首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last few years mass spectrometry has become the method of choice for characterization of post-translationally modified proteins. Whereas most protein chemical modifications are binary in the sense that only one change can be associated with a given residue, many different oligosaccharides can be attached to a glycosylation site residue. The detailed characterization of glycoproteins in complex biological samples is extremely challenging. However, information on N-glycosylation can be gained at an intermediary level. Here we demonstrate a procedure for mapping N-glycosylation sites in complex mixtures by reducing sample complexity and enriching glycoprotein content. Glycosylated proteins are selected by an initial lectin chromatography step and digested with endoproteinase Lys-C. Glycosylated peptides are then selected from the digest mixture by a second lectin chromatography step. The glycan components are removed with N-glycosidase F and the peptides digested with trypsin before analysis by on-line reversed-phase liquid chromatography mass spectrometry. Using two different lectins, concanavalin A and wheat germ agglutinin, this procedure was applied to human serum and a total of 86 N-glycosylation sites in 77 proteins were identified.  相似文献   

2.
蛋白质糖基化(glycosylation)是最常见和最重要的翻译后修饰之一.大规模N-连接糖基化位点鉴定是糖蛋白质组学研究的重要组成部分,而N-连接糖肽富集是高通量N-连接糖基化位点鉴定的关键步骤.凝集素富集法和酰肼化学法是目前被广泛应用的N-连接糖肽富集技术,有报道认为两种方法具有很强的互补性,联合使用能提高糖基化位点的鉴定数目.本文以Hep G2细胞系为模型,系统比较了这两种方法的富集效率和糖蛋白鉴定数目.结果表明,虽然酰肼法的糖肽富集效率为76.6%,远高于凝集素法的54.6%,但是凝集素法却能鉴定到825个糖蛋白和1 959个N-连接糖基化位点,显著多于酰肼法富集到的522个糖蛋白和1 014个糖基化位点.并且,两种方法并未显示出显著的互补性,仅28个糖蛋白和80个糖基化位点未在凝集素法中鉴定到.  相似文献   

3.
Characterization of glycoproteins using mass spectrometry ranges from determination of carbohydrate-protein linkages to the full characterization of all glycan structures attached to each glycosylation site. In a novel approach to identify N-glycosylation sites in complex biological samples, we performed an enrichment of glycosylated peptides through hydrophilic interaction liquid chromatography (HILIC) followed by partial deglycosylation using a combination of endo-beta-N-acetylglucosaminidases (EC 3.2.1.96). After hydrolysis with these enzymes, a single N-acetylglucosamine (GlcNAc) residue remains linked to the asparagine residue. The removal of the major part of the glycan simplifies the MS/MS fragment ion spectra of glycopeptides, while the remaining GlcNAc residue enables unambiguous assignment of the glycosylation site together with the amino acid sequence. We first tested our approach on a mixture of known glycoproteins, and subsequently the method was applied to samples of human plasma obtained by lectin chromatography followed by 1D gel-electrophoresis for determination of 62 glycosylation sites in 37 glycoproteins.  相似文献   

4.
Protein glycosylation is a common post-translational modification and has been increasingly recognized as one of the most prominent biochemical alterations associated with malignant transformation and tumorigenesis. N-linked glycosylation is prevalent in proteins on the extracellular membrane, and many clinical biomarkers and therapeutic targets are glycoproteins. Here, we describe a protocol for solid-phase extraction of N-linked glycopeptides and subsequent identification of N-linked glycosylation sites (N-glycosites) by tandem mass spectrometry. The method oxidizes the carbohydrates in glycopeptides into aldehydes, which can be immobilized on a solid support. The N-linked glycopeptides are then optionally labeled with a stable isotope using deuterium-labeled succinic anhydride and the peptide moieties are released by peptide-N-glycosidase. In a single analysis, the method identifies hundreds of N-linked glycoproteins, the site(s) of N-linked glycosylation and the relative quantity of the identified glycopeptides.  相似文献   

