首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), and interleukin 3 (IL3) on osteoclast formation were tested by incubation of murine hemopoietic cells on plastic coverslips and bone slices with GM-CSF, M-CSF, or IL3, with or without 1,25(OH)2 vitamin D3 (1,25(OH)2D3). Osteoclastic differentiation was detected after incubation by scanning electron microscopical examination of bone slices for evidence of osteoclastic excavations, and by autoradiographic assessment of cells for 1,25(OH)2D3-calcitonin (CT) binding. The differentiation of CT-receptor-positive cells preceded bone resorption, but the number that developed correlated with the extent of bone resorption (r = 0.88). M-CSF and GM-CSF substantially reduced bone resorption and CT-receptor-positive cell formation. The degree of inhibition of bone resorption could not be attributed to effects on the function of mature cells, since M-CSF inhibits resorption by such cells only by 50%, and GM-CSF has no effect. GM-CSF inhibited the development of mature function (bone resorption) to a greater extent than it inhibited CT-receptor-positive cell formation. Since CT-receptor expression antedated resorptive function, this suggests that GM-CSF resulted in the formation of reduced numbers of relatively immature osteoclasts. This suggests that it may exert a restraining effect on the maturation of cells undergoing osteoclastic differentiation in response to 1,25(OH)2D3. Conversely, IL3, which also has no effect on mature osteoclasts, by itself induced CT-receptor expression but not bone resorption; in combination with 1,25(OH)2D3 it induced a threefold increase in bone resorption and CT-receptor-positive cells compared with cultures incubated with 1,25(OH)2D3 alone. IL3 did not induce CT-receptors in peritoneal macrophages, blood monocytes, or J 774 cells. The results suggest that IL3 induces only partial maturation of osteoclasts, which is augmented or completed by additional factors such as 1,25(OH)2D3.  相似文献   

2.
IL-3, a cytokine with hematopoietic differentiating capability, induced murine bone marrow cells to differentiate into cells resembling osteoclasts. The cells resulting from treatment with IL-3 were multi-nucleated and demonstrated tartrate-resistant acid-phosphatase activity, as do resident osteoclasts found in bone. IL-3-induced osteoclast-like cell development in the absence of serum-derived vitamin D metabolites, and a mAb that inhibited IL-3-induced proliferation of an addicted cell line also inhibited the development of osteoclasts in the presence of IL-3. The same Ab had no effect on 1 alpha, 25-dihydroxyvitamin D3-induced differentiation of osteoclasts. This newly described function of IL-3 may indicate a role for activated T cells in the bone resorption seen with rheumatoid arthritis.  相似文献   

3.
Dissolution of the inorganic bone matrix releases not only calcium and phosphate ions, but also bicarbonate. Electroneutral sodium-bicarbonate co-transporter (NBCn1) is expressed in inactive osteoclasts, but its physiological role in bone resorption has remained unknown. We show here that NBCn1, encoded by the SLC4A7 gene, is directly involved in bone resorption. NBCn1 protein was specifically found at the bone-facing ruffled border areas, and metabolic acidosis increased NBCn1 expression in rats in vivo. In human hematopoietic stem cell cultures, NBCn1 mRNA expression was observed only after formation of resorbing osteoclasts. To further confirm the critical role of NBCn1 during bone resorption, human hematopoietic stem cells were transduced with SLC4A7 shRNA lentiviral particles. Downregulation of NBCn1 both on mRNA and protein level by lentiviral shRNAs significantly inhibited bone resorption and increased intracellular acidification in osteoclasts. The lentiviral particles did not impair osteoclast survival, or differentiation of the hematopoietic or mesenchymal precursor cells into osteoclasts or osteoblasts in vitro. Inhibition of NBCn1 activity may thus provide a new way to regulate osteoclast activity during pathological bone resorption.  相似文献   

