment, oviposition averaged 94.1%. Forty-eight hours after the first immunization, no egg was laid by 8 out of the 10 T-PI hens. During the 10 days following the first passive immunization, there was a reduction in the laying percentage that was significantly greater in T-PI hens (reduction of 52% in T-PI versus 29% in P-BSA, P < 0.01). In summary, these studies show that testosterone immunization hampers egg-laying without affecting ovarian follicular development, suggesting that testosterone has an important role in the ovulatory process in laying hens.  相似文献   

18.
Multiparous dairy cows were divided in 3 groups from Day 5 up to Day 56 post partum: high energy level (Group H, n=10), low energy level (Group L, n=10) and low energy level plus anti-testosterone bovine immunoglobulins (Group LI, n= 10). Undernutrition decreased body weight, body condition score, milk yield and energy balance in Groups L and LI compared to Group H (P<0.05), but had no effect on secretory pattern of LH. Passive immunization against testosterone increased LH secretion in Group LI (P<0.05). Follicular score and the presence of follicles >/= 10mm on the ovary were not affected by underfeeding but were higher in Group LI than in Group L after immunization (P<0.01). The duration of the first luteal phase was shorter in Group H than in Groups L and LI and maximum progesterone levels reached were higher in Group LI than in Group H (P<0.01). Reproductive performance was not depressed by underfeeding and immunization. In the pubertal beef heifers maintained in anestrus by undernutrition had very low LH secretion. After passive immunization against testosterone, the increase of LH pulses number became almost significant (P=0.07). Following injection of exogenous LH, the number of follicles >/= 9mm was higher in immunized (Group I, n=8) than in control heifers (Group C, n=7). Group I developed a dominant follicle sooner and of greater size than Group C. Passive immunization against testosterone increased LH secretion and follicular development.  相似文献   

19.
Ewes were actively immunized against oestrone-6-(O-carboxymethyl)-oxime-bovine serum albumin, 17 beta-oestradiol-6-(O-carboxymethyl)oxime-bovine serum albumin or bovine serum albumin (controls). All 4 control ewes, 1 of 5 oestradiol-immunized ewes and 1 of 5 oestrone-immunized ewes had regular oestrous cycles. The other animals displayed oestrus irregularly or remained anoestrous. The plasma concentrations of LH and, to a lesser degree, FSH were increased relative to those in control ewes on Days 11-12 after oestrus or a similar total period after progestagen treatment in ewes not showing oestrus. The ovaries were examined and jugular venous blood, ovarian venous blood and follicular fluid were collected at laparotomy on Days 9-10 of the oestrous cycle. The ovaries of immunized ewes were heavier than those of control ewes. There were no CL in 5 of the immunized ewes but in the other 5 there were more CL than in the control ewes. Ovaries from 4 of 5 oestrone-immunized ewes contained luteinized follicles, while ovaries from 4 of 5 oestradiol-immunized ewes contained very large follicles with a degenerated granulosa and a hyperplastic theca interna. Both types of follicles produced progesterone, detectable in ovarian venous plasma and production of other steroids, particularly androstenedione, was also increased. The steroid-binding capacity of plasma was increased in the immunized ewes. The binding capacity of follicular fluid for oestradiol-17 beta and oestrone was similar to that of jugular venous plasma from the same ewes. These results suggest that immunization against oestrogens disrupts reproductive function by interfering with the feedback mechanisms controlling gonadotrophin secretion.  相似文献   

20.
The objective of this study was to determine the optimal dose of a GnRH vaccine for immunocastration of Chinese male pigs, based on immune, endocrine and testicular responses. Forty-two crossbred (Chinese Yanan x Large White) male pigs were randomly assigned to one of the five treatments as follows: (I) 0 microg (control, n=8); (II) 10 microg (n=8); (III) 62.5 microg (n=8); (IV) 125 microg (n=8); (V) 250 microg (n=10), D-Lys6-GnRH tandem dimer (TDK) peptide equivalent of conjugate (TDK-OVA), using Specol as the adjuvant. Pigs were immunized at 13 and 21 weeks of age and were slaughtered at 31 weeks of age. Blood samples for antibody titer and hormone assays were collected at 13, 21, 24 and 31 weeks of age. At these time-points, testis size was also measured. At slaughter, testis weight was recorded and fat samples were collected for androstenone assay. Four animals, one out of each immunized group, responded poorly to the immunization (non-responders). At slaughter, serum testosterone and LH levels, fat androstenone levels and testis size/weight of these non-responders were similar to those in control animals. Antibody titers of non-responders were substantially lower (P<0.05) than in other immunized pigs. For the animals that responded well to the immunization (immunocastrated pigs), serum testosterone and LH levels, fat androstenone levels and testis size or weight were reduced (P<0.05) as compared to either controls or non-responders, at all doses tested. There was a significant effect of dose of TDK-OVA on antibody titers. The overall mean antibody titers in the 62.5 or 125 microg dose group (53.6 and 50.5% binding, respectively) were significantly higher than in the 10 or 250 microg group (39.2 and 40.24% binding, respectively). At slaughter, there was a significant dose effect on testis size or weight and on serum testosterone levels, but there was no dose effect on serum LH levels and fat androstenone levels. Testis size or weight in the 10 microg group was reduced to a lesser extent (P<0.05) than in the three higher dose groups. At slaughter, in comparison to controls, mean testis size of immunocastrated pigs in treatments II-V was reduced to 55, 21, 33 and 25%, respectively, whereas testis weight was reduced to 39, 12, 18 and 14%, respectively. Reduction of testis size and/or weight is important for visual assessment of castration at the slaughterline, therefore, it is concluded that a dose of 10 microg peptide is not suitable. We conclude that, within the dose-range studied, the 62.5 microg dose is optimal for future GnRH immunization studies or future practical use in immunocastration of Chinese male pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号