首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.

Background

Mycobacterium bovis bacillus Calmette Guérin (BCG) vaccine, which has been inoculated to more than one billion people world-wide, has significant effect in preventing tuberculous meningitis and miliary tuberculosis (TB) in neonate and early childhood. However, BCG fails to adequately protect against pulmonary TB and reactivation of latent infections in adults. To overcome this problem, adequate booster is urgently desired in adult who received prior BCG vaccination, and appropriate animal models that substitute human cases would be highly valuable for further experimentation.

Findings

The booster effect of the synthesized CpG oligomer (Oligo-B) on aged mice which had been primarily vaccinated with BCG at the age of 4-week old. The specific Th1 type reaction, production of interferon-γ, in response to TB antigens, purified protein derivatives (PPD) and protection against challenge with Mycobacterium tuberculosis (MTB) H37Rv decreased with increasing age and were not observed in 89-week old mice. In order to rejuvenate the Th1 type response against PPD and protection activity against MTB infection, Oligo-B, which is known to augment Th1 responses, was administered as a booster to 81-90-week old mice (late 50’s in human equivalent) vaccinated with BCG at 4-week old. The boosting with Oligo-B increased the number of CD4+ CD44high CD62Lhigh, central memory type T cell. Furthermore, the Oligo-B boosting rejuvenated the ability of mice to protect against infection with MTB H37Rv.

Conclusions

Th1-adjuvant CpG oligo DNA, such as Oligo-B, may be a promising booster when coupled with BCG priming.
  相似文献   

2.

Background

Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis (Mtb). This disease with two million deaths per year has the highest mortality rate among bacterial infections. The only available vaccine against TB is BCG vaccine. BCG is an effective vaccine against TB in childhood, however, due to some limitations, has not proper efficiency in adults. Also, BCG cannot produce an adequately protective response against reactivation of latent infections.

Objective

In the present study we will review the most recent findings about contribution of HspX protein in the vaccines against tuberculosis.

Methods

Therefore, many attempts have been made to improve BCG or to find its replacement. Most of the subunit vaccines for TB in various phases of clinical trials were constructed as prophylactic vaccines using Mtb proteins expressed in the replicating stage. These vaccines might prevent active TB but not reactivation of latent tuberculosis infection (LTBI). A literature search was performed on various online databases (PubMed, Scopus, and Google Scholar) regarding the roles of HspX protein in tuberculosis vaccines.

Results

Ideal subunit post-exposure vaccines should target all forms of TB infection, including active symptomatic and dormant (latent) asymptomatic forms. Among these subunit vaccines, HspX is the most important latent phase antigen of M. tuberculosis with a strong immunological response. There are many studies that have evaluated the immunogenicity of this protein to improve TB vaccine.

Conclusion

According to the studies, HspX protein is a good candidate for development of subunit vaccines against TB infection.
  相似文献   

3.

Background

The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis.

Methods and Principal Findings

In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study.

Conclusion and Significance

Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis.  相似文献   

4.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

5.

Background

Although B cells are important as antigen presenting cells (APC) during the immune response, their role in DNA vaccination models is unknown.

Methods

In this study in vitro and in vivo experiments were performed to evaluate the ability of B cells to protect mice against Mycobacterium tuberculosis challenge.

Results

In vitro and in vivo studies showed that B cells efficiently present antigens after naked plasmid pcDNA3 encoding M. leprae 65-kDa heat shock protein (pcDNA3-Hsp65) internalization and protect B knock-out (BKO) mice against Mycobacterium tuberculosis infection. pcDNA3-Hsp65-transfected B cells adoptively transferred into BKO mice rescued the memory phenotypes and reduced the number of CFU compared to wild-type mice.

Conclusions

These data not only suggest that B cells play an important role in the induction of CD8 T cells but also that they improve bacterial clearance in DNA vaccine model.  相似文献   

6.

Background

The functional equilibrium between natural regulatory T cells (Treg) and effector T cells can affect the issue of numerous infections. In unvaccinated mice, the influence of Treg in the control of primary infection with mycobacteria remains controversial.

Methodology

Here, we evaluated the role of Treg during prophylactic vaccination with Mycobacterium bovis BCG (Bacillus Calmette-Guérin) on the induction of T cell responses and on the protective effect against subsequent M. tuberculosis challenge in mice.

