首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Hedgehog signaling is known to regulate tissue morphogenesis and cell differentiation in a dose-dependent manner. Loss of Indian hedgehog (Ihh) results in reduction in pancreas size, indicating a requirement for hedgehog signaling during pancreas development. By contrast, ectopic expression of sonic hedgehog (Shh) inhibits pancreatic marker expression and results in transformation of pancreatic mesenchyme into duodenal mesoderm. These observations suggest that hedgehog signaling activity has to be regulated tightly to ensure proper pancreas development. We have analyzed the function of two hedgehog inhibitors, Hhip and patched 1 (Ptch), during pancreas formation. Our results indicated that loss of Hhip results in increased hedgehog signaling within the pancreas anlage. Pancreas morphogenesis, islet formation and endocrine cell proliferation is impaired in Hhip mutant embryos. Additional loss of one Ptch allele in Hhip-/-Ptch+/- embryos further impairs pancreatic growth and endodermal cell differentiation. These results demonstrate combined requirements for Hhip and Ptch during pancreas development and point to a dose-dependent response to hedgehog signaling within pancreatic tissue. Reduction of Fgf10 expression in Hhip homozygous mutants suggests that at least some of the observed phenotypes result from hedgehog-mediated inhibition of Fgf signaling at early stages.  相似文献   

2.
3.
4.
5.
6.
In vertebrates, the hedgehog family of cell signaling proteins and associated downstream network components play an essential role in mediating tissue interactions during development and organogenesis. Loss-of-function or misexpression mutation of hedgehog network components can cause birth defects, skin cancer and other tumors. The mammary gland is a specialized skin derivative requiring epithelial-epithelial and epithelial-stromal tissue interactions similar to those required for development of other organs, where these interactions are often controlled by hedgehog signaling. We have investigated the role of the Patched-1 (Ptc1) hedgehog receptor gene in mammary development and neoplasia. Haploinsufficiency at the Ptc1 locus results in severe histological defects in ductal structure, and minor morphological changes in terminal end buds in heterozygous postpubescent virgin animals. Defects are mainly ductal hyperplasias and dysplasias characterized by multilayered ductal walls and dissociated cells impacting ductal lumens. This phenotype is 100% penetrant. Remarkably, defects are reverted during late pregnancy and lactation but return upon involution and gland remodeling. Whole mammary gland transplants into athymic mice demonstrates that the observed dysplasias reflect an intrisic developmental defect within the gland. However, Ptc1-induced epithelial dysplasias are not stable upon transplantation into a wild-type epithelium-free fat pad, suggesting stromal (or epithelial and stromal) function of Ptc1. Mammary expression of Ptc1 mRNA is both epithelial and stromal and is developmentally regulated. Phenotypic reversion correlates with developmentally regulated and enhanced expression of Indian hedgehog (Ihh) during pregnancy and lactation. Data demonstrate a critical mammary role for at least one component of the hedgehog signaling network and suggest that Ihh is the primary hedgehog gene active in the gland.  相似文献   

7.
Sonic hedgehog (Shh), a vertebrate homologue of the Drosophila segment-polarity gene hedgehog, has been reported to play an important role during normal development of various tissues. Abnormal activities of Shh signaling pathway have been implicated in tumorigenesis such as basal cell carcinomas and medulloblastomas. Here we show that Shh signaling negatively regulates prostatic epithelial ductal morphogenesis. In organotypic cultures of developing rat prostates, Shh inhibited cell proliferation and promoted differentiation of luminal epithelial cells. The expression pattern of Shh and its receptors suggests a paracrine mechanism of action. The Shh receptors Ptc1 (Patched1) and Ptc2 were found to be expressed in prostatic stromal cells adjacent to the epithelium, where Shh itself was produced. This paracrine model was confirmed by co-culturing the developing prostate in the presence of stromal cells transfected with a vector expressing a constitutively active form of Smoothened, the real effector of the Shh signaling pathway. Furthermore, expression of activin A and TGF-beta1 that were shown previously to inhibit prostatic epithelial branching was up-regulated following Shh treatment in the organotypic cultures. Taken together, these results suggest that Shh negatively regulates prostatic ductal branching indirectly by acting on the surrounding stromal cells, at least partly via up-regulating expression of activin A and TGF-beta1.  相似文献   

