首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Unregulated FGF signaling affects endochondral ossification and long bone growth, causing several genetic forms of human dwarfism. One major mechanism by which FGFs regulate endochondral bone growth is through their inhibitory effect on chondrocyte proliferation. Because mice with targeted mutations of the retinoblastoma (Rb)-related proteins p107 and p130 present severe endochondral bone defects with excessive chondrocyte proliferation, we have investigated the role of the Rb family of cell cycle regulators in the FGF response. Using a chondrocyte cell line, we found that FGF induced a rapid dephosphorylation of all three proteins of the Rb family (pRb, p107, and p130) and a blockade of the cells in the G1 phase of the cell cycle. This cell cycle block was reversed by inactivation of Rb proteins with viral oncoproteins such as polyoma large T (PyLT) antigen and Adenovirus E1A. Expression of a PyLT mutant that efficiently binds pRb, but not p107 and p130, allowed the cells to be growth inhibited by FGF, suggesting that pRb itself is not involved in the FGF response. To investigate more precisely the role of the individual Rb family proteins in FGF-mediated growth inhibition, we used chondrocyte micromass culture of limb bud cells isolated from mice lacking Rb proteins individually or in combination. Although wild-type as well as Rb-/- chondrocytes were similarly growth inhibited by FGF, chondrocytes null for p107 and p130 did not respond to FGF. Furthermore, FGF treatment of metatarsal bone rudiments obtained from p107-/-;p130-/- embryos failed to inhibit proliferation of growth plate chondrocytes, whereas rudiments from p107-null or p130-null embryos showed only a slight inhibition of growth. Our findings indicate that p107 and p130, but not pRb, are critical effectors of FGF-mediated growth inhibition in chondrocytes.  相似文献   

4.
The growth arrest and DNA damage-inducible 45beta (GADD45beta) gene product has been implicated in the stress response, cell cycle arrest, and apoptosis. Here we demonstrated the unexpected expression of GADD45beta in the embryonic growth plate and uncovered its novel role as an essential mediator of matrix metalloproteinase-13 (MMP-13) expression during terminal chondrocyte differentiation. We identified GADD45beta as a prominent early response gene induced by bone morphogenetic protein-2 (BMP-2) through a Smad1/Runx2-dependent pathway. Because this pathway is involved in skeletal development, we examined mouse embryonic growth plates, and we observed expression of Gadd45beta mRNA coincident with Runx2 protein in pre-hypertrophic chondrocytes, whereas GADD45beta protein was localized prominently in the nucleus in late stage hypertrophic chondrocytes where Mmp-13 mRNA was expressed. In Gadd45beta(-/-) mouse embryos, defective mineralization and decreased bone growth accompanied deficient Mmp-13 and Col10a1 gene expression in the hypertrophic zone. Transduction of small interfering RNA-GADD45beta in epiphyseal chondrocytes in vitro blocked terminal differentiation and the associated expression of Mmp-13 and Col10a1 mRNA in vitro. Finally, GADD45beta stimulated MMP-13 promoter activity in chondrocytes through the JNK-mediated phosphorylation of JunD, partnered with Fra2, in synergy with Runx2. These observations indicated that GADD45beta plays an essential role during chondrocyte terminal differentiation.  相似文献   

5.
6.
Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caERα(ColII), expressing constitutively active mutant estrogen receptor (ER) α in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caERα(ColII) mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caERα(ColII) mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caERα(ColII) mice. These results suggest that ERα is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.  相似文献   

7.
Previously, we showed that expression of a dominant-negative form of the transforming growth factor beta (TGF-beta) type II receptor in skeletal tissue resulted in increased hypertrophic differentiation in growth plate and articular chondrocytes, suggesting a role for TGF-beta in limiting terminal differentiation in vivo. Parathyroid hormone-related peptide (PTHrP) has also been demonstrated to regulate chondrocyte differentiation in vivo. Mice with targeted deletion of the PTHrP gene demonstrate increased endochondral bone formation, and misexpression of PTHrP in cartilage results in delayed bone formation due to slowed conversion of proliferative chondrocytes into hypertrophic chondrocytes. Since the development of skeletal elements requires the coordination of signals from several sources, this report tests the hypothesis that TGF-beta and PTHrP act in a common signal cascade to regulate endochondral bone formation. Mouse embryonic metatarsal bone rudiments grown in organ culture were used to demonstrate that TGF-beta inhibits several stages of endochondral bone formation, including chondrocyte proliferation, hypertrophic differentiation, and matrix mineralization. Treatment with TGF-beta1 also stimulated the expression of PTHrP mRNA. PTHrP added to cultures inhibited hypertrophic differentiation and matrix mineralization but did not affect cell proliferation. Furthermore, terminal differentiation was not inhibited by TGF-beta in metatarsal rudiments from PTHrP-null embryos; however, growth and matrix mineralization were still inhibited. The data support the model that TGF-beta acts upstream of PTHrP to regulate the rate of hypertrophic differentiation and suggest that TGF-beta has both PTHrP-dependent and PTHrP-independent effects on endochondral bone formation.  相似文献   