4.
The idea that vitamin D must function at the bone site to promote bone mineralization has long existed since its discovery as an anti-rachitic agent. However, the definite evidence for this is still lacking. In contrast, much evidence has accumulated that 1 alpha,25(OH)2D3 in involved in bone resorption. 1 alpha,25(OH)2D3 tightly regulates differentiation of osteoclast progenitors into osteoclasts. Osteoclast progenitors have been thought to belong to the monocyte-macrophage lineage. 1 alpha,25(OH)2D3 greatly stimulates differentiation and activation of mononuclear phagocytes. Recent reports have indicated that differentiation of mononuclear phagocytes into osteoclasts is strictly regulated by osteoblastic cells, the process of which is also stimulated by 1 alpha,25(OH)2D3. In the differentiation of mononuclear phagocytes into osteoclasts, the target cells for 1 alpha,25(OH)2D3 appear to be osteoblastic stromal cells. Osteoblastic cells produce several proteins such as BGP, MGP, osteopontin and the third component of complement (C3) in response to the vitamin. They appear to be somehow involved in osteoclast differentiation and functions. Thus, 1 alpha,25(OH)2D3 seems to be involved in the differentiation of osteoclast progenitors into osteoclasts directly and also by an indirect mechanism involving osteoblastic cells. The precise role of osteoblastic cells in osteoclast development has to be elucidated in the future.  相似文献   

5.
MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts. Despite a similar appearance to osteoclasts, RANKL treatment was required in order for TRAP(+)/CTR(+) multinuclear cells to develop bone resorption activity. The lack of bone resorption was correlated with a deficiency in expression of certain genes related to bone resorption, such as cathepsin K and MMP9. Furthermore, calcitonin blocked the MCP-1-induced formation of TRAP(+)/CTR(+) multinuclear cells as well as blocking osteoclast bone resorption activity, indicating that calcitonin acts at two stages of osteoclast differentiation. Ablation of NFATc1 in mature osteoclasts did not prevent bone resorption activity, suggesting NFATc1 is involved in cell fusion events and not bone resorption. We propose that the MCP-1-induced TRAP(+)/CTR(+) multinuclear cells represent an arrested stage in osteoclast differentiation, after NFATc1 induction and cellular fusion but prior to the development of bone resorption activity.  相似文献   

6.
7.
Recent studies have proposed a role for serotonin and its transporter in regulation of bone cell function. In the present study, we examined the in vitro effects of serotonin and the serotonin transporter inhibitor fluoxetine "Prozac" on osteoblasts and osteoclasts. Human mononuclear cells were differentiated into osteoclasts in the presence of serotonin or fluoxetine. Both compounds affected the total number of differentiated osteoclasts as well as bone resorption in a bell-shaped manner. RT-PCR on the human osteoclasts demonstrated several serotonin receptors, the serotonin transporter, and the rate-limiting enzyme in serotonin synthesis, tryptophan hydroxylase 1 (Tph1). Tph1 expression was also found in murine osteoblasts and osteoclasts, indicating an ability to produce serotonin. In murine pre-osteoclasts (RAW264.7), serotonin as well as fluoxetine affected proliferation and NFkappaB activity in a biphasic manner. Proliferation of human mesenchymal stem cells (MSC) and primary osteoblasts (NHO), and 5-HT2A receptor expression was enhanced by serotonin. Fluoxetine stimulated proliferation of MSC and murine preosteoblasts (MC3T3-E1) in nM concentrations, microM concentrations were inhibitory. The effect of fluoxetine seemed direct, probably through 5-HT2 receptors. Serotonin-induced proliferation of MC3T3-E1 cells was inhibited by the PKC inhibitor (GF109203) and was also markedly reduced when antagonists of the serotonin receptors 5-HT2B/C or 5-HT2A/C were added. Serotonin increased osteoprotegerin (OPG) and decreased receptor activator of NF-kappaB ligand (RANKL) secretion from osteoblasts, suggesting a role in osteoblast-induced inhibition of osteoclast differentiation, whereas fluoxetine had the opposite effect. This study further describes possible mechanisms by which serotonin and the serotonin transporter can affect bone cell function.  相似文献   

8.
Bone is maintained by two cell types, bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts express two factors, osteoprotegerin and receptor activator of NF-kappaB ligand (RANKL), inhibiting and promoting osteoclast differentiation, respectively. In contrast, modulators of bone resorption expressed by osteoclasts have not been so well studied enough. In the present study, we demonstrate proteome analysis of secreted proteins during osteoclast differentiation to elucidate the molecular mechanism of bone resorption and bone remodeling. To achieve this objective, we chose RAW264.7 cells with RANKL as a homogeneous osteoclast differentiation model and used two methods, two-dimensional gel electrophoresis (2-DE) and isotope-coded affinity tags (ICAT) analysis with two-dimensional liquid chromatography. We found 23 spots in 2-DE and 19 proteins in ICAT analysis which were expressed differently during osteoclast differentiation. These two methods gave us closely related but different information about proteins, suggesting they are complementary or at least supplementary methods at present. Cathepsins, osteopontin, legumain, macrophage inflammatory protein-1alpha, and other proteins were observed as up- or down-regulated proteins and are discussed in the context of osteoclast differentiation and bone resorption. In addition to confirming previous observations, this study indicates novel proteins related to osteoclast differentiation which are potential therapeutic targets for the treatment of bone diseases, such as osteoporosis.  相似文献   