Principal Findings

We demonstrated that, subsequent to BCG injection, Treg were recruited to the draining lymph nodes and negatively control anti-mycobacterial CD4+ — but not CD8+ — T-cell responses. Treatment of BCG-immunized mice with an anti-CD25 mAb (PC61) induced an increase IFN-γ response against both subdominant and immunodominant regions of the protective immunogen TB10.4. In Treg-attenuated, BCG-immunized mice, which were then infected with M. tuberculosis, the lung mycobacterial load was significantly, albeit moderately, reduced compared to the control mice.

Conclusions

Our results provide the first demonstration that attenuation of Treg subset concomitant to BCG vaccination has a positive, yet limited, impact on the protective capacity of this vaccine against infection with M. tuberculosis. Thus, for rational design of improved BCG, it should be considered that, although the action of Treg does not represent the major cause of the limited efficiency of BCG, the impact of this cell population on the subsequent control of M. tuberculosis growth is significant and measurable.  相似文献   

7.

Background

In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB). Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production.

Methodology/Principal Findings

To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli.

Conclusions/Significance

We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG''s ability to protect against pulmonary TB.  相似文献   

8.

Background

In spite of a consistent protection against tuberculosis (TB) in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG) fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB.

Methods/Principal Findings

In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin- a key latency antigen of M. tuberculosis to boost the BCG induced immunity. ‘BCG prime – DNA boost’ regimen (B/D) confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log10 and 1.96 log10 fewer bacilli in lungs and spleen, respectively; p<0.01). In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3+) simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and interleukin (IL)2.

Conclusions/Significance

These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.  相似文献   

9.

Background

Although the Bacillus Calmette-Guérin (BCG) vaccine against tuberculosis (TB) has been available for more than 75 years, one third of the world''s population is still infected with Mycobacterium tuberculosis and approximately 2 million people die of TB every year. To reduce this immense TB burden, a clearer understanding of the functional genes underlying the action of BCG and the development of new vaccines are urgently needed.

Methods and Findings

Comparative genomic analysis of 19 M. tuberculosis complex strains showed that BCG strains underwent repeated human manipulation, had higher region of deletion rates than those of natural M. tuberculosis strains, and lost several essential components such as T-cell epitopes. A total of 188 BCG strain T-cell epitopes were lost to various degrees. The non-virulent BCG Tokyo strain, which has the largest number of T-cell epitopes (359), lost 124. Here we propose that BCG strain protection variability results from different epitopes. This study is the first to present BCG as a model organism for genetics research. BCG strains have a very well-documented history and now detailed genome information. Genome comparison revealed the selection process of BCG strains under human manipulation (1908–1966).

Conclusions

Our results revealed the cause of BCG vaccine strain protection variability at the genome level and supported the hypothesis that the restoration of lost BCG Tokyo epitopes is a useful future vaccine development strategy. Furthermore, these detailed BCG vaccine genome investigation results will be useful in microbial genetics, microbial engineering and other research fields.  相似文献   

10.

Background

Novel tuberculosis (TB) vaccines recently tested in humans have been designed to boost immunity induced by the current vaccine, Mycobacterium bovis Bacille Calmette-Guérin (BCG). Because BCG vaccination is used extensively in infants, this population group is likely to be the first in which efficacy trials of new vaccines will be conducted. However, our understanding of the complexity of immunity to BCG in infants is inadequate, making interpretation of vaccine-induced immune responses difficult.

Methods

To better understand BCG-induced immunity, we performed gene expression profiling in five 10-week old infants routinely vaccinated with BCG at birth. RNA was extracted from 12 hour BCG-stimulated or purified protein derivative of tuberculin (PPD)-stimulated PBMC, isolated from neonatal blood collected 10 weeks after vaccination. RNA was hybridised to the Sentrix® HumanRef-8 Expression BeadChip (Illumina) to measure expression of >16,000 genes.

Results

We found that ex vivo stimulation of PBMC with PPD and BCG induced largely similar gene expression profiles, except that BCG induced greater macrophage activation. The peroxisome proliferator-activated receptor (PPAR) signaling pathway, including PPAR-γ, involved in activation of the alternative, anti-inflammatory macrophage response was down-regulated following stimulation with both antigens. In contrast, up-regulation of genes associated with the classic, pro-inflammatory macrophage response was noted. Further analysis revealed a decrease in the expression of cell adhesion molecules (CAMs), including integrin alpha M (ITGAM), which is known to be important for entry of mycobacteria into the macrophage. Interestingly, more leukocyte genes were down-regulated than up-regulated.

