首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 226 毫秒
1.
During infection, adenovirus-associated virus (AAV) undergoes microtubule-dependent retrograde transport as part of a program of vectorial transport of viral genome to the nucleus. A microtubule binding assay was used to evaluate the hypothesis that cytoplasmic dynein mediates AAV interaction with microtubules. Binding of AAV serotype 2 (AAV2) was enhanced in a nucleotide-dependent manner by the presence of total cellular microtubule-associated proteins (MAPs) but not cytoplasmic dynein-depleted MAPs. Excess AAV2 capsid protein prevented microtubule binding by AAV serotypes 2, 5, and rh.10, as well as adenovirus serotype 5, indicating that similar binding sites are used by these viruses.  相似文献   

2.
It has been previously shown that a class of microtubule proteins, the so-called microtubule-associated proteins (MAPs), binds to the C-terminal part of tubulin subunits. We show here that microtubules composed of tubulin whose 4-kDa C-terminal domain was cleaved by subtilisin (S-microtubules) are unable to bind MAPs but can still bind the anterograde translocator protein kinesin and the retrograde translocator dynein. Binding of both motors to S-microtubules, like their binding to normal microtubules, was ATP-dependent. In addition, direct competition experiments showed that binding sites for kiensin and MAPs on the microtubule surface lattice do not overlap. Furthermore, S-microtubules stimulated the ATPase activity of kinesin at least 8-fold, and the affinities of kinesin for control and S-microtubules were identical. S-microtubules were able to glide along kinesin-coated coverslips at a rate of 0.2 microns/s, the same rate as control microtubules. We conclude, that unlike MAPs, kinesin and cytoplasmic dynein bind to the tubulin molecule outside the C-terminal region.  相似文献   

3.
We report the isolation of a protein from mammalian nerve which shows ATP-sensitive binding to microtubules and ATPase activity. This protein, which we have designated HMW4, was prepared from bovine spinal nerve roots by microtubule affinity and ATP-induced release, and was further purified by sucrose density gradient centrifugation. It is a high molecular weight protein with a denatured Mr of 315,000, a Stokes radius of 90 A, and a sedimentation value of approximately 19S. It can be resolved electrophoretically from the well-characterized bovine brain microtubule-associated proteins (MAPs) and also appears to be distinct from MAP 1C. HMW4 has a vanadate-sensitive and azide-insensitive ATPase activity which averages 20 nmol Pi/min per mg protein and is different from dynein and myosin ATPases. HMW4 prepared on sucrose gradients exhibits binding to MAP-free microtubules in the absence of ATP which is reduced by ATP addition. Assayed by darkfield microscopy, HMW4 causes bundling of MAP-free microtubules which is reversed by ATP addition.  相似文献   

4.
Taxol was used to prepare microtubules from unfertilized eggs of sea urchins Lytechinus pictus, Strongylocentrotus droebachiensis , and Strongylocentrotus purpuratus. By electron microscopy, these microtubules possessed normal morphology and were decorated with projections. The polypeptides present were tubulin plus microtubule-associated proteins (MAPs) which included various high molecular weight polypeptides, and a Mr = 80,000 polypeptide. These MAPs were extracted from the microtubules by differential centrifugation in high ionic strength buffers, yielding a pellet of microtubules which were not decorated with projections. The Mr = 80,000 and high molecular weight MAPs were separated using Bio-Gel A-1.5 m chromatography, and shown to bind taxol-stabilized microtubules assembled from purified bovine brain tubulin. A dynein-like MgATPase activity is present in sea urchin egg extracts. 10-20% of this MgATPase co-pelleted with the taxol-assembled microtubules, under conditions where greater than 90% of the tubulin pelleted. During subsequent fractionation of the microtubules, by (i) high salt extraction followed by gel filtration or sucrose density gradient fractionation or (ii) ATP extraction, the MgATpase co-purified with high Mr MAPs. The MgATPase which remained in the microtubule-depleted egg extract was partially purified by (NH4)2SO4 fractionation, followed by Bio-Gel A-5 m and hydroxylapatite chromatography. The high Mr MAP MgATPase and the hydroxylapatite MgATPase both contained a prominent polypeptide (Mr approximately 350,000), which co-migrated on sodium dodecyl sulfate gels with the major heavy chain of dynein extracted from sperm axonemes. Our data suggest that this Mr approximately 350,000 polypeptide is cytoplasmic dynein.  相似文献   