5.
Glycoproteins play important roles in various biological processes including intracellular transport, cell recognition, and cell-cell interactions. The change of the cellular glycosylation profile may have profound effects on cellular homeostasis and malignancy. Therefore, we have developed a sensitive screening approach for the comprehensive analysis of N-glycans and glycosylation sites on human serum proteins. Using this approach, N-linked glycopeptides were extracted by double lectin affinity chromatography. The glycans were enzymatically cleaved from the peptides and then profiled using capillary hydrophilic interaction liquid chromatography coupled online with ESI-TOF MS. The structures of the separated glycans were determined by MALDI quadrupole ion-trap TOF mass spectrometry in both positive and negative modes. The glycosylation sites were elucidated by sequencing of PNGase F modified glycopeptides using nanoRP-LC-ESI-MS/MS. Alterations of glycosylation were analyzed by comparing oligosaccharide expression of serum glycoproteins at different disease stages. The efficiency of this method was demonstrated by the analysis of pancreatic cancer serum compared to normal serum. Ninety-two individual glycosylation sites and 202 glycan peaks with 105 unique carbohydrate structures were identified from approximately 25 mug glycopeptides. Forty-four oligosaccharides were found to be distinct in the pancreatic cancer serum. Increased branching of N-linked oligosaccharides and increased fucosylation and sialylation were observed in samples from patients with pancreatic cancer. The methodology described in this study may elucidate novel, cancer-specific oligosaccharides and glycosylation sites, some of which may have utility as useful biomarkers of cancer.  相似文献   

6.
Protein post-translational modifications (PTMs), such as glycosylation and phosphorylation, are crucial for various signaling and regulatory events, and are therefore an important objective of proteomics research. We describe here a protocol for isotope-coded glycosylation site-specific tagging (IGOT), a method for the large-scale identification of N-linked glycoproteins from complex biological samples. The steps of this approach are: (1) lectin column-mediated affinity capture of glycopeptides generated by protease digestion of protein mixtures; (2) purification of the enriched glycopeptides by hydrophilic interaction chromatography (HIC); (3) peptide-N-glycanase-mediated incorporation of a stable isotope tag, 18O18O, specifically at the N-glycosylation site; and (4) identification of 18O-tagged peptides by liquid chromatography-coupled mass spectrometry (LC/MS)-based proteomics technology. The application of this protocol to the characterization of N-linked glycoproteins from crude extracts of the nematode Caenorhabditis elegans or mouse liver provides a list of hundreds to a thousand glycoproteins and their sites of glycosylation within a week.  相似文献   

7.
Chen R  Wang F  Tan Y  Sun Z  Song C  Ye M  Wang H  Zou H 《Journal of Proteomics》2012,75(5):1666-1674
Direct mass spectrometric analysis of aberrant protein glycosylation is a challenge to the current analytical techniques. Except lectin affinity chromatography, no other glycosylation enrichment techniques are available for analysis of aberrant glycosylation. In this study, we developed a combined chemical and enzymatic strategy as an alternative for the mass spectrometric analysis of aberrant glycosylation. Sialylated glycopeptides were enriched with reverse glycoblotting, cleaved by endoglycosidase F3 and analyzed by mass spectrometry with both neutral loss triggered MS3 in collision induced dissociation (CID) and electron transfer dissociation (ETD). Interestingly, a great part of resulted glycopeptides were found with fucose attached to the N-acetylglucosamine (N-GlcNAc), which indicated that the aberrant glycosylation that is carrying both terminal sialylation and core fucosylation was identified. Totally, 69 aberrant N-glycosylation sites were identified in sera samples from hepatocellular carcinoma (HCC) patients. Following the identification, quantification of the level of this aberrant glycosylation was also carried out using stable isotope dimethyl labeling and pooled sera sample from liver cirrhosis and HCC was compared. Six glycosylation sites demonstrated elevated level of aberrancy, which demonstrated that our developed strategy was effective in both qualitative and quantitative studies of aberrant glycosylation.  相似文献   

