首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism for the formation of the inverse electron distribution function is proposed and realized experimentally in a nitrogen plasma of a hollow-cathode glow discharge. It is shown theoretically and experimentally that, for a broad range of the parameters of an N2 discharge, it is possible to form a significant dip in the profile of the electron distribution function in the energy range ε=2–4 eV and, accordingly, to produce the inverse distribution with df(ε)/d?>0. The formation of a dip is associated with both the vibrational excitation of N2 molecules and the characteristic features of a hollow-cathode glow discharge. In such a discharge, the applied voltage drops preferentially across a narrow cathode sheath. In the main discharge region, the electric field E is weak (E<0.1 V/cm at a pressure of about p~0.1 torr) and does not heat the discharge plasma. The gas is ionized and the ionization-produced electrons are heated by a beam of fast electrons (with an energy of about 400 eV) emitted from the cathode. A high-energy electron beam plays an important role in the formation of a dip in the profile of the electron distribution function in the energy range in which the cross section for the vibrational excitation of nitrogen molecules is maximum. A plasma with an inverted electron distribution function can be used to create a population inversion in which more impurity molecules and atoms will exist in electronically excited states.  相似文献   

2.
Abstrac A study is made of the nonlocal nature of the electron energy distribution function in the positive column of a glow discharge in a tube filled with pure oxygen. The distribution function and the axial (E z) and radial (E r) electric fields as functions of radius are measured using an array of mobile probes. The experimentally obtained spatial profiles of the distribution function are used to test the applicability of the two-term approximation to the distribution function of the electrons with a nonlocal energy spectrum. The distribution function in a specified electric field E=E z +E r (where E zE r) is calculated by solving the coordinate-dependent Boltzmann equation in the two-term approximation and by directly integrating the equations of electron motion using the Monte Carlo method. A comparison between the experimental data and the results of simulations carried out for a broad parameter range shows that, in the case of a highly nonlocal electron energy spectrum, the two-term approximation makes it possible to calculate the electron distribution function with a fairly good accuracy, in which case, however, in imposing the boundary conditions, the electron losses at the plasma surface should be treated in the kinetic approximation. It is shown that using the reflection coefficient of the plasma surface for electrons instead of the loss cone in space makes it possible to accurately calculate the electron energy distribution function over the entire parameter range under consideration, including the transient region in which the electron-energy relaxation length is comparable to the characteristic plasma dimension. __________ Translated from Fizika Plazmy, Vol. 26, No. 11, 2000, pp. 1038–1045. Original Russian Text Copyright ? 2000 by Ivanov, Klopovskii, Lopaev, Rakhimov, Rakhimova.  相似文献   

3.
Analysis of the results of polarimetric measurements of X-ray line radiation of multicharged ions in a Z-pinch discharge indicates that the formation of an anisotropic electron velocity distribution in the neck of the current channel and the generation of highly charged ions are separated in time. The generation of a fast electron beam in the longitudinal ohmic electric field in the stage of plasma compression in the neck results in the polarization of X-ray bremsstrahlung continuum. In the stage of expansion of the hot dense micropinch plasma, the radial electric field prevails, due to which X-ray line radiation of multicharged ions becomes linearly polarized.  相似文献   

4.
The dust grain charge in the plasma of a glow discharge in noble gases and nitrogen is calculated in the orbit motion limited model for reduced fields in the range of E/N = 1–20 Td. The calculations were performed using the electron energy distribution functions (EEDFs) obtained by solving the Boltzmann equation numerically with allowance for elastic and inelastic electron scattering and analytically with allowance for only elastic scattering and (for nitrogen) excitation of rotational levels, as well as using a Maxwellian EEDF. In the latter case, either the characteristic electron energy or mean electron energy multiplied by two thirds was used as the electron temperature. It is shown that the calculations with the use of a Maxwellian EEDF yield larger values of the grain charge as compared to those calculated with EEDFs obtained by solving the Boltzmann equation. The range of E/N values is determined in which analytical expressions for the EEDF obtained with allowance for elastic scattering and excitation of rotational levels are applicable to calculating the grain charge. The effect of the EEDF shape on the screening of the dust grain charge in plasma is investigated. The Debye screening length in case of a Maxwellian EEDF is shown to be shorter than that obtained with EEDFs calculated by numerically solving the Boltzmann equation.  相似文献   