5.
The MAPs (microtubule-associated proteins) MAP1B and tau are well known for binding to microtubules and stabilizing these structures. An additional role for MAPs has emerged recently where they appear to participate in the regulation of transport of cargos on the microtubules found in axons. In this role, tau has been associated with the regulation of anterograde axonal transport. We now report that MAP1B is associated with the regulation of retrograde axonal transport of mitochondria. This finding potentially provides precise control of axonal transport by MAPs at several levels: controlling the anterograde or retrograde direction of transport depending on the type of MAP involved, controlling the speed of transport and controlling the stability of the microtubule tracks upon which transport occurs.  相似文献   

6.
To determine the contribution of microtubules to a hypothetical intracellular matrix, we have analyzed the space occupied by microtubules in vitro. Taxol-stabilized microtubules assembled from purified (three-times-cycled) bovine brain microtubule protein were pelleted by centrifugation under standardized conditions. The specific volume of the pellet, defined as the microliter volume per milligram protein, was 22.4. As suggested by others, this volume was strongly dependent on microtubule-associated proteins (MAPs), as shown by quantitation of the effects of purified MAP supplementation on specific volume. The specific volumes of microtubule pellets stripped of MAPs by high salt or chymotryptic digestion approached the mathematically optimal (least occupied space) and increased 14-fold with the highest MAP concentrations employed. Packing was also dependent on pH. Specific volumes comparable to those of MAP-depleted microtubules were attainable at pH's from 5.5 to 6.0, and specific volumes more than doubled at pH 7.5. MAP content was unaffected by pH. We present a theoretical analysis that suggests that as microtubules are centrifuged the mixture behaves as a liquid crystal. With packing, the mixture undergoes an isotropic-nematic phase transition in which the microtubules become oriented principally as parallel rods, mimicking their orientation in vivo. From the known concentration of microtubules in vivo, it can be inferred from our measurements that in some cells a large fraction, perhaps 40-50% of the cytosolic volume, is occupied by microtubules that form a mechanically irreducible space. Further theoretical analysis employing Ogston's formulation of the penetrability of fibrous networks suggests that the space between microtubules (in contrast to the extracellular matrix) imposes little barrier to the diffusion of macromolecules. A microtubule array thus achieves mechanical stability without affecting transport by diffusion. The space can accommodate other fibrous networks that could then affect transport, and, as we show, the space itself may be regulated by MAP content and intracellular pH.  相似文献   

7.
We have developed an in vitro assay for characterizing the binding of elements of the Golgi complex to microtubules. The binding assay comprises three distinct components, Golgi elements purified from Vero cells by subcellular fractionation, taxol-polymerized tubulin from bovine brain coupled to magnetic beads and cytosol from HeLa cells. Binding of Golgi elements to microtubules is quantitated by measuring the activity of the Golgi marker enzyme, galactosyltransferase, associated with the microtubule-coated beads retrieved with a magnet. In the presence of cytosol, 35 to 45% of the total input of galactosyltransferase activity (Golgi elements) bind to microtubules; only 3% of the Golgi elements bind to microtubules, however, in the absence of cytosolic factors. This binding is saturable at a cytosol concentration of approximately 5 mg/ml or at a high input of Golgi elements. Cytosol-stimulated binding of Golgi elements to microtubules is decreased to less than 15% when cytosol is pretreated with 2 mM N-ethylmaleimide (NEM) and it is abolished when cytosolic proteins are inactivated by heat or when microtubules have been coated with heat-stable microtubule-associated proteins (MAPs). Trypsinization of the membranes of the Golgi elements abolishes their ability to bind to microtubules. Furthermore, inactivation of cytoplasmic dynein by UV/vanadate treatment does not affect the binding. This suggests that the interaction of Golgi elements with microtubules depends on NEM-sensitive cytosolic factors and membrane-associated receptors, but not on the microtubule-based motor protein cytoplasmic dynein.  相似文献   