Conclusion

Our results suggest that a combination of suppressed and up-regulated genes may be key in determining development of protective immunity to TB induced by vaccination with BCG.  相似文献   

11.

Background

Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated.

Methods

Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA.

Results

This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life.

Conclusion

These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.  相似文献   

12.

Background

Extrapulmonary manifestations of tuberculosis have become increasingly important in the era of HIV/AIDS.

Case presentation

We describe a case of tuberculosis (TB) dactylitis in a patient with AIDS who originated from the Ivory Coast. The diagnosis was established by direct visualization of acid-fast bacilli on joint fluid and bone biopsy of the proximal phalanx. Imaging of the chest revealed multiple bilateral nodules. Confirmation of the diagnosis was made by isolation of Mycobacterium tuberculosis from sputum and bone cultures.

Conclusion

Tuberculosis should be considered in patients with unusual soft tissue or skeletal lesions, especially when an immunosuppressive condition is present. Ziehl-Neelsen staining and culture of tissue obtained via surgical biopsy offer the most direct approach to diagnosis.  相似文献   

13.

Background

There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-γ) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN-γ responses to BCG in this age group are poorly described. Characterisation of IFN-γ responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy.

Methodology/Principal Findings

236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-γ, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89–98% depending on the antigen) made IFN-γ responses and there was significant correlation between IFN-γ responses to the different mycobacterial antigens (Spearman''s coefficient ranged from 0.340 to 0.675, p = 10−6–10−22). IL-13 and IL-5 responses were generally low and there were more non-responders (33–75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens

Conclusions/Significance

Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN-γ responses.  相似文献   

14.
Nolan ST  Lamichhane G 《PloS one》2010,5(10):e13773

Background

M. bovis Bacille Calmette-Guérin (BCG), currently the only available vaccine against tuberculosis (TB), fails to adequately protect individuals from active and latent TB infection. New vaccines are desperately needed to decrease the worldwide burden of TB.

Methods and Findings

We created a recombinant strain of BCG that overproduces an L,D-transpeptidase in order to alter the bacterial peptidoglycan layer and consequently increase the ability of this immunogen to protect against virulent M. tuberculosis (Mtb). We demonstrate that this novel recombinant BCG protects mice against virulent Mtb at least as well as control BCG, as measured by its ability to reduce bacterial burden in lungs and spleen, reduce lung histopathology, and prolong survival. A nutrient starved recombinant BCG preparation, while offering comparable protection, elicited a response characterized by elevated levels of select Th1 cytokines.

Conclusions

Recombinant BCG overexpressing a L,D-transpeptidase that is nutrient starved elicits a stronger Th1 type response and is at least as protective as parent BCG. Results from this study suggest that nutrient starvation treatment of live BCG vaccines should be further investigated as a way to increase host induction of Th-1 related cytokines in the development of experimental anti-TB vaccines.  相似文献   

15.

Background

Mozambique is one of the countries with the highest burden of tuberculosis (TB) in Sub-Saharan Africa, and information on the predominant genotypes of Mycobacterium tuberculosis circulating in the country are important to better understand the epidemic. This study determined the predominant strain lineages that cause TB in Mozambique.

Results

A total of 445 M. tuberculosis isolates from seven different provinces of Mozambique were characterized by spoligotyping and resulting profiles were compared with the international spoligotyping database SITVIT2. The four most predominant lineages observed were: the Latin-American Mediterranean (LAM, n = 165 or 37%); the East African-Indian (EAI, n = 132 or 29.7%); an evolutionary recent but yet ill-defined T clade, (n = 52 or 11.6%); and the globally-emerging Beijing clone, (n = 31 or 7%). A high spoligotype diversity was found for the EAI, LAM and T lineages.

