首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathway of propane-1,2-diol metabolism by a species of Flavobacterium able to grow on the diol as the sole source of carbon was influenced by the degree of aeration of the growth medium. Under strongly aerobic conditions the diol was exclusively catabolised to lactaldehyde by an initial diol oxidase, subsequently metabolised to pyruvate and then oxidised to CO2 by the tricarboxylic acid cyle. Under microaerophilic conditions some propane-1,2-diol was catabolised by the oxidase-initiated pathway, but some diol was alternatively catabolised by an inducible diol dehydrase to propionaldehyde and subsequently reduced to n-propanol as an end product of metabolism.  相似文献   

2.
Metabolism of ethylene glycol as the sole source of carbon by a species of Flavobacterium was affected by the dissolved oxygen tension of the growth medium. Under strongly aerobic conditions the diol was exclusively metabolised to glycollate by an initial oxidase, subsequently metabolised to acetyl-CoA with no net change in ATP, and then oxidised to CO2, by the tricarboxylic acid cycle yielding large amounts of reduced nicotinamide nucleotides which were used to generate a net gain in ATP by oxidative phospsorylation. Under miccroaerophilic conditions, some ethylene glycol after initial metabolism to acetyl-CoA by the oxidase-initiated pathway, was subsequently catabolised to acetyl phosphate and then acetate, yielding a net gain in ATP by substrate-level phosphorylation: additionally some diol was catabolised by an inducible diol dehydratase to acetaldehyde and subsequently reduced to ethanol as a terminal metabolite.  相似文献   

3.
Recombinant glycerol dehydratase of Klebsiella pneumoniae was purified to homogeneity. The subunit composition of the enzyme was most probably alpha 2 beta 2 gamma 2. When (R)- and (S)-propane-1,2-diols were used independently as substrates, the rate with the (R)-enantiomer was 2.5 times faster than that with the (S)-isomer. In contrast to diol dehydratase, an isofunctional enzyme, the affinity of the enzyme for the (S)-isomer was essentially the same or only slightly higher than that for the (R)-isomer (Km(R)/Km(S) = 1.5). The crystal structure of glycerol dehydratase in complex with cyanocobalamin and propane-1,2-diol was determined at 2.1 A resolution. The enzyme exists as a dimer of the alpha beta gamma heterotrimer. Cobalamin is bound at the interface between the alpha and beta subunits in the so-called 'base-on' mode with 5,6-dimethylbenzimidazole of the nucleotide moiety coordinating to the cobalt atom. The electron density of the cyano group was almost unobservable, suggesting that the cyanocobalamin was reduced to cob(II)alamin by X-ray irradiation. The active site is in a (beta/alpha)8 barrel that was formed by a central region of the alpha subunit. The substrate propane-1,2-diol and essential cofactor K+ are bound inside the (beta/alpha)8 barrel above the corrin ring of cobalamin. K+ is hepta-coordinated by the two hydroxyls of the substrate and five oxygen atoms from the active-site residues. These structural features are quite similar to those of diol dehydratase. A closer contact between the alpha and beta subunits in glycerol dehydratase may be reminiscent of the higher affinity of the enzyme for adenosylcobalamin than that of diol dehydratase. Although racemic propane-1,2-diol was used for crystallization, the substrate bound to glycerol dehydratase was assigned to the (R)-isomer. This is in clear contrast to diol dehydratase and accounts for the difference between the two enzymes in the susceptibility of suicide inactivation by glycerol.  相似文献   