8.
Assembly of brain microtubule proteins isolated from the Atlantic cod, Gadus morhua, was found to be much less sensitive to colchicine than assembly of bovine brain microtubules, which was completely inhibited by low colchicine concentrations (10 microM). The degree of disassembly by colchicine was also less for cod microtubules. The lack of colchicine effect was not caused by a lower affinity of colchicine to cod tubulin, as colchicine bound to cod tubulin with a dissociation constant, Kd, and a binding ratio close to that of bovine tubulin. Cod brain tubulin was highly acetylated and mainly detyrosinated, as opposed to bovine tubulin. When cod tubulin, purified by means of phosphocellulose chromatography, was assembled by addition of DMSO in the absence of microtubule-associated proteins (MAPs), the microtubules became sensitive to low concentrations of colchicine. They were, however, slightly more stable to disassembly, indicating that posttranslational modifications induce a somewhat increased stability to colchicine. The stability was mainly MAPs dependent, as it increased markedly in the presence of MAPs. The stability was not caused by an extremely large amount of cod MAPs, since there were slightly less MAPs in cod than in bovine microtubules. When "hybrid" microtubules were assembled from cod tubulin and bovine MAPs, these microtubules became less sensitive to colchicine. This was not a general effect of MAPs, since bovine MAPs did not induce a colchicine stability of microtubules assembled from bovine tubulin. We can therefore conclude that MAPs can induce colchicine stability of colchicine labile acetylated tubulin.  相似文献   

9.
Revealing high-resolution structures of microtubule-associated proteins (MAPs) is critical for understanding their fundamental roles in various cellular activities, such as cell motility and intracellular cargo transport. Nevertheless, large flexible molecular motors that dynamically bind and release microtubule networks are challenging for cryo-electron microscopy (cryo-EM). Traditional structure determination of MAPs bound to microtubules needs alignment information from the reconstruction of microtubules, which cannot be readily applied to large MAPs without a fixed binding pattern. Here, we developed a comprehensive approach to estimate the microtubule networks (multi-curve fitting), model the tubulin-lattice signals, and remove them (tubulin-lattice subtraction) from the raw cryo-EM micrographs. The approach does not require an ordered binding pattern of MAPs on microtubules, nor does it need a reconstruction of the microtubules. We demonstrated the capability of our approach using the reconstituted outer-arm dynein (OAD) bound to microtubule doublets. The tubulin-lattice subtraction improves the OAD alignment, thus leading to high-resolution reconstructions. In addition, the multi-curve fitting approach provides an accurate automatic alternative method to pick or segment filaments in 2D images and potentially in 3D tomograms. The accuracy of our approach has been demonstrated by using several other biological filaments. Our work provides a new tool to determine high-resolution structures of large MAPs bound to curved microtubule networks.  相似文献   

10.
《The Journal of cell biology》1987,105(3):1273-1282
We observe that one of the high molecular mass microtubule-associated proteins (MAPs) from brain exhibits nucleotide-dependent binding to microtubules. We identify the protein as MAP IC, which was previously described in this laboratory as a minor component of standard microtubule preparations (Bloom, G.S., T. Schoenfeld, and R.B. Vallee, 1984, J. Cell Biol., 98:320-330). We find that MAP 1C is enriched in microtubules prepared in the absence of nucleotide. Kinesin is also found in these preparations, but can be specifically extracted with GTP. A fraction highly enriched in MAP 1C can be prepared by subsequent extraction of the microtubules with ATP. Two activities cofractionate with MAP 1C upon further purification, a microtubule-activated ATPase activity and a microtubule-translocating activity. These activities indicate a role for the protein in cytoplasmic motility. MAP 1C coelectrophoreses with the beta heavy chain of Chlamydomonas flagellar dynein, and has a sedimentation coefficient of 20S. Exposure to ultraviolet light in the presence of vanadate and ATP results in the production of two large fragments of MAP 1C. These characteristics suggest that MAP 1C may be a cytoplasmic analogue of axonemal dynein.  相似文献   