8.
Radiation therapy plays an important role as part of the multimodality treatment for a number of childhood malignancies. Dose-limiting complications of radiotherapy include skeletal abnormalities and disturbances in skeletal development within the irradiated field. The current study was undertaken to investigate the molecular mechanisms involved in radiation-induced arrest of bone growth. Our hypotheses were: (1) Expression of autocrine growth factors that regulate chondrocyte proliferation is inhibited by radiation in a specific pattern; (2) the disparity in radiosensitivity of growth plate chondrocytes and epiphyseal chondrocytes is due to differential modulation of autocrine growth factor expression by radiation. Given the important role these cells play in skeletal growth and development, we examined the comparative effects of radiation on expression of specific mitogenic growth factors in growth plate chondrocytes. The effect of radiation on the expression of autocrine/paracrine growth factors was examined in an established avian model of epiphyseal growth plate maturation. Exposure of growth plate chondrocytes to radiation resulted in a specific pattern of biochemical and morphological alterations that were dependent on dose and were progressive over time. While radiation did not affect the mRNA expression of some of the autocrine and paracrine factors important in endochondral ossification (such as FGF2 and TGFB isoforms), it did lead to a decrease in the mRNA expression of PTHrP, a critically important mitogen in growth plate chondrocytes, and a dose-dependent decrease in the PTH/PTHrP receptor mRNA. Interestingly, PTHrP mRNA levels were not affected in irradiated epiphyseal chondrocytes, the main source of PTHrP. Given evidence indicating a role for intracellular calcium levels in regulating PTHrP expression, basal calcium levels in irradiated growth plate chondrocytes and epiphyseal chondrocytes were examined 24 h after treatment. While cytosolic calcium levels were significantly higher in irradiated growth plate chondrocytes, they were not significantly affected in irradiated epiphyseal chondrocytes. The importance of calcium in mediating radiation damage to growth plate chondrocytes was further demonstrated by the finding that the addition of 4.0 mM EGTA (a calcium chelator) to the cell cultures before irradiation prevented the decrease in PTHrP mRNA levels. Since PTHrP up-regulates BCL2 levels and prevents growth plate chondrocyte maturation and apoptosis, BCL2 mRNA levels were examined in irradiated growth plate chondrocytes, and a dose-dependent decrease was found. An increase in apoptosis was further confirmed by a fivefold increase in caspase 3 levels in irradiated growth plate chondrocytes. The results of the current study suggest that radiation may interfere with proliferation of growth plate chondrocytes in part by causing an increase in cytosolic calcium levels which in turn leads to a decrease in PTHrP mRNA. Growth plate chondrocyte PTHrP receptor mRNA expression is also inhibited by radiation, further decreasing PTHrP signaling. Despite subtle differences between the chick and mammalian growth plates, further studies should provide an enhanced understanding of the mechanism(s) of radiation injury to the growth plate, as well as possibilities for new therapeutic strategies to protect the growing skeleton from the detrimental effects of radiotherapy.  相似文献   

9.
10.
11.
We have developed a useful approach to examine the pattern of gene expression in comparison to cell proliferation, using double in situ hybridization and immunofluorescence. Using this system, we examined the expression of Indian hedgehog (Ihh) and PTH/PTHrP receptor (PPR) mRNA in relation to chondrocyte proliferation during embryonic mouse bone development. Both genes are expressed strongly in prehypertrophic and early hypertrophic chondrocytes, and there is a strong correlation between upregulation of both Ihh and PPR expression and chondrocyte cell cycle arrest. At embryonic day (E14.5), PPR mRNA upregulation begins in the columnar chondrocytes just prior to cell cycle exit, but at later time points expression is only observed in the postproliferative region. In contrast, Ihh mRNA expression overlaps slightly with the region of columnar proliferating chondrocytes at all stages. This study provides further evidence that in the developing growth plate, cell cycle exit and upregulation of Ihh and PPR mRNA expression are coupled.  相似文献   

12.
Smad4 is required for the normal organization of the cartilage growth plate   总被引:6,自引:0,他引:6  
Zhang J  Tan X  Li W  Wang Y  Wang J  Cheng X  Yang X 《Developmental biology》2005,284(2):311-322
Smad4 is the central intracellular mediator of transforming growth factor-beta (TGF-beta) signals. To study the role of Smad4 in skeletal development, we introduced a conditional mutation of the gene in chondrocytes using Cre--loxP system. We showed that Smad4 was expressed strongly in prehypertrophic and hypertrophic chondrocytes. The abrogation of Smad4 in chondrocytes resulted in dwarfism with a severely disorganized growth plate characterized by expanded resting zone of chondrocytes, reduced chondrocyte proliferation, accelerated hypertrophic differentiation, increased apoptosis and ectopic bone collars in perichondrium. Meanwhile, Smad4 mutant mice exhibited decreased expression of molecules in Indian hedgehog/parathyroid hormone-related protein (Ihh/PTHrP) signaling. The cultured mutant metatarsal bones failed to response to TGF-beta1, while the hypertrophic differentiation was largely inhibited by Sonic hedgehog (Shh). This indicated that Ihh/PTHrP inhibited the hypertrophic differentiation of chondrocytes independent of the Smad4-mediated TGF-beta signals. All these data provided the first genetic evidence demonstrating that Smad4-mediated TGF-beta signals inhibit the chondrocyte hypertrophic differentiation, and are required for maintaining the normal organization of chondrocytes in the growth plate.  相似文献   