9.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   

10.
Phenolic compounds including tannins and flavonoids have been implicated in suppression of osteoclast differentiation/function and prevention of bone diseases. However, the effects of hydrolysable tannins on bone metabolism remain to be elucidated. In this study, we found that furosin, a hydrolysable tannin, markedly decreased the differentiation of both murine bone marrow mononuclear cells and Raw264.7 cells into osteoclasts, as revealed by the reduced number of tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and decreased TRAP activity. Furosin appears to target at the early stage of osteoclastic differentiation while having no cytotoxic effect on osteoclast precursors. Analysis of the inhibitory mechanisms of furosin revealed that it inhibited the receptor activator of nuclear factor-kappaB ligand (RANKL)-induced activation of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK)/activating protein-1 (AP-1). Furthermore, furosin reduced resorption pit formation in osteoclasts, which was accompanied by disruption of the actin rings. Taken together, these results demonstrate that naturally occurring furosin has an inhibitory activity on both osteoclast differentiation and function through mechanisms involving inhibition of the RANKL-induced p38MAPK and JNK/AP-1 activation as well as actin ring formation.  相似文献   

11.
Osteopontin (OPN) was expressed in murine wild-type osteoclasts, localized to the basolateral, clear zone, and ruffled border membranes, and deposited in the resorption pits during bone resorption. The lack of OPN secretion into the resorption bay of avian osteoclasts may be a component of their functional resorption deficiency in vitro. Osteoclasts deficient in OPN were hypomotile and exhibited decreased capacity for bone resorption in vitro. OPN stimulated CD44 expression on the osteoclast surface, and CD44 was shown to be required for osteoclast motility and bone resorption. Exogenous addition of OPN to OPN-/- osteoclasts increased the surface expression of CD44, and it rescued osteoclast motility due to activation of the alpha(v)beta(3) integrin. Exogenous OPN only partially restored bone resorption because addition of OPN failed to produce OPN secretion into resorption bays as seen in wild-type osteoclasts. As expected with these in vitro findings of osteoclast dysfunction, a bone phenotype, heretofore unappreciated, was characterized in OPN-deficient mice. Delayed bone resorption in metaphyseal trabeculae and diminished eroded perimeters despite an increase in osteoclast number were observed in histomorphometric measurements of tibiae isolated from OPN-deficient mice. The histomorphometric findings correlated with an increase in bone rigidity and moment of inertia revealed by load-to-failure testing of femurs. These findings demonstrate the role of OPN in osteoclast function and the requirement for OPN as an osteoclast autocrine factor during bone remodeling.  相似文献   

12.
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.  相似文献   

13.
In vitro differentiation into functional osteoclasts is routinely achieved by incubation of embryonic stem cells, induced pluripotent stem cells, or primary as well as cryopreserved spleen and bone marrow-derived cells with soluble receptor activator of nuclear factor kappa-B ligand and macrophage colony-stimulating factor. Additionally, osteoclasts can be derived from co-cultures with osteoblasts or by direct administration of soluble receptor activator of nuclear factor kappa-B ligand to RAW 264.7 macrophage lineage cells. However, despite their benefits for osteoclast-associated research, these different methods have several drawbacks with respect to differentiation yields, time and animal consumption, storage life of progenitor cells or the limited potential for genetic manipulation of osteoclast precursors. In the present study, we therefore established a novel protocol for the differentiation of osteoclasts from murine ER-Hoxb8-immortalized myeloid stem cells. We isolated and immortalized bone marrow cells from wild type and genetically manipulated mouse lines, optimized protocols for osteoclast differentiation and compared these cells to osteoclasts derived from conventional sources. In vitro generated ER-Hoxb8 osteoclasts displayed typical osteoclast characteristics such as multi-nucleation, tartrate-resistant acid phosphatase staining of supernatants and cells, F-actin ring formation and bone resorption activity. Furthermore, the osteoclast differentiation time course was traced on a gene expression level. Increased expression of osteoclast-specific genes and decreased expression of stem cell marker genes during differentiation of osteoclasts from ER-Hoxb8-immortalized myeloid progenitor cells were detected by gene array and confirmed by semi-quantitative and quantitative RT-PCR approaches. In summary, we established a novel method for the quantitative production of murine bona fide osteoclasts from ER-Hoxb8 stem cells generated from wild type or genetically manipulated mouse lines. These cells represent a standardized and theoretically unlimited source for osteoclast-associated research projects.  相似文献   