4.
The metabolism of a lignin substructure model compound, 1,2-bis(3-methoxy-4-ethoxyphenyl)propane-1,3-diol (Ia) in ligninolytic cultures of Phanerochaete chrysosporium was studied to help elucidate the biochemical mechanism of lignin degradation. The primary reaction was cleavage of the model compound between C1 and C2 of the propane moiety to produce 1-(3-methoxy-4-ethoxyphenyl)ethane-1,2-diol and a C6-C1 product (probably 3-methoxy-4-ethoxybenzaldehyde). Other identified products arose secondarily; all were further metabolized. Even though the model compound was a mixture of four stereoisomers, no stereoselectivity was observed in its metabolism. In cultures under 18O2, the initial cleavage produced the diol product with ≈70% enrichment by 18O in the benzyl alcohol group. The diol was a mixture of the two possible enantiomers, and the O2-derived hydroxyl was incorporated at the asymmetric (benzyl) carbon. (Limited optical activity in the diol was traced to selective further metabolism of the D form.) These results show that the primary cleavage reaction lacked stereospecificity and was primarily oxygenative, implicating a nonspecific oxygenase or a nonenzymatic reaction involving activated oxygen. Preliminary experiments demonstrated no cell homogenate activity against Ia.  相似文献   

5.
Any method of cryopreservation of the cornea must maintain integrity of the corneal endothelium, a monolayer of cells on the inner surface of the cornea that controls corneal hydration and keeps the cornea thin and transparent. During freezing, the formation of ice damages the endothelium, and vitrification has been suggested as a means of achieving ice-free cryopreservation of the cornea. To achieve vitrification at practicable cooling rates, tissues must be equilibrated with high concentrations of cryoprotectants. In this study, the effects of propane-1,2-diol on the structure and function of rabbit corneal endothelium were studied. Corneas were exposed to concentrations of propane-1,2-diol ranging from 10 to 30% v/v in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, and 6% w/v bovine serum albumin. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 hr. Exposure to 10-15% v/v propane-1,2-diol was well tolerated for 20 min at 4 degrees C when the cryoprotectant was removed in steps or by sucrose dilution. However, exposure to 25% v/v propane-1,2-diol for 20 min at 0 or -5 degrees C was consistently tolerated only when 2.5% w/v chondroitin sulfate was included in the vehicle solution. Exposure to 30% v/v propane-1,2-diol was harmful at -5 and -10 degrees C. The endothelial damage following exposure to 30% v/v propane-1,2-diol was probably the result of a toxic effect rather than osmotic stress. Although 25% v/v propane-1,2-diol does not vitrify at cooling rates that are practicable for corneas, it could at this concentration form a major component of a vitrification solution comprising a mixture of cryoprotectants.  相似文献   

6.
The metabolically versatile Rhodococcus sp. strain DK17 is able to grow on tetralin and indan but cannot use their respective desaturated counterparts, 1,2-dihydronaphthalene and indene, as sole carbon and energy sources. Metabolite analyses by gas chromatography-mass spectrometry and nuclear magnetic resonance spectrometry clearly show that (i) the meta-cleavage dioxygenase mutant strain DK180 accumulates 5,6,7,8-tetrahydro-1,2-naphthalene diol, 1,2-indene diol, and 3,4-dihydro-naphthalene-1,2-diol from tetralin, indene, and 1,2-dihydronaphthalene, respectively, and (ii) when expressed in Escherichia coli, the DK17 o-xylene dioxygenase transforms tetralin, indene, and 1,2-dihydronaphthalene into tetralin cis-dihydrodiol, indan-1,2-diol, and cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene, respectively. Tetralin, which is activated by aromatic hydroxylation, is degraded successfully via the ring cleavage pathway to support growth of DK17. Indene and 1,2-dihydronaphthalene do not serve as growth substrates because DK17 hydroxylates them on the alicyclic ring and further metabolism results in a dead-end metabolite. This study reveals that aromatic hydroxylation is a prerequisite for proper degradation of bicyclics with aromatic and alicyclic rings by DK17 and confirms the unique ability of the DK17 o-xylene dioxygenase to perform distinct regioselective hydroxylations.  相似文献   

7.
《Phytochemistry》1999,52(7):1307-1312
A phenylpropanoid, threo-3-chloro-1-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol, was isolated from the berries of Pimenta dioica together with five known compounds, eugenol, 4-hydroxy-3-methoxycinnamaldehyde, 3,4-dimethoxycinnamaldehyde, vanillin and 3-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol. In addition, the stereochemistry of 3-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol was determined. The phenylpropanoids inhibited autoxidation of linoleic acid in a water-alcohol system.  相似文献   