8.
Wnt5a participates in distal lung morphogenesis   总被引:11,自引:0,他引:11  
Operational parallels in overall mechanisms of three-dimensional patterning of vertebrate organs are becoming increasingly apparent. Many key mediators, such as FGFs, BMPs, and sonic hedgehog, participate in organization of a number of organs, including the lungs, which exhibit a defined proximodistal (P-D) polarity. Recently, Wnt5a a member of the wingless family of signaling molecules involved in cell proliferation, differentiation, and organogenesis, was shown to underlie the outgrowth and P-D morphogenesis of the vertebrate limb. In the current study, we show that Wnt5a is expressed in the mouse lung and plays an important role in lung distal morphogenesis. Analysis of the mutant phenotype in mice carrying a targeted disruption of the Wnt5a locus shows distinct abnormalities in distal lung morphogenesis as manifested by distinct truncation of the trachea and overexpansion of the distal respiratory airways. In the face of deleted WNT5a activity, both epithelial and mesenchymal cell compartments of the Wnt5a(-/-) lungs exhibit increased cell proliferation. The overall architecture of the mutant lungs is characterized by overexpansion of the distal airways and inhibition of lung maturation as reflected by persistence of thickened intersaccular interstitium. Absence of WNT5a activity in the mutant lungs leads to increased expression of Fgf-10, Bmp4, Shh, and its receptor Ptc, raising the possibility that WNT5a, FGF-10, BMP4, and SHH signaling pathways are functionally interactive.  相似文献   

9.
Despite the well-characterised role of sonic hedgehog (Shh) in promoting interfollicular basal cell proliferation and hair follicle downgrowth, the role of hedgehog signalling during epidermal stem cell fate remains largely uncharacterised. In order to determine whether the three vertebrate hedgehog molecules play a role in regulating epidermal renewal we overexpressed sonic (Shh), desert (Dhh) and Indian (Ihh) hedgehog in the basal cells of mouse skin under the control of the human keratin 14 promoter. We observed no overt epidermal morphogenesis phenotype in response to Ihh overexpression, however Dhh overexpression resulted in a range of embryonic and adult skin manifestations indistinguishable from Shh overexpression. Two distinct novel phenotypes were observed amongst Shh and Dhh transgenics, one exhibiting epidermal progenitor cell hyperplasia with the other displaying a complete loss of epidermal tissue renewal indicating deregulation of stem cell activity. These data suggest that correct temporal regulation of hedgehog activity is a key factor in ensuring epidermal stem cell maintenance. In addition, we observed Shh and Dhh transgenic skin from both phenotypes developed lesions reminiscent of human basal cell carcinoma (BCC), indicating that BCCs can be generated despite the loss of much of the proliferative (basal) compartment. These data suggest the intriguing possibility that BCC can arise outside the stem cell population. Thus the elucidation of Shh (and Dhh) target gene activation in the skin will likely identify those genes responsible for increasing the proliferative potential of epidermal basal cells and the mechanisms involved in regulating epidermal stem cell fate.  相似文献   

10.
Embryonic Hedgehog signaling is essential for proper tissue morphogenesis and organ formation along the developing gastrointestinal tract. Hedgehog ligands are expressed throughout the endodermal epithelium at early embryonic stages but excluded from the region that will form the pancreas. Ectopic activation of Hedgehog signaling at the onset of pancreas development has been shown to inhibit organ morphogenesis. In contrast, Hedgehog signaling components are found within pancreatic tissue during subsequent stages of development as well as in the mature organ, indicating that a certain level of pathway activation is required for normal organ development and function. Here, we ectopically activate the Hedgehog pathway midway through pancreas development via expression of either Sonic (Shh) or Indian Hedgehog (Ihh) under control of the human Pax4-promoter. Similar pancreatic defects are observed in both Pax4-Shh and Pax4-Ihh transgenic lines, suggesting that regulation of the overall level of Hedgehog activity is critical for proper pancreas development. We also show that Hedgehog signaling controls mesenchymal vs. epithelial tissue differentiation and that pathway activation impairs formation of epithelial progenitors. Thus, tight control of Hedgehog pathway activity throughout embryonic development ensures proper pancreas organogenesis.  相似文献   

11.
12.
Zhang XM  Ramalho-Santos M  McMahon AP 《Cell》2001,106(2):781-792
Genetic analyses in Drosophila have demonstrated that the multipass membrane protein Smoothened (Smo) is essential for all Hedgehog signaling. We show that Smo acts epistatic to Ptc1 to mediate Shh and Ihh signaling in the early mouse embryo. Smo and Shh/Ihh compound mutants have identical phenotypes: embryos fail to turn, arresting at somite stages with a small, linear heart tube, an open gut and cyclopia. The absence of visible left/right (L/R) asymmetry led us to examine the pathways controlling L/R situs. We present evidence consistent with a model in which Hedgehog signaling within the node is required for activation of Gdf1, and induction of left-side determinants. Further, we demonstrate an absolute requirement for Hedgehog signaling in sclerotomal development and a role in cardiac morphogenesis.  相似文献   