8.
The enormous complexity, wide dynamic range of relative protein abundances of interest (over 10 orders of magnitude), and tremendous heterogeneity (due to post-translational modifications, such as glycosylation) of the human blood plasma proteome severely challenge the capabilities of existing analytical methodologies. Here, we describe an approach for broad analysis of human plasma N-glycoproteins using a combination of immunoaffinity subtraction and glycoprotein capture to reduce both the protein concentration range and the overall sample complexity. Six high-abundance plasma proteins were simultaneously removed using a pre-packed, immobilized antibody column. N-linked glycoproteins were then captured from the depleted plasma using hydrazide resin and enzymatically digested, and the bound N-linked glycopeptides were released using peptide-N-glycosidase F (PNGase F). Following strong cation exchange (SCX) fractionation, the deglycosylated peptides were analyzed by reversed-phase capillary liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Using stringent criteria, a total of 2053 different N-glycopeptides were confidently identified, covering 303 nonredundant N-glycoproteins. This enrichment strategy significantly improved detection and enabled identification of a number of low-abundance proteins, exemplified by interleukin-1 receptor antagonist protein (approximately 200 pg/mL), cathepsin L (approximately 1 ng/mL), and transforming growth factor beta 1 (approximately 2 ng/mL). A total of 639 N-glycosylation sites were identified, and the overall high accuracy of these glycosylation site assignments as assessed by accurate mass measurement using high-resolution liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR) is initially demonstrated.  相似文献   

9.
A strategy is developed in this study for identifying sialylated glycoprotein markers in human cancer serum. This method consists of three steps: lectin affinity selection, a liquid separation and characterization of the glycoprotein markers using mass spectrometry. In this work, we use three different lectins (Wheat Germ Agglutinin, (WGA) Elderberry lectin,(SNA), Maackia amurensis lectin, (MAL)) to extract sialylated glycoproteins from normal and cancer serum. Twelve highly abundant proteins are depleted from the serum using an IgY-12 antibody column. The use of the different lectin columns allows one to monitor the distribution of alpha(2,3) and alpha(2,6) linkage type sialylation in cancer serum vs that in normal samples. Extracted glycoproteins are fractionated using NPS-RP-HPLC followed by SDS-PAGE. Target glycoproteins are characterized further using mass spectrometry to elucidate the carbohydrate structure and glycosylation site. We applied this approach to the analysis of sialylated glycoproteins in pancreatic cancer serum. Approximately 130 sialylated glycoproteins are identified using microLC-MS/MS. Sialylated plasma protease C1 inhibitor is identified to be down-regulated in cancer serum. Changes in glycosylation sites in cancer serum are also observed by glycopeptide mapping using microLC-ESI-TOF-MS where the N83 glycosylation of alpha1-antitrypsin is down regulated. In addition, the glycan structures of the altered proteins are assigned using MALDI-QIT-MS. This strategy offers the ability to quantitatively analyze changes in glycoprotein abundance and detect the extent of glycosylation alteration as well as the carbohydrate structure that correlate with cancer.  相似文献   

10.
Protein glycosylation affects cellular functions of the central nervous system (CNS). Its deficiency leads to neurological disorders such as ataxia, paralysis, learning disability, mental retardation, and memory loss. However, the glycoproteins that are responsible for these diseases are not well characterized. In this study, Drosophila melanogaster was used as a model organism to identify the N-glycosylated proteins and N-glycosylation sites of its CNS by means of proteomics. Adult fly heads were digested with chymotrypsin or trypsin and the N-linked glycopeptides were captured using solid phase extraction of N-linked glycopeptides (SPEG) technique followed by mass spectrometry (MS) analysis using LTQ OrbiTrap Velos. Three hundred and thirty new and 147 previously known glycoproteins were identified from 721 uniquely detected peptides that have 740 NXS/T glycosylation sites. The N-glycosylation sites were highly abundant in cell adhesion, ion channel, and ion binding molecules, which are important for nerve maturation, organ development, axon guidance, learning, and memory. Identification of the N-glycosylated sites of these proteins will enhance our knowledge of these proteins and serve as a basis for future studies to address the roles of these proteins in neurological function and disorders. A database for Drosophila N-linked glycopeptides ( http://betenbaugh.jhu.edu/GlycoFly ) has been established in this study as a resource for study of neurological disorders.  相似文献   