8.
Corneal tolerance of vitrifiable concentrations of propane-1,2-diol   总被引:4,自引:0,他引:4  
S J Rich  W J Armitage 《Cryobiology》1991,28(2):159-170
The merit of corneal cryopreservation by vitrification as opposed to conventional freezing is the avoidance of ice damage which is believed to disrupt the integrity of the corneal endothelium resulting in loss of corneal transparency. The cornea must be equilibrated with high concentrations of cryoprotectant in order to achieve vitrification at practicable cooling rates. In an earlier study, corneas were exposed to 3.4 mol/liter propane-1,2-diol (Rich and Armitage (1990) Cryobiology 27, 42-54). The present study exposed rabbit corneas to concentrations of propane-1,2-diol between 3.4 and 5.4 mol/liter in a Hepes-buffered Ringer's solution containing glutathione, adenosine, 5 mmol/liter sodium bicarbonate, 6% (w/v) bovine serum albumin, and 2.5% (w/v) dextran sulfate. Dextran sulfate was as effective as chondroitin sulfate at improving endothelial tolerance of 3.4 mol/liter propane-1,2-diol. This beneficial effect may be linked to the polyanionic nature of these molecules. Corneas exposed to 5.4 mol/liter propane-1,2-diol were cooled in liquid nitrogen vapor at a temperature of -140 degrees C for 2 h. Warming was achieved by direct transfer to a dilution solution at -10 degrees C. Endothelial function was assessed by monitoring corneal thickness during perfusion of the endothelial surface at 34 degrees C for 6 h. Endothelial structure was observed by specular microscopy during the perfusion and by scanning electron microscopy after perfusion. Corneas tolerated exposure to 3.4 mol/liter propane-1,2-diol for 20 min at 0 degrees C and to 4.1 mol/liter for 10 min at -10 degrees C. Exposure to 4.8 and 5.4 mol/liter for 10 min at -10 degrees C caused endothelial damage, although a degree of endothelial function was retained. Function following exposure to 5.4 mol/liter was improved by reducing the temperature of exposure to -15 degrees C. Corneas cooled after exposure to 5.4 mol/liter propane-1,2-diol for 10 min at -15 degrees C apparently vitrified, but devitrified on warming. The corneas swelled to such an extent during perfusion that the endothelium could not be viewed by specular microscopy, subsequent scanning electron microscopy showed a severely disrupted endothelium.  相似文献   

9.
Aims:  The metabolism of phenanthrene and anthracene by a moderate thermophilic Nocardia otitidiscaviarum strain TSH1 was examined.
Methods and Results:  When strain TSH1 was grown in the presence of anthracene, four metabolites were identified as 1,2-dihydroxy-1,2-dihydroanthracene, 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid, 2,3-dihydroxynaphthalene and benzoic acid using gas chromatography-mass spectrometry (GC-MS), reverse phase-high performance liquid chromatography (RP-HPLC) and thin-layer chromatography (TLC). Degradation studies with phenanthrene revealed 2,2'-diphenic acid, phthalic acid, 4-hydroxyphenylacetic acid, o -hydroxyphenylacetic acid, benzoic acid, a phenanthrene dihydrodiol, 4-[1-hydroxy(2-naphthyl)]-2-oxobut-3-enoic acid and 1-hydroxy-2-naphthoic acid (1H2NA), as detectable metabolites.
Conclusions:  Strain TSH1 initiates phenanthrene degradation via dioxygenation at the C-3 and C-4 or at C-9 and C-10 ring positions. Ortho -cleavage of the 9,10-diol leads to formation of 2,2'-diphenic acid. The 3,4-diol ring is cleaved to form 1H2NA which can subsequently be degraded through o -phthalic acid pathway. Benzoate does not fit in the previously published pathways from mesophiles. Anthracene metabolism seems to start with a dioxygenation at the 1 and 2 positions and ortho -cleavage of the resulting diol. The pathway proceeds probably through 2,3-dicarboxynaphthalene and 2,3-dihydroxynaphthalene. Degradation of 2,3-dihydroxynaphthalene to benzoate and transformation of the later to catechol is a possible route for the further degradation of anthracene.
Significance and Impact of the Study:  For the first time, metabolism of phenanthrene and anthracene in a thermophilic Nocardia strain was investigated.  相似文献   