Conclusions

The TB epidemic in Mozambique is caused by a wide diversity of spoligotypes with predominance of LAM, EAI, T and Beijing lineages.  相似文献   

16.
Limited experimental evidences are available on the use of peptides as vaccines to boost BCG induced immunity for protection against tuberculosis. The present study therefore evaluated protective efficacy of booster dose of N-terminal peptides of Ag85B, using prime boost approaches in murine model of tuberculosis. Using earlier established subcutaneous murine model of TB in our laboratory, we compared the protective vaccination efficacy of peptides of Ag85B with that of booster dose of whole Ag85B and BCG by evaluating both antibody and cell-mediated immune response. Groups of mice primed by BCG and boosted with Ag85B peptides showed limited pulmonary bacillary burden and reduced lung pathology after challenge with virulent dose of Mycobacterium tuberculosis in mice. Significant levels (p < 0.001) of BCG specific antibodies (anti-BCG, anti-PPD) and T cell-specific cytokines were observed in Ag85B peptides boosted mice compared to Ag85B and BCG. Ag85B and BCG boosted mice however showed significant protection compared to single BCG dose and unvaccinated control groups. Our result suggests that prime boost strategy using N-terminal peptides of Ag85B may improve immunogenicity of BCG against TB. Such peptides may be attractive candidates for boosting waning BCG induced immune response in near future. However study demands further work including improvisation in experimental designs to justify the results.  相似文献   

17.
Mycobacterium bovis bacillus Calmette-Guerin (BCG), the only licensed vaccine, shows limited protection efficacy against pulmonary tuberculosis (TB), particularly hypervirulent Mycobacterium tuberculosis (Mtb) strains, suggesting that a logistical and practical vaccination strategy is urgently required. Boosting the BCG-induced immunity may offer a potentially advantageous strategy for advancing TB vaccine development, instead of replacing BCG completely. Despite the improved protection of the airway immunization by using live BCG, the use of live BCG as an airway boosting agent may evoke safety concerns. Here, we analyzed the protective efficacy of γ-irradiated BCG as a BCG-prime boosting agent for airway immunization against a hypervirulent clinical strain challenge with Mycobacterium tuberculosis HN878 in a mouse TB model. After the aerosol challenge with the HN878 strain, the mice vaccinated with BCG via the parenteral route exhibited only mild and transient protection, whereas BCG vaccination followed by multiple aerosolized boosting with γ-irradiated BCG efficiently maintained long-lasting control of Mtb in terms of bacterial reduction and pathological findings. Further immunological investigation revealed that this approach resulted in a significant increase in the cellular responses in terms of a robust expansion of antigen (PPD and Ag85A)-specific CD4+ T cells concomitantly producing IFN-γ, TNF-α, and IL-2, as well as a high level of IFN-γ-producing recall response via both the local and systemic immune systems upon further boosting. Collectively, aerosolized boosting of γ-irradiated BCG is able to elicit strong Th1-biased immune responses and confer enhanced protection against a hypervirulent Mycobacterium tuberculosis HN878 infection in a boosting number-dependent manner.  相似文献   

18.

Background

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.

Methods

A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and in silico mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.

Results

Cross-matching of literature and in silico-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.

Conclusion

The comprehensive literature and in silico-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of M. tuberculosis infection, to be incorporated in rBCG or subunit-based vaccines.  相似文献   

19.

Background

We have earlier shown that Bacille Calmette-Guérin (BCG) vaccine-specific IgG Antibodies in Lymphocyte Supernatant (ALS) can be used for diagnosis of active tuberculosis (TB) in adults and children.

Methodology/Principal Findings

The ALS method was validated in a larger cohort (n = 212) of patients with suspicion of pulmonary TB using multiple antigens (BCG, LAM, TB15.3, TB51A, CFP10-ESAT6-A, CFP, CW) from Mycobacterium tuberculosis. The sensitivity and specificity of the ALS assay was calculated using non-TB patients as controls. The sensitivity and the specificity were highest with BCG vaccine (90% and 88% respectively) followed by LAM (89% and 87% respectively). Simultaneous assessment of multiple antigen-specific antibodies increased sensitivity (91%) and specificity (88%). Using higher lymphocyte count in smaller volume of culture media increased detection and reduced the assay duration to ∼30 hrs. Twenty one patients with clinical findings strongly suggestive of TB finally diagnosed as non-TB patients were positive by the ALS assay, of which 9 (43%) were positive for 7 antigens and 19 (90%) for at least 3 antigens.