5.
The initiation and characteristics of a low-pressure glow discharge in air in large-diameter discharge tubes are studied. A deviation from the Paschen law is observed: the breakdown curves U dc(pL) shift toward the higher values of U dc and pL as the interelectrode distance L increases. It is shown that the normal regime of a glow discharge is accompanied by gas ionization in the anode sheath. This takes place only for pL values lying to the right of the inflection point in the breakdown curve. The cathode-sheath characteristics in the normal and abnormal regimes of an air discharge for a duralumin cathode are determined. The axial profiles of the ion density, electron temperature, and plasma potential, as well as the anode voltage drop, are measured at various air pressures.  相似文献   

6.
7.
The mechanism of ethanol conversion in a nonequilibrium glow discharge has been studied. It is shown that molecular hydrogen is produced in reactions between ethanol molecules and hydrogen atoms in the initial stage and in reactions involving active H, CH2OH, CH3CHOH, and formaldehyde in the final stage. Comparison with experimental data shows that the kinetic mechanism used in these calculations correctly predicts the concentrations of the main components of the gas mixture.  相似文献   

8.
9.
Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.  相似文献   

10.
Results are presented from experimental studies of breakdown and the initial stage of a discharge in a long tube (with an interelectrode distance of 40 cm and a diameter of 2.8 cm) at a pressure of ~1 Torr and pulse discharge current of ~10 mA. Breakdown was produced by positive voltage pulses with a linearly growing leading edge with a steepness of dU/dt ~ 106–108 V/s. The time interval between pulses was varied from τ = 0.5 ms to 1 s, the pulse duration being 10 ms. The work was aimed at studying the memory effect of the discharge gap, namely, the influence of the previous pulse on the breakdown characteristics of the next one. In the experiments, the breakdown voltage was measured at different values of dU/dt and τ. It was found that the memory effect was absent at τ ~ 1 s. At the same time, an increase in the breakdown voltage with increasing dU/dt was observed. In the range of τ ≈ 50–200 ms, the breakdown voltage also did not depend on τ, but the memory effect took place. The memory effect in this case consisted in that the breakdown voltage decreased with increasing dU/dt, so that, at dU/dt ~ 107 V/s, the breakdown voltage was two times lower than in the case of τ ~ 1 s. For τ ~ 1–10 ms, the memory effect manifested itself in that the breakdown voltage depended on τ: it could either decrease (the “normal” effect) or increase (the “anomalous” effect) with increasing τ. Breakdown of the discharge gap was preceded by the propagation of an ionization wave, except for the case of small τ values in the domain of existence of the anomalous effect. Estimates allowing one to qualitatively explain the experimental results are made.  相似文献   

11.
Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode discharge is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current?voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.  相似文献   

12.
A one-dimensional drift model of the cathode region of a glow discharge with allowance for both electron-impact ionization and charged particle loss is proposed. An exact solution to the model equations is obtained for the case of similar power-law dependences of the ion and electron drift velocities on the electric field strength. It is shown that, even in the drift approximation, a relatively wide transition layer in which the ion-to-electron current ratio approaches a constant value typical of the positive column of a glow discharge should occur between the thin space-charge sheath and the quasineutral plasma, the voltage drop across the space-charge sheath being comparable to that across the transition layer. The calculated parameters of the normal and anomalous glow discharges are in good agreement with available experimental data.  相似文献   