11.
Z Wang  S Khan    M P Sheetz 《Biophysical journal》1995,69(5):2011-2023
Cytoplasmic dynein is a major microtubule motor for minus-end directed movements including retrograde axonal transport. To better understand the mechanism by which cytoplasmic dynein converts ATP energy into motility, we have analyzed the nanometer-level displacements of latex beads coated with low numbers of cytoplasmic dynein molecules. Cytoplasmic dynein-coated beads exhibited greater lateral movements among microtubule protofilaments (ave. 5.1 times/microns of displacement) compared with kinesin (ave. 0.9 times/micron). In addition, dynein moved rearward up to 100 nm over several hundred milliseconds, often in correlation with off-axis movements from one protofilament to another. We suggest that single molecules of cytoplasmic dynein move the beads because 1) there is a linear dependence of bead motility on dynein/bead ratio, 2) the binding of beads to microtubules studied by laser tweezers is best fit by a first-order Poisson, and 3) the run length histogram of dynein beads follows a first-order decay. At the cellular level, the greater disorder of cytoplasmic dynein movements may facilitate transport by decreasing the duration of collisions between kinesin and cytoplasmic dynein-powered vesicles.  相似文献   

12.
Cytoplasmic dynein is the major molecular motor involved in minus-end-directed cellular transport along microtubules. There is increasing evidence that the retrograde transport of herpes simplex virus type 1 along sensory axons is mediated by cytoplasmic dynein, but the viral and cellular proteins involved are not known. Here we report that the herpes simplex virus outer capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and is sufficient to mediate retrograde transport of viral capsids in a cellular model. A library of herpes simplex virus capsid and tegument structural genes was constructed and tested for interactions with dynein subunits in a yeast two-hybrid system. A strong interaction was detected between VP26 and the homologous 14-kDa dynein light chains RP3 and Tctex1. In vitro pull-down assays confirmed binding of VP26 to RP3, Tctex1, and intact cytoplasmic dynein complexes. Recombinant herpes simplex virus capsids were constructed either with or without VP26. In pull-down assays VP26+ capsids bound to RP3; VP26-capsids did not. To investigate intracellular transport, the recombinant viral capsids were microinjected into living cells and incubated at 37 degrees C. After 1 h VP26+ capsids were observed to co-localize with RP3, Tctex1, and microtubules. After 2 or 4 h VP26+ capsids had moved closer to the cell nucleus, whereas VP26-capsids remained in a random distribution. We propose that VP26 mediates binding of incoming herpes simplex virus capsids to cytoplasmic dynein during cellular infection, through interactions with dynein light chains.  相似文献   

13.
Dynein was obtained by high salt extraction of Tetrahymena cilia and purified by DEAE-Sephacel chromatography. This fraction consisted of a mixture of 30 S dynein (80%) and the 14 S ATPase (15%). The column purification effectively removed tubulin and adenylate kinase. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the 30 S dynein was composed of a major heavy chain (approximately 400 kD, three copies), three intermediate chains (70, 85, and 100 kD), and a group of light chains (approximately 20 kD). The binding of the column-purified dynein to bovine brain microtubules was characterized as follows. (i) Titration of the dynein with microtubules showed a linear increase in turbidity up to an equivalence point of 2.7 mg of dynein/mg of tubulin with apparently tight binding; (ii) the addition of ATP caused the turbidity of the solution of decrease to a level equal to the sum of free dynein plus microtubules; (iii) transmission electron microscopy indicated that microtubules were decorated with dynein arms spaced at a 24-nm longitudinal repeat and that the dynein decoration was removed upon addition of ATP; (iv) cross-section images of microtubules that were saturated with dynein showed six to seven dynein arms around a microtubule consisting of 14 protofilaments, corresponding to a molar ratio of one dynein/six tubulin dimers; (v) the dynein arms were bound primarily by their broader end which corresponds to the end normally bound to the B-subfiber in vivo. Experiments with purified 30 and 14 S dyneins indicated that the dynein-microtubule binding activity and the ATP-induced dissociation were the properties of the 30 S dynein alone. These studies demonstrate that the 30 S dynein under our conditions (50 mM PIPES, pH 6.96, 4 mM MgSO4) interacts with bovine brain microtubules through the ATP-sensitive site of the dynein arm.  相似文献   