11.
Hao P  Ren Y  Xie Y 《PloS one》2010,5(11):e15096
Different glycoforms of some proteins have been identified as differential spots for certain diseases in 2-DE, indicating disease-related glycosylation changes. It is routine to determine the site-specific glycosylation of nonsialylated N-glycoproteins from a single gel spot, but some obstacles still exist in analyzing sialylated glycoproteins due to the lability and higher detection limit of acid glycans in MALDI-TOF/TOF analysis. Thus, we present an improved protocol here. Tryptic glycopeptides were separated and subjected to MALDI-TOF/TOF analysis, resulting in the identification of site-specific glycosylation of high-intensity glycopeptides. Sequential deglycosylation and desialylation were used to improve the identification of glycosylation sites and desialylated glycans. The site-specific glycosylation of large glycopeptides and low-intensity glycopeptides was deduced based on the masses of glycopeptides, deglycosylated peptides and desialylated glycans. By applying it to 2-DE separated human serum, the difference of N-glycosylation was successfully determined for α1-antitrypsin between different gel spots.  相似文献   

12.
In this work O-linked glycopeptides bearing mucin core-1 type structures were enriched from human serum. Since about 70 % of the O-glycans in human serum bind to the plant lectin Jacalin, we tested a previously successful protocol that combined Jacalin affinity enrichment on the protein- and peptide-level with ERLIC chromatography as a further enrichment step in between, to eliminate the high background of unmodified peptides. In parallel, we developed a simpler and significantly faster new workflow that used two lectins sequentially: wheat germ agglutinin and then Jacalin. The first lectin provides general glycopeptide enrichment, while the second specifically enriches O-linked glycopeptides with Galβ1-3GalNAcα structures. Mass spectrometric analysis of enriched samples showed that the new sample preparation method is more selective and sensitive than the former. Altogether, 52 unique glycosylation sites in 20 proteins were identified in this study.  相似文献   

13.
Comprehensive proteomic analyses require efficient and selective pre-fractionation to facilitate analysis of post-translationally modified peptides and proteins, and automated analysis workflows enabling the detection, identification, and structural characterization of the corresponding peptide modifications. Human serum contains a high number of glycoproteins, comprising several orders of magnitude in concentration. Thereby, isolation and subsequent identification of low-abundant glycoproteins from serum is a challenging task. selective capturing of glycopeptides and -proteins was attained by means of magnetic particles specifically functionalized with lectins or boronic acids that bind to various structural motifs. Human serum was incubated with differentially functionalized magnetic micro-particles (lectins or boronic acids), and isolated proteins were digested with trypsin. Subsequently, the resulting complex mixture of peptides and glycopeptides was subjected to LC-MALDI analysis and database searching. In parallel, a second magnetic bead capturing was performed on the peptide level to separate and analyze by LC-MALDI intact glycopeptides, both peptide sequence and glycan structure. Detection of glycopeptides was achieved by means of a software algorithm that allows extraction and characterization of potential glycopeptide candidates from large LC-MALDI-MS/MS data sets, based on N-glycopeptide-specific fragmentation patterns and characteristic fragment mass peaks, respectively. By means of fast and simple glycospecific capturing applied in conjunction with extensive LC-MALDI-MS/MS analysis and novel data analysis tools, a high number of low-abundant proteins were identified, comprising known or predicted glycosylation sites. According to the specific binding preferences of the different types of beads, complementary results were obtained from the experiments using either magnetic ConA-, LCA-, WGA-, and boronic acid beads, respectively.  相似文献   