Conclusions/Significance

Our findings show that simultaneous detection of antigens improves the diagnostic potential of the ALS assay; the modified method increases sensitivity and can provide results in <48 hours, and enable detection of some cases of pulmonary TB that are not detectable by standard methods.  相似文献   

20.
Identification of Mycobacterium tuberculosis antigens inducing cellular immune responses is required to improve the diagnosis of and vaccine development against tuberculosis. To identify the antigens of M. tuberculosis that differentiated between tuberculosis (TB) patients and healthy contacts based on T cell reactivity, the culture filtrate of in vitro grown M. tuberculosis was fractionated by two-dimensional liquid phase electrophoresis and tested for the ability to stimulate T cells in a whole blood assay. This approach separated the culture filtrate into 350 fractions with sufficient protein quantity (at least 200 μg of protein) for mass spectrometry and immunological analyses. High levels of interferon-γ (IFN-γ) secretion were induced by 105 fractions in healthy contacts compared with TB patients (p < 0.05). Most interesting was the identification of 10 fractions that specifically induced strong IFN-γ production in the healthy contact population but not in TB patients. Other immunological measurements showed 42 fractions that induced significant lymphocyte proliferative responses in the healthy contact group compared with the TB patients. The tumor necrosis factor-α response for most of the fractions did not significantly differ in the tested groups, and the interleukin-4 response was below the detectable range for all fractions and both study groups. Proteomic characterization of the 105 fractions that induced a significant IFN-γ response in the healthy contacts compared with the TB patients led to the identification of 59 proteins of which 24 represented potentially novel T cell antigens. Likewise, the protein identification in the 10 healthy “contact-specific fractions” revealed 16 proteins that are key candidates as vaccine or diagnostic targets.Tuberculosis (TB)1 is a major health problem throughout the world. A recent World Health Organization report shows that TB has been increasing at a rate of 1% per year, and an estimated 9.2 million new cases arise each year (1). Although TB is preventable, there has been an increase in its incidence in recent years. Re-emergence of TB is mainly due to its association with human immunodeficiency virus infection (2) and also due to the occurrence of multidrug-resistant strains of the causative agent, Mycobacterium tuberculosis (3).Vaccination of general population is cost effective and represents one of the best biological measures for disease control. The current vaccine against tuberculosis, Bacille Calmette-Guérin (BCG), has been administered to more people than any other vaccine. The side effects of BCG are tolerable, and it prevents miliary and meningeal tuberculosis in young children. In striking contrast, it affords limited and highly variable protection (0–80%) against pulmonary TB (4). Thus, BCG does not seem to be a satisfactory vaccine (5, 6) and necessitates exploration of newer strategies to improve BCG or to develop a more effective vaccine.One of the potential strategies for the development of an improved TB vaccine involves the use of the proteins secreted by M. tuberculosis during growth. There is evidence that proteins actively secreted by M. tuberculosis during growth induce cell-mediated immune responses by causing expansion of specific interferon-γ (IFN-γ)-producing T lymphocytes that are capable of recognizing and exerting antimicrobial effects against infected macrophages (7). The importance of IFN-γ pathways in host defense against M. tuberculosis was clarified by experimental studies on IFN-γ knock-out mice as well as the identification and characterization of humans with mutations in IFN-γ receptor (8, 9).Several studies have been carried out to define the secreted proteome of M. tuberculosis. The earliest study aimed at the identification of mycobacterial culture filtrate proteins, using chromatography and N-terminal sequencing to identify eight culture filtrate proteins (10). Later, many studies used two-dimensional (2D) PAGE combined with sensitive mass spectrometric methods for identification of proteins. The above mentioned approaches have identified nearly 300 culture filtrate proteins (1113).Identification of T cell antigens in a complex mixture was first done by a T cell Western blot method (14). Later, two-dimensional separation methods were used that involved protein separation by either IEF (15) or chromatography (16) in the first dimension and preparative SDS-PAGE followed by whole gel elution (17) in the second dimension. Mouse T cell antigens of M. tuberculosis were identified using this method (15). Mycobacterial antigens that induce an immune response in healthy household contacts and treated TB patients were also mapped using this approach (16).In the present study, 2D liquid phase electrophoresis (LPE) along with an in vitro IFN-γ assay and LC-MS/MS were used to identify potential human T cell antigens. Systematic screening of the M. tuberculosis culture filtrate (CF) proteome and comparative evaluation of cellular immune responses between TB patients and healthy contacts led to the identification of 59 proteins in the most immunogenic 2D LPE fractions. Twenty-four potentially novel T cell antigens were identified, and 16 proteins were identified in 10 2D LPE fractions that differentiated healthy contacts from TB patients based on IFN-γ responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号