13.
The spatial, electrical, and optical characteristics of a transverse glow discharge and a volume discharge with a spherical anode and plane cathode in low-pressure Xe/Cl2 mixtures are studied. It is shown that the transverse glow discharge in mixtures with a low chlorine content occupies most of the interelectrode gap and exists in the form of strata. As the total pressure (P≥300 Pa) and the partial chlorine pressure (P(Cl2)≥80 Pa) increase, a solitary plasma domain with a volume of 1–2 cm3 forms in the discharge gap. It acts as a selective source of UV radiation in the XeCl(D-X) 236-nm, Cl2 (D′-A′) 257-nm, and XeCl(B-X) 308-nm bands. In certain Xe/Cl2 mixtures, plasma self-oscillations in the frequency range 1–100 kHz are observed. The current of a low-pressure volume discharge with a spherical anode and plane cathode and the emission from it have both a dc and an ac component. The pressure and composition of the working mixture, as well as the average current of the volume discharge are optimized to attain the maximum emission intensity of the XeCl(D,B-X) bands. Low-pressure volume discharges in xenon/chlorine mixtures can be used as active media in low-pressure large-aperture planar or cylindrical excimer-halogen lamps emitting modulated or repetitive pulsed UV radiation.  相似文献   

14.
A normal glow discharge in nitrogen between two infinite plane-parallel electrodes is simulated numerically in three dimensions in the drift-diffusion model. An algorithm is proposed that is based on solving the model equations by a hybrid of the sweep and relaxation methods and that combines a satisfactorily fast rate of convergence with the efficiency of individual iterations. The algorithm developed was used to carry out a three-dimensional simulation of a discharge in nitrogen at the pressures p = 5 and 1 Torr, the source voltage and ballast resistance being 2 kV and 300 kΩ, respectively. It was found that, at the pressure p = 1 Torr, the current density and charged particle densities change to a torioidal distribution in the anode region.  相似文献   

15.
The properties are studied of dusty plasma structures formed in a glow discharge in a dust trap above the lower wall of the side branch of the discharge tube, near the turn of the discharge channel. The dust structure is three-dimensional with a characteristic size of up to 3 cm and contains about 30000 dust grains. Depending on the experimental conditions, dust-acoustic, dissipative, and charge-gradient instabilities can develop in such a structure. When using highly polydisperse dust grains of arbitrary shape, the effect of selection of dust grains by the plasma with respect to their mean size and shape was discovered. This effect was studied quantitatively in two gases by using the method of gathering and extraction of the dust grains levitating in the trap. The morphology of the dust structures was determined from the pair correlation functions of the horizontal cross sections containing long-range order peaks and elements of a hexagonal lattice. Stratification of a uniform structure accompanied by convective rotation caused by the grain charge gradient was observed. Applications of the dusty plasma created in this type of device are discussed.  相似文献   

16.
Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.  相似文献   

17.
A spherical glow discharge with a pointlike anode is considered in a self-consistent drift-diffusion approximation. The model includes the time-dependent continuity equations for ions and electrons in the drift-diffusion approximation and Poisson’s equation for the radial electric field. In finding steady-state distributions, Ohm’s law is used to relate the discharge voltage and discharge current. Steady-state distributions of the plasma parameters across the discharge gap, current-voltage characteristics, and cathode characteristics for an abnormal spherical discharge in molecular nitrogen are obtained. In a subnormal glow-discharge regime, oscillations in the conduction current, potential, and other discharge parameters are revealed. Similar regimes are also observed in conventional discharges in tubes.  相似文献   

18.
A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.  相似文献   

19.
It is commonly accepted that, as the current increases, a diffuse negative corona inevitably goes over to a strongly nonuniform and nonsteady spark discharge. In this paper, a new effect—the transition of a negative corona to a diffuse glow discharge at atmospheric pressure—is studied experimentally and numerically. The evolution of the corona parameters during the transition to the regime of a glow discharge is traced.  相似文献   

20.
The results of anodization of aluminum and silicon in an oxygen plasma are presented. The plasma was generated by a non-self-sustained glow discharge with a hollow cathode excited by an electron beam at the oxygen pressure of 20 Pa. The density of the current flowing through the anodized specimen did not exceed 1.5 mA/cm2, and its temperature was 200–250°C. Continuous Al2O3 and SiO2 films were formed on the aluminum and silicon surfaces. The growth rate of the oxide layers was 150–200 nm/h for Al2O3 and 400–800 nm/h for SiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号