14.
Dynein isolated from ciliary axonemes of Tetrahymena is shown to bind in a characteristic fashion as arms to microtubules dissected from the nutritive tubes of insect ovarioles. The microtubules in nutritive tubes are associated with the transport of cytoplasmic components along their length, and the significance of their ability to bind axonemal dynein, to the possibility that microtubule/dynein interactions are involved in microtubule-associated movements, generally, is discussed.  相似文献   

15.
Michi Miura 《FEBS letters》2010,584(11):2351-2355
We visualized the nucleotide-dependent behavior of single molecules of mammalian native cytoplasmic dynein using fragments of dynactin p150 with or without its N-terminal microtubule binding domain. The results indicate that the binding affinity of dynein for microtubules is high in AMP-PNP, middle in ADP or no nucleotide, and low in ADP·Pi conditions. It is also demonstrated that the microtubule binding domain of dynactin p150 maintains the association of dynein with microtubules without altering the motile property of dynein in the weak binding state. In addition, we observed bidirectional movement of dynein in the presence of ATP as well as in ADP/Vi condition, suggesting that the bidirectional movement is driven by diffusion rather than active transport.  相似文献   

16.
A method is described for measuring the quantities of stable and dynamic microtubules in a population in vitro. The method exploits the tendency of dynamic microtubules to depolymerize rapidly after being sheared. Stable microtubules, such as those protected by microtubule-associated proteins (MAPs), are broken to a smaller size by shearing, but do not depolymerize into subunits. The usual difficulty with this procedure is that the tubulin released from the dynamic microtubules rapidly repolymerizes before the end point of depolymerization can be measured. This has been overcome by including a small quantity of tubulin-colchicine complex in the mixture to block the repolymerization. For a total of 24 microM tubulin in a polymerization mixture, 10 microM of the sample polymerized originally under the conditions used. When 1.05 microM tubulin-colchicine complex was added at the time of shearing, the dynamic microtubules depolymerized, but the tubulin was released was unable to repolymerize and a small fraction of stable microtubules that resisted shear-induced depolymerization could then be detected. When traces of MAPs (0.23-2.8% by mass) were included in the tubulin mixture, the fraction of stable microtubules increased from 5% in the absence of added MAPs to 41% in the presence of 2.8% MAPs. All the MAPs in the mixture were found in the stable fraction and this stable fraction forms early during microtubule assembly. Calculations on the extent of enrichment of MAPs in the stable fraction indicated that as little as 4% MAPs in a microtubule protected it from shear-induced disassembly. The results suggest that low levels of MAPs may distribute nonrandomly in the microtubule population.  相似文献   

17.
Microtubules undergo alternating periods of growth and shortening, known as dynamic instability. These dynamics allow microtubule plus ends to explore cellular space. The "search and capture" model posits that selective anchoring of microtubule plus ends at the cell cortex may contribute to cell polarization, spindle orientation, or targeted trafficking to specific cellular domains. Whereas cytoplasmic dynein is primarily known as a minus-end-directed microtubule motor for organelle transport, cortically localized dynein has been shown to capture and tether microtubules at the cell periphery in both dividing and interphase cells. To explore the mechanism involved, we developed a minimal in vitro system, with dynein-bound beads positioned near microtubule plus ends using an optical trap. Dynein induced a significant reduction in the lateral diffusion of microtubule ends, distinct from the effects of other microtubule-associated proteins such as kinesin-1 and EB1. In assays with dynamic microtubules, dynein delayed barrier-induced catastrophe of microtubules. This effect was ATP dependent, indicating that dynein motor activity was required. Computational modeling suggests that dynein delays catastrophe by exerting tension on individual protofilaments, leading to microtubule stabilization. Thus, dynein-mediated capture and tethering of microtubules at the cortex can lead to enhanced stability of dynamic plus ends.  相似文献   