14.
Huang J  Yuan L  Wang X  Zhang TL  Wang K 《Life sciences》2007,81(10):832-840
Icariin, a principal flavonoid glycoside in Herba Epimedii, is hypothesized to possess beneficial effects on bone mass. Icariin is metabolized to icariside II and then to icaritin in vivo. In the present study, we investigated the in vitro effects of icariin, icariside II and icaritin on both osteoblasts and osteoclasts. After treatment with these compounds at concentrations 10(-5)-10(-8) mol/l, osteoblasts were examined for proliferation, alkaline phosphatase activity, osteocalcin secretion and matrix mineralization, as well as expression levels of bone-related proteins. The formation of osteoclasts was assessed by counting the number of multinucleated TRAP-positive cells. The activity of isolated rat osteoclasts was evaluated by measuring pit area, actin rings and superoxide generation. Icariside II and icaritin increased the mRNA expression of ALP, OC, COL-1 and OPG, but suppressed that of RANKL. In addition, these compounds reduced the number of multinucleated TRAP-positive cells and the osteoclastic resorption area. Also decreases were observed in superoxide generation and actin ring formation that are required for osteoclast survival and bone resorption activity. These findings suggest that icaritin, which was more potent than icariin and icariside II, enhanced the differentiation and proliferation of osteoblasts, and facilitated matrix calcification; meanwhile it inhibited osteoclastic differentiation in both osteoblast-preosteoclast coculture and osteoclast progenitor cell culture, and reduced the motility and bone resorption activity of isolated osteoclasts.  相似文献   

15.
Mouse calvaria were maintained in organ culture for 96 h and endogenous prostaglandin production and active bone resorption (45Ca release) measured. After a lag phase of 12 h, active resorption increased over the 96 h period. The amounts of prostaglandins released into the culture medium (measured by radioimmunoassay) were highest in the first 24 h of culture. Unless these were removed by preculturing for 24 h, or suppressed by indomethacin, no response to exogenous PGE2, or prostaglandin precursors could be demonstrated. Bone resorption was stimulated after preculture by both PGE2 and PGF2 alpha in a dose-dependent manner (10-8M-10-5M), with PGE2 being the more potent. Collagen synthesis was unaffected by PGF2 alpha, whereas PGE2 (10-5M) had an inhibitory effect. Eicosatrienoic acid did not stimulate bone resorption at lower concentrations (10-7M-1-5M), but was inhibitory at 10-4M. Arachidonic acid also inhibited resorption at 10-4m, but at lower concentrations (10-7M-10-5M) increased active resorption. This was concomitant with a rise in PGE2 and PGF2 alpha levels, PGE2 production being significantly higher than PGF2 alpha. The effects of PGE2 (10-8M) and PGF2 alpha (10-8M) appeared additive; there was no evidence of synergistic or antagonistic effects when varying ratios of PGE2: PGF2 alpha were employed.  相似文献   

16.
17.
18.
Although glucocorticoids (GCs) are physiologically essentialfor bone metabolism, it is generally accepted that high dosesof GCs cause bone loss through a combination of decreased boneformation and increased bone resorption. However, the actionof GCs on mature osteoclasts remains contradictory. In thisstudy, we have examined the effect of GCs on osteoclasticbone-resorbing activity and osteoclast apoptosis, by using twodifferent cell types, rabbit unfractionated bone cells andhighly enriched mature osteoclasts (>95% of purity).Dexamethasone (Dex, 10-10–10-7 M) inhibited resorption pit formation on a dentine slice by the unfractionated bone cells in a dose- and time-dependent manner.However, Dex had no effect on the bone-resorbing activity of the isolated mature osteoclasts. When the isolated osteoclastswere co-cultured with rabbit osteoblastic cells, the osteoclastic bone resorption decreased in response to Dex,dependent on the number of osteoblastic cells. Like the effecton the bone resorption, Dex induced osteoclast apoptosis in cultures of the unfractionated bone cells, whereas it did not promote the apoptosis of the isolated osteoclasts. An inhibitorof caspases, Z-Asp-CH2-DCB attenuated both the inhibitory effecton osteoclastic bone resorption and the stimulatory effect onthe osteoclast apoptosis. In addition, the osteoblastic cellswere required for the osteoclast apoptosis induced by Dex. These findings indicate that the main target cells of GCs arenon-osteoclastic cells such as osteoblasts and that GCsindirectly inhibit bone resorption by inducing apoptosis ofthe mature osteoclasts through the action of non-osteoclasticcells. This study expands our knowledge about the multifunctional roles of GCs in bone metabolism.  相似文献   