14.
Although the function of many glycoproteins in the nervous system of fruit flies is well understood, information about the glycosylation profile and glycan attachment sites for such proteins is scarce. In order to fill this gap and to facilitate the analysis of N-linked glycosylation in the nervous system, we have performed an extensive survey of membrane-associated glycoproteins and their N-glycosylation sites isolated from the adult Drosophila brain. Following subcellular fractionation and trypsin digestion, we used different lectin affinity chromatography steps to isolate N-glycosylated glycopeptides. We identified a total of 205 glycoproteins carrying N-linked glycans and revealed their 307 N-glycan attachment sites. The size of the resulting dataset furthermore allowed the statistical characterization of amino acid distribution around the N-linked glycosylation sites. Glycan profiles were analyzed separately for glycopeptides that were strongly and weakly bound to Concanavalin A (Con A), or that failed to bind Concanavalin A, but did bind to wheat germ agglutinin (WGA). High- or paucimannosidic glycans dominated each of the profiles, although the wheat germ agglutinin-bound glycan population was enriched in more extensively processed structures. A sialylated glycan structure was unambiguously detected in the wheat germ agglutinin-bound fraction. Despite the large amount of starting material, insufficient amount of glycopeptides was retained by the Wisteria floribunda (WFA) and Sambucus nigra columns to allow glycan or glycoprotein identification, providing further evidence that the vast majority of glycoproteins in the adult Drosophila brain carry primarily high-mannose, paucimannose, and hybrid glycans. The obtained results should facilitate future genetic and molecular approaches addressing the role of N-glycosylation in the central nervous system (CNS) of Drosophila.  相似文献   

15.
Recent advances in glycobiology have greatly stimulated carbohydrate research; however, improving techniques for identification and isolation of specific glycosylation sites in protein structure analysis remains a challenge. We report here a practical approach utilizing a membrane staining technique on Problott, a PVDF-type membrane, to screen glycoproteins and glycopeptides derived from enzymatic digests of glycoproteins. To improve the detection sensitivity, an amplified staining technique using biotinylated lectins, avidin, and biotinylated peroxidase was employed. In addition, we describe a micro-batch affinity binding procedure to isolate glycopeptides from complex glycoprotein enzymatic digests. These protocols allow us to start with a subnanomole quantity of glycoprotein and locate the glycosylation sites; isolate glycopeptides in a homogeneous form; and perform amino acid composition, amino acid sequence, and mass analyses on the isolated glycopeptides. The characterization of glycosylation site of a model glycoprotein, carboxypeptidase P, of which the structure is still largely unknown, has been investigated.  相似文献   

16.

Introduction

Glycosylations range among the most common posttranslational modifications with an estimated 50% of all proteins supposed to be glycosylated. These modifications are required for essential cellular processes including cell–cell recognition, protein structure and activity, e.g., of surface receptors, as well as subcellular localization of proteins. Beside the elucidation of the carbohydrate structures, the annotation of glycosylation sites is of primary interest as a basis for subsequent functional characterization. Although mass spectrometry is the method of choice for large-scale analysis of glycosylation sites, it requires initial enrichment of glycopeptides prior mass spectrometric detection in most cases.

Materials and Methods

In this paper, we present a novel approach for glycopeptide enrichment by electrostatic repulsion hydrophilic interaction chromatography (ERLIC). Glycopeptides were separated from the bulk of non-modified peptides and gradually eluted from the stationary phase with potential for isoform resolution. Applied to human platelets, 125 glycosylation sites on 66 proteins were identified including major platelet glycoproteins responsible for cellular function.

Conclusion

These sites add a major contribution to the now more than 250 glycosylation sites annotated for platelets, which enable the clinically relevant design of quantification assays for platelet glycoproteins.  相似文献   

17.
We describe here a strategy for the large-scale identification of N-glycosylated proteins from a complex biological sample. The approach, termed isotope-coded glycosylation-site-specific tagging (IGOT), is based on the lectin column-mediated affinity capture of a set of glycopeptides generated by tryptic digestion of protein mixtures, followed by peptide-N-glycosidase-mediated incorporation of a stable isotope tag, 18O, specifically into the N-glycosylation site. The 18O-tagged peptides are then identified by multi-dimensional liquid chromatography-mass spectrometry (LC-MS)-based technology. The application of this method to the characterization of N-linked high-mannose and/or hybrid-type glycoproteins from an extract of Caenorhabditis elegans proteins allowed the identification of 250 glycoproteins, including 83 putative transmembrane proteins, with the simultaneous determination of 400 unique N-glycosylation sites. Because the method is applicable to the systematic identification of a wide range of glycoproteins, it should facilitate basic glycobiology research and may be useful for diagnostic applications, such as genome-wide screening for disease-related glycoproteins.  相似文献   