18.
E Hamel  C M Lin 《Biochemistry》1984,23(18):4173-4184
A new method for separating microtubule-associated proteins (MAPs) and tubulin, appropriate for relatively large-scale preparations, was developed. Most of the active tubulin was separated from the MAPs by centrifugation after selective polymerization of the tubulin was induced with 1.6 M 2-(N-morpholino)ethanesulfonate (Mes) and GTP. The MAPs-enriched supernatant was concentrated and subsequently clarified by prolonged centrifugation. The supernatant (total soluble MAPs) contained almost no tubulin, most of the nucleosidediphosphate kinase activity of the microtubule protein, good activity in promoting microtubule assembly in 0.1 M Mes, and proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The pellet, inactive in supporting microtubule assembly, contained denatured tubulin, most of the ATPase activity of the microtubule protein, and significant amounts of protein with the electrophoretic mobility of MAP-2. Insoluble material at this and all previous stages, including the preparation of the microtubule protein, could be heat extracted to yield soluble protein active in promoting microtubule assembly and containing MAP-2 as a major constituent. The total soluble MAPs were further purified by DEAE-cellulose chromatography into bound and unbound components, both of which induced microtubule assembly. The bound component (DEAE-MAPs) contained proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The polymerization reaction induced by the unbound component (flow-through MAPs) produced very high turbidity readings. This was caused by the formation of bundles of microtubules. Although the flow-through MAPs contained significantly more ATPase, tubulin-independent GTPase, and, especially, nucleosidediphosphate kinase activity than the DEAE-MAPs, preparation of a MAPs fraction without these enzymes required heat treatment.  相似文献   

19.
This review summarizes the data describing the role of cellular microtubules in transportation of membrane vesicles — transport containers for secreted proteins or lipids. Most events of early vesicular transport in animal cells (from the endoplasmic reticulum to the Golgi apparatus and in the opposite recycling direction) are mediated by microtubules and microtubule motor proteins. Data on the role of dynein and kinesin in early vesicle transport remain controversial, probably because of the differentiated role of these proteins in the movements of vesicles or membrane tubules with various cargos and at different stages of secretion and retrograde transport. Microtubules and dynein motor protein are essential for maintaining a compact structure of the Golgi apparatus; moreover, there is a set of proteins that are essential for Golgi compactness. Dispersion of ribbon-like Golgi often occurs under physiological conditions in interphase cells. Golgi is localized in the leading part of crawling cultured fibroblasts, which also depends on microtubules and dynein. The Golgi apparatus creates its own system of microtubules by attracting γ-tubulin and some microtubule-associated proteins to membranes. Molecular mechanisms of binding microtubule-associated and motor proteins to membranes are very diverse, suggesting the possibility of regulation of Golgi interaction with microtubules during cell differentiation. To illustrate some statements, we present our own data showing that the cluster of vesicles induced by expression of constitutively active GTPase Sar1a[H79G] in cells is dispersed throughout the cell after microtubule disruption. Movement of vesicles in cells containing the intermediate compartment protein ERGIC53/LMANI was inhibited by inhibiting dynein. Inhibiting protein kinase LOSK/SLK prevented orientation of Golgi to the leading part of crawling cells, but the activity of dynein was not inhibited according to data on the movement of ERGIC53/LMANI-marked vesicles.  相似文献   

20.
A cold-labile fraction of microtubules with unusual properties was isolated from the brain of the Atlantic cod (Gadus morhua). The yield was low, approximately six times lower than that for bovine brain microtubules. This was mainly caused by the presence of a large amount of cold-stable microtubules, which were not broken down during the disassembly step in the temperature-dependent assembly-disassembly isolation procedure and were therefore lost. The isolated cold-labile cod microtubules contained usually only a low amount of microtubule-associated proteins (MAPs). Three high molecular mass proteins were found, of which one was recognized as MAP2. Cod MAP2 differed from mammalian brain MAP2; it was not heat stable and had a slightly higher molecular mass. In contrast to mammalian MAPs, MAP1 was not found in the cold-labile fraction of microtubules. A new heat-labile MAP of higher molecular mass (400 kilodaltons) was however present, as well as a heat-stable protein of slightly lower molecular mass than MAP2. These MAPs showed similar tubulin-binding characteristics as bovine brain MAPs, since they coassembled with taxol-assembled bovine brain microtubules consisting of pure bovine tubulin. In spite of the fact that Ca2+ bound equally to cod and porcine tubulins, it did not inhibit cod microtubule assembly even at high concentrations (greater than 1 mM). In contrast, rings, spirals, and macrotubules were formed. The results show that there are major differences between this fraction of cod microtubules and microtubules from mammalian brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号