10.
Enantioselective acetylation (desymmetrization) of prochiral 2-(ferrocenylmethyl)propane-1,2-diol (1), 2-(2-ferrocenylethyl)propane-1,2-diol (2) and 2-(3-ferrocenylpropyl)propane-1,2-diol (3) into chiral monoacetates [(+)-4-(+)-6], with a series of microbial lipases in benzene at 27°C, revealed the lipase from Pseudomonas sp (PSL) as the most selective. Acetylation was fastest and most enantioselective for conversion 1→(+)-4 by PSL (97% e.e.). By comparison of the compounds (+)-4-(+)-6 with their benzene analogues of the known (R) absolute configuration, on the basis of their elution orders on Chiracel OD, and the same direction of their optical rotations, an R-configuration is proposed for (+)-monoacetates 4-6.  相似文献   

11.
Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2–3% of the sugar fermented is converted to glycerol. Replacing the NAD+-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD+ by transforming a double mutant (gpd1gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD+ regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.  相似文献   

12.
Enantioselective acetylation (desymmetrization) of prochiral 2-(ferrocenylmethyl)propane-1,2-diol (1), 2-(2-ferrocenylethyl)propane-1,2-diol (2) and 2-(3-ferrocenylpropyl)propane-1,2-diol (3) into chiral monoacetates [(+)-4-(+)-6], with a series of microbial lipases in benzene at 27°C, revealed the lipase from Pseudomonas sp (PSL) as the most selective. Acetylation was fastest and most enantioselective for conversion 1→(+)-4 by PSL (97% e.e.). By comparison of the compounds (+)-4-(+)-6 with their benzene analogues of the known (R) absolute configuration, on the basis of their elution orders on Chiracel OD, and the same direction of their optical rotations, an R-configuration is proposed for (+)-monoacetates 4–6.  相似文献   

13.
Strain DCL14, which is able to grow on limonene as a sole source of carbon and energy, was isolated from a freshwater sediment sample. This organism was identified as a strain of Rhodococcus erythropolis by chemotaxonomic and genetic studies. R. erythropolis DCL14 also assimilated the terpenes limonene-1,2-epoxide, limonene-1,2-diol, carveol, carvone, and (-)-menthol, while perillyl alcohol was not utilized as a carbon and energy source. Induction tests with cells grown on limonene revealed that the oxygen consumption rates with limonene-1,2-epoxide, limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and carveol were high. Limonene-induced cells of R. erythropolis DCL14 contained the following four novel enzymatic activities involved in the limonene degradation pathway of this microorganism: a flavin adenine dinucleotide- and NADH-dependent limonene 1, 2-monooxygenase activity, a cofactor-independent limonene-1, 2-epoxide hydrolase activity, a dichlorophenolindophenol-dependent limonene-1,2-diol dehydrogenase activity, and an NADPH-dependent 1-hydroxy-2-oxolimonene 1,2-monooxygenase activity. Product accumulation studies showed that (1S,2S,4R)-limonene-1,2-diol, (1S, 4R)-1-hydroxy-2-oxolimonene, and (3R)-3-isopropenyl-6-oxoheptanoate were intermediates in the (4R)-limonene degradation pathway. The opposite enantiomers [(1R,2R,4S)-limonene-1,2-diol, (1R, 4S)-1-hydroxy-2-oxolimonene, and (3S)-3-isopropenyl-6-oxoheptanoate] were found in the (4S)-limonene degradation pathway, while accumulation of (1R,2S,4S)-limonene-1,2-diol from (4S)-limonene was also observed. These results show that R. erythropolis DCL14 metabolizes both enantiomers of limonene via a novel degradation pathway that starts with epoxidation at the 1,2 double bond forming limonene-1,2-epoxide. This epoxide is subsequently converted to limonene-1,2-diol, 1-hydroxy-2-oxolimonene, and 7-hydroxy-4-isopropenyl-7-methyl-2-oxo-oxepanone. This lactone spontaneously rearranges to form 3-isopropenyl-6-oxoheptanoate. In the presence of coenzyme A and ATP this acid is converted further, and this finding, together with the high levels of isocitrate lyase activity in extracts of limonene-grown cells, suggests that further degradation takes place via the beta-oxidation pathway.  相似文献   