13.
Sonichedgehog(Shh)信号通路在牙早期发育中起关键作用,Shh通过与其特定的受体Ptc/Smo蛋白复合物相互作用来激活整个信号通路。Shh在牙早期发育过程中的表达具有时间和空间特异性,通过自分泌和旁分泌作用于上皮组织以及周围的间充质,促进细胞增殖、分化,调控牙的形态发生。Shh基因缺失将导致小鼠在帽状期牙形态的严重畸形,牙体变小,牙索缺失。对Shh信号通路在牙早期发育的作用及其与Wnt信号通路、BMP家族、FGF家族和MSX家族之间的相互关系进行综述。  相似文献   

14.
Genetic analyses in Drosophila have demonstrated that the multipass membrane protein Smoothened (Smo) is essential for all Hedgehog signaling. We show that Smo acts epistatic to Ptc1 to mediate Shh and Ihh signaling in the early mouse embryo. Smo and Shh/Ihh compound mutants have identical phenotypes: embryos fail to turn, arresting at somite stages with a small, linear heart tube, an open gut and cyclopia. The absence of visible left/right (L/R) asymmetry led us to examine the pathways controlling L/R situs. We present evidence consistent with a model in which Hedgehog signaling within the node is required for activation of Gdf1, and induction of left-side determinants. Further, we demonstrate an absolute requirement for Hedgehog signaling in sclerotomal development and a role in cardiac morphogenesis.[Dedicated to Rosa Beddington, a pioneer in mammalian embryology].  相似文献   

15.
16.
17.
BACKGROUND: Sonic hedgehog (Shh) signal transduction involves the ligand binding Patched1 (Ptc1) protein and a signaling component, Smoothened (Smo). A select group of compounds inhibits both Shh signaling, regulated by Ptc1, and late endosomal lipid sorting, regulated by the Ptc-related Niemann-Pick C1 (NPC1) protein. This suggests that Ptc1 regulates Smo activity through a common late endosomal sorting pathway also utilized by NPC1. During signaling, Ptc accumulates in endosomal compartments, but it is unclear if Smo follows Ptc into the endocytic pathway.RESULTS: We characterized the dynamic subcellular distributions of Ptc1, Smo, and activated Smo mutants individually and in combination. Ptc1 and Smo colocalize extensively in the absence of ligand and are internalized together after ligand binding, but Smo becomes segregated from Ptc1/Shh complexes destined for lysosomal degradation. In contrast, activated Smo mutants do not colocalize with nor are cotransported with Ptc1. Agents that block late endosomal transport and protein sorting inhibit the ligand-induced segregation of Ptc1 and Smo. We show that, like NPC1-regulated lipid sorting, Shh signal transduction is blocked by antibodies that specifically disrupt the internal membranes of late endosomes, which provide a platform for protein and lipid sorting.CONCLUSIONS: These data support a model in which Ptc1 inhibits Smo only when in the same compartment. Ligand-induced segregation allows Smo to signal independently of Ptc1 after becoming sorted from Ptc1/Shh complexes in the late endocytic pathway.  相似文献   

18.
Sonic hedgehog (Shh) is a key signal protein in early embryological patterning of limb bud development. Its analog, Indian hedgehog (Ihh), primarily expressed during early cartilage development in prehypertrophic chondrocytes, regulates proliferation and suppresses terminal differentiation of postnatal growth plate (GP) chondrocytes. We report here for the first time that both Shh and Ihh mRNA are expressed in the GP of rapidly growing 6-week-old broiler-strain chickens. They are also expressed in other tissues such as articular chondrocytes, kidney, and bone. In situ hybridization and RT-PCR analyses reveal Shh in all zones of the GP, with peak expression in late hypertrophy. Using primary cultures of GP chondrocytes in serum-containing medium, we followed the patterns of Shh and Ihh mRNA expression as the cultures matured and mineralized. We find a cyclical expression of both hedgehog genes during the early period of culture development between day 10 and 14; when one is elevated, the other tended to be suppressed, suggesting that the two hedgehogs may play complementary roles during GP development. Retinoic acid (RA), a powerful modulator of gene expression in cell differentiation, stimulates GP chondrocytes toward terminal differentiation, enhancing mineral formation. We find that RA strongly suppresses Ihh, but enhances expression of Shh in this system. While Ihh suppresses maturation of GP chondrocytes to hypertrophy, we hypothesize that Shh acts to push these cells toward hypertrophy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号