19.
In previous research, we devised a specific culture chamber to examine the effect of continuously applied compressive pressure (CCP) on bone formation and resorption. The chamber was infused with compressed mixed gases with different O2 and CO2 composition to maintain the pO2, pCO2, and pH in the culture medium under pressures of +0.5 atm (1.5 atm total) to +2.0 atm (3.0 atm total) at the same levels as those at the ordinary pressure (1 atm). Using the specific culture chamber, we demonstrated that CCP greatly suppressed the differentiation of mouse osteoblast-like MC3T3-E1 cells. The inhibition by CCP appeared to be mediated by prostaglandin E2 (PGE2). In the present study, we examined the effect of CCP on osteoclastic bone resorption. CCP treatment of mouse bone marrow culture markedly increased both the PGE2 production and the number of tartrate-resistant acid phosphatase (TRACP)-positive mononuclear cells (possibly precursors of multinucleated osteoclasts). An autoradiographic study using [125I]-salmon calcitonin showed clearly that those TRACP-positive cells had calcitonin receptors. The CCP effect was the greatest at +1.0 atm (2.0 atm total). Isobutylmethylxanthine potentiated the production of TRACP-positive cells induced by CCP. Adding indomethacin completely inhibited both the TRACP-positive cell formation and the PGE2 production induced by CCP. CCP also increased the release of 45Ca from prelabeled mouse calvaria during later stages (2-6 days) of the 6-day culture period. CCP markedly increased PGE2 but not interleukin 1 in the culture media of mouse calvaria. These results indicate that, besides inhibiting osteoblast differentiation, CCP stimulates bone resorption by generating new osteoclasts through a mechanism involving PGE2 production.  相似文献   

20.
L-glutamate (Glu) is the predominant neuromediator in the mammalian central nervous system (CNS). Bone is highly innervated and there is growing evidence of a neural control of bone cell metabolism. The recent discovery of Glu-containing nerve fibers in bone and Glu receptors (GluR) and transporters in bone cells suggest that this neuromediator may also act as a signaling molecule in bone and regulate bone cell function. Our previous studies have demonstrated that ionotropic N-Methyl-D-Aspartate (NMDA) GluR are highly expressed by mammalian osteoclasts. NMDA receptors (NMDAR) are heteromers associating the NR1 subunit and one of the four types of NR2 subunits (NR2A to D). We showed that osteoclasts express NR1, NR2B and NR2D subunits, suggesting a molecular diversity of NMDAR in these cells. Electrophysiological studies have confirmed that NMDAR are functional in mature osteoclasts, and features of Glu-induced current recorded in these cells indicate a major NR2D subunit composition. Using an in vitro assay of bone resorption, we showed that several antagonists of NMDAR binding to different sites of the receptor inhibit bone resorption. In particular, the specific NMDAR channel blocker MK801 had no effect on osteoclast attachment to bone and survival while it rapidly decreased the percentage of osteoclasts with actin ring structures that are associated with actively resorbing osteoclasts. NMDAR may thus be involved in adhesion-induced formation of the sealing zone required for bone resorption. NMDAR are also expressed by osteoclast precursors isolated from mouse bone marrow. We recently confirmed the presence of NR1, NR2B and NR2D in these cells and demonstrated their expression at all differentiation stages from osteoclast precursors to mature resorbing osteoclasts. No regulation of these subunits mRNA expression levels was observed throughout the osteoclastic differentiation sequence. Activation of NMDAR may therefore represent a new mechanism for regulating osteoclast formation and activity. While the origin of Glu in bone is still unknown, the possibility of a glutamatergic neurotransmission in this tissue is suggested by the detection of Glu in nerve fibers in close contact to bone cells. Furthermore, we recently demonstrated that sciatic neurectomy in growing rats induces a bone loss associated with a reduction of nerve profiles immunostained for Glu. These results suggest that Glu may be released from glutamatergic nerve profiles present in bone and therefore contribute to the local regulation of bone cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号