13.
Chondrocyte proliferation and differentiation requires their attachment to the collagen type II-rich matrix of developing bone. This interaction is mediated by integrins and their cytoplasmic effectors, such as the integrin-linked kinase (ILK). To elucidate the molecular mechanisms whereby integrins control these processes, we have specifically inactivated the ILK gene in growth plate chondrocytes using the Cre-lox methodology. Mice carrying an ILK allele flanked by loxP sites (ILK-fl) were crossed to transgenic mice expressing the Cre recombinase under the control of the collagen type II promoter. Inactivation of both copies of the ILK-fl allele lead to a chondrodysplasia characterized by a disorganized growth plate and to dwarfism. Expression of chondrocyte differentiation markers such as collagen type II, collagen type X, Indian hedgehog and the PTH-PTHrP receptor was normal in ILK-deficient growth plates. In contrast, chondrocyte proliferation, assessed by BrdU or proliferating cell nuclear antigen labeling, was markedly reduced in the mutant growth plates. Cell-based assays showed that integrin-mediated adhesion of primary cultures of chondrocytes from mutant animals to collagen type II was impaired. ILK inactivation in chondrocytes resulted in reduced cyclin D1 expression, and this most likely explains the defect in chondrocyte proliferation observed when ILK is inactivated in growth plate cells.  相似文献   

14.
Longitudinal bone growth occurs by a process called endochondral ossification that includes chondrocyte proliferation, differentiation, and apoptosis. Recent studies have suggested a regulatory role for intracellular Ca(2+) (Ca(i) (2+)) in this process. Indirect studies, using Ca(2+) channel blockers and measurement of Ca(i) (2+), have provided evidence for the existence of Ca(2+) channels in growth plate chondrocytes. Furthermore, voltage-gated Ca(2+) channels (VGCC), and specifically L- and T-type VGCCs, have been recently described in murine embryonic growth plates. Our aim was to assess the effect of L-type Ca(2+) channel blockers on endochondral ossification in an organ culture. We used cultures of fetal rat metatarsal rudiments at 20 days post gestational age, with the addition of the L-type Ca(2+) channel blockers verapamil (10-100 microM) or diltiazem (10-200 microM) to the culture medium. Longitudinal bone growth, chondrocyte differentiation (number of hypertrophic chondrocytes), and cell proliferation (incorporation of tritiated thymidine) were measured. Verapamil dose-dependently decreased growth, the number of hypertrophic chondrocytes, and cell proliferation, at concentrations of 10-100 microM. Growth and the number of hypertrophic chondrocytes decreased significantly with diltiazem at 50-100 microM, and proliferation decreased significantly at concentrations of 10-200 microM. Additionally, there was no increase in apoptosis over physiological levels with either drug. We confirmed the presence of L-type VGCCs in rat rudiments using immunohistochemistry, and showed that the antagonists did not alter the pattern of VGCC expression. In conclusion, our data suggest that L-type Ca(2+) channel activity in growth plate chondrocytes is necessary for normal longitudinal growth, participating in chondrocyte proliferation and differentiation.  相似文献   

15.
16.
17.
18.
19.
During embryogenesis, the expression of mammalian stanniocalcin (STC1) in the appendicular skeleton suggests its involvement in the regulation of longitudinal bone growth. Such a role is further supported by the presence of dwarfism in mice overexpressing STC1. Yet, the STC 1 inhibitory effect on growth may be related to both postnatal metabolic abnormalities and prenatal defective bone formation. In our study, we used an organ culture system to evaluate the effects of STC on growth plate chondrogenesis, which is the primary determinant of longitudinal bone growth. Fetal rat metatarsal bones were cultured in the presence of recombinant human STC (rhSTC). After 3 days, rhSTC suppressed metatarsal growth, growth plate chondrocyte proliferation and hypertrophy/differentiation, and extracellular matrix synthesis. In addition, rhSTC increased the number of apoptotic chondrocytes in the growth plate. In cultured chondrocytes, rhSTC increased phosphate uptake, reduced chondrocyte proliferation and matrix synthesis, and induced apoptosis. All these effects were reversed by culturing chondrocytes with rhSTC and phosphonoformic acid, an inhibitor of phosphate transport. The rhSTC-mediated inhibition of metatarsal growth and growth plate chondrocyte proliferation and hypertrophy/differentiation was abolished by culturing metatarsals with rhSTC and phosphonoformic acid. Taken together, our findings indicate that STC1 inhibits longitudinal bone growth directly at the growth plate. Such growth inhibition, likely mediated by an increased chondrocyte phosphate uptake, results from suppressed chondrocyte proliferation, hypertrophy/differentiation, and matrix synthesis and by increased apoptosis. Last, the expression of both STC1 and its binding site in the growth plate would support an autocrine/paracrine role for this growth factor in the regulation of growth plate chondrogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号