14.
Styrene and 1,3-butadiene are important intermediates used extensively in the plastics industry. They are metabolized mainly through cytochrome P450-mediated oxidation to the corresponding epoxides, which are subsequently converted to diols by epoxide hydrolase or through spontaneous hydration. The resulting styrene glycol and 3-butene-1,2-diol have been suggested as biomarkers of exposure to styrene and 1,3-butadiene, respectively. Unfortunately, poor ionization of the diols within electrospray mass spectrometers becomes an obstacle to the detection of the two diols by liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS). We developed an LC/ESI-MS approach to analyze styrene glycol and 3-butene-1,2-diol by means of derivatization with 2-bromopyridine-5-boronic acid (BPBA), which not only dramatically increases the sensitivity of diol detection but also facilitates the identification of the diols. The analytical approach developed was simple, quick, and convincing without the need for complicated chemical derivatization. To evaluate the feasibility of BPBA as a derivatizing reagent of diols, we investigated the impact of diol configuration on the affinity of a selection of diols to BPBA using the established LC/ESI-MS approach. We found that both cis and trans diols can be derivatized by BPBA. In conclusion, BPBA may be used as a general derivatizing reagent for the detection of vicinal diols by LC/MS.  相似文献   

15.
The effect of ferric and manganese ions on the in vitro metabolism of benzo(a)pyrene (BP) to dihydrodihydroxy (diol) metabolites by rat liver microsomal preparations was studied. Of the 3 diols separated by high-pressure liquid chromatography (HPLC) and called diols 1, 2 and 3 in order of elution, diol 1 was identified by its U.V. spectrum as the 9,10-diol; diols 2 and 3 have not yet been identified positively but are probably the 4,5- and 7,8-diols respectively. Higher concentrations of both metals altered the diol profile; 10 and 50 mumol Fe3+ per incubation caused the disappearance of diols 1 and 2 and an increase in diol 3; 10 mumol Mn2+ caused a significant decrease in diol 2 while 50 mumol reduced diol 2 to a negligible amount and inhibited the formation of diol 1; both concentrations caused a relative increase in diol 3. If the tentative identification of diol 3 as the 7,8-diol is correct, manganese and ferric ions could be significant in the metabolism of BP to the active metabolite, the 7,8-diol-9,10-epoxide.  相似文献   

16.
The effect on rats of oral doses (38.66 mM/kg body wt) of propane-1,2-diol (PD) administered daily for 10 (Group 1), 20 (Group 2), and 30 days (Group 3) was investigated. Weight gain was initially retarded (P less than 0.05) in Group 1, but was later reversed and elevated significantly (P less than 0.05) in Groups 2 and 3 as compared with their respective controls receiving an equal volume of saline. PD showed a tendency toward enhancing the activities of various enzymes involved in terminal digestion, with the significant effect exerted in few groups on sucrase (P less than 0.05), lactase (P less than 0.05), and gamma-glutamyl transpeptidase (P less than 0.05) when compared with the respective controls. Absorption of D-glucose, glycine, L-aspartic acid, L-lysine, and calcium was elevated and was especially significant in Groups 2 and 3 (P less than 0.001). The structural integrity of the jejunal surface was retained for the most part. A similar examination of the effects of PD was also carried out in vitro to ascertain whether PD itself or its metabolites are involved in its action. The in vitro effects of propane-1,2-diol were compared with those of the more toxic compound propane-1,3-diol. The former exerted greater inhibitory action on the activities of the disaccharidases. The degree of inhibition was in the order sucrase much greater than lactase greater than maltase. The kinetic data revealed that inhibition by 1,2-diol in native and detergent solubilized sucrase is noncompetitive, with Ki values in the range of 0.35-0.41 M. The two diols did not alter the nutrient transport in the brush border membrane vesicles. The present work on rats indicates that PD may influence the intestinal digestive and absorptive functions in vivo and that this in vivo effect of PD is different from that observed in vitro suggesting that the nutritional and toxicological effect of PD may be mediated by different mechanisms.  相似文献   