18.
Boric acid gel enrichment of glycosylated proteins in human wound fluids   总被引:1,自引:0,他引:1  
The enrichment of glycosylated proteins by glycocapturing materials plays a pivotal role for the investigation of polysaccharide containing proteins in disease pathogenesis. Hence, we investigated a boric acid gel as a binding material for glycoprotein enrichment. The bovine proteins alpha-1-acid-glycoprotein (A1AG) and alpha-2-HS-glycoprotein (fetuin A) were spiked in human chronic wound fluids and were subsequently enriched by a boric acid gel affinity chromatography (BAGAC). The enrichment efficiency was evaluated by western blot analysis and mass spectrometry. Additionally, glycoproteins of human wound fluids from diabetes mellitus patients with chronic foot ulcers were analyzed after BAGAC enrichments. In total 104 glycoproteins were identified, with reported glycosylation sites. 60 proteins were detected in at least 2 out of 3 biological replicates and were used for quantitative analysis between the bound and unbound fractions. Almost 80% of these glycoproteins were more prominent in the bound fraction. Only 2 glycoproteins revealed higher spectral counts in the flow through fraction compared to the bound fraction. These findings demonstrate the capability of the BAGAC material to enrich glycosylated proteins from complex human wound fluids.  相似文献   

19.
蛋白质糖基化分析方法及其在蛋白质组学中的应用   总被引:5,自引:0,他引:5  
作为一种普遍存在的翻译后修饰,糖基化对蛋白质的结构和功能有着重要影响。弄清糖基化发生发展的规律是理解蛋白质复杂多样的生物功能的一个重要前提。糖基化发生的特点决定了糖基化相关研究是对分析技术的一大挑战。作为蛋白质组学研究的重要组成部分,目前蛋白质糖基化研究的重点和难点主要集中于糖蛋白/糖肽的分离富集和糖蛋白的鉴定/糖基化位点的确定2个方面,相关技术已用于蛋白质组学水平的糖基化研究,但都还不够成熟。以生物质谱为核心、多学科交叉的蛋白质组学技术始终处于不断发展之中。基于糖基化发生规律的富集检测技术的发展、移动质子理论的提出及电子捕获裂解技术的应用必将极大地促进包括糖基化在内的翻译后修饰研究。蛋白质糖基化的研究有助于从基因组-蛋白组-糖组这样一个宏观的综合的水平观察分析生命现象,从而达到对生命现象更本质的认识。  相似文献   

20.
Zhang Y  Giboulot A  Zivy M  Valot B  Jamet E  Albenne C 《Phytochemistry》2011,72(10):1109-1123
Glycoproteomics recently became a very active field, mostly in mammals. The first part of this paper consists of a mini-review on the strategies used in glycoproteomics, namely methods for enrichment in glycoproteins and mass spectrometry (MS) techniques currently used. In a second part, these strategies are applied to the cell wall glycoproteome of etiolated hypocotyls of Arabidopsis thaliana, showing their complementarity. Several sub-glycoproteomes were obtained by: (i) affinity chromatography on concanavaline A (ConA) and analysis of glycoproteins by MALDI-TOF MS; (ii) multidimensional lectin chromatography (using AIL, PNA, ConA and WGA lectins) and subsequent identification of glycoproteins by MALDI-TOF MS and LC-MS/MS; (iii) boronic acid chromatography followed by identification of glycoproteins by MALDI-TOF MS. Altogether, 127 glycoproteins were identified. Most glycoproteins were found to be putative N-glycoproteins and N-glycopeptides were predicted from MS data using the ProTerNyc bioinformatics software.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号