17.
The transformation of three monocyclic terpenes by three soil microorganisms have been studied. The organisms were isolated on, and grew rapidly in, mineral salts medium containing the appropriate terpene substrates as sole carbon sources. These organisms belong to the class Fungi Imperfecti, and two of them have been tentatively identified as Cladosporium species. A Cladosporium species designated T1 was isolated from terpene-soaked soil, using 1-menthene as the sole source of carbon. The major catabolic product isolated from the growth medium of this organism was found to be a cyclic 1,2-diol identified as trans-p-methane-1,2-diol. A similar but biochemically distinct Cladosporium sp. designated T7 was isolated on D-limonene. After growth, the medium of this organism contained 1.5 g/liter of the analogous product, trans-limonene-1,2-diol. Minor quantities of the corresponding cis-1,2-diol were also isolated. The third organism, designated as laboratory culture T8, was isolated on 3-menthene and yielded a diol identified as trans-p-menthane-3,4-diol. From these results it is concluded that the formation of diols is a common intermediate in the fungal metabolism of monocyclic terpenes.  相似文献   

18.
Certain cytosine-rich (C-rich) DNA sequences can fold into secondary structures as four-stranded i-motifs with hemiprotonated base pairs. Here we synthesized C-rich TINA-intercalating oligonucleotides by inserting a nonnucleotide pyrene moiety between two C-rich regions. The stability of their i-motif structures was studied by using UV melting temperature measurements and circular dichroism spectra at different pH values under noncrowding and crowding conditions (20% poly(ethylene glycol)). When TINA ((R)-3-((4-(1-pyrenylethynyl)benzyl)oxy) propane-1,2-diol) is inserted, the oligonucleotides could form an i-motif at a higher pH than observed for the corresponding wildtype oligonucleotide.  相似文献   

19.
Superchi S  Scafato P  Restaino L  Rosini C 《Chirality》2008,20(3-4):592-596
The effects of the substitution on the aryl moiety on the asymmetric oxidation of sulfides mediated by Ti-complexes of chiral 1,2-diarylethane-1,2-diols were investigated. The substitution of the aryl ring of the diol with both EWG and EDG substituents generally decreased the enantioselectivity with respect to the use of unsubstituted 1,2-diphenylethane-1,2-diol (1a). Only in the presence of 1,2-di(4-t-butyl)phenyl-1,2-diol (1g) were higher ee's obtained with aryl methyl and aryl benzyl sulfides affording ee's up to 90 and 99%, respectively. Lower ee's were achieved with larger naphthyl and aryl alkyl sulfides. Contrary to the other Ti-alcoholates used in the oxidation of sulfides, the Ti-complex of diol 1g was soluble in hexane, allowing us to perform the process with high enantioselectivity in this solvent, with great environmental advantages over the commonly used chlorinated solvents.  相似文献   

20.
We have examined the selectivity of rat liver microsomal epoxide hydrolase (EC 3.3.2.3) toward all of the possible positional isomers of benzo-ring diol epoxides and tetrahydroepoxides of benz[a]anthracene, as well as the 1,2-diol 3,4-epoxides of triphenylene. This set includes compounds with no bay region in the vicinity of the benzo-ring, a bay-region diol group, a bay-region epoxide group, and (for the triphenylene derivatives) both a bay-region diol and a bay-region epoxide. In all cases where both the tetrahydroepoxides and the corresponding diol epoxides were examined, there is a large retarding effect of hydroxyl substitution on the rate of the enzyme-catalyzed hydration. When the tetrahydroepoxides are fair or poor substrates (epoxide group in the 1,2-, 8,9-, or 10,11-position), the additional retardation introduced by adjacent hydroxyl groups causes the enzyme-catalyzed hydrolysis of the corresponding diol epoxides to be insignificantly slow or nonexistent. In contrast, a benz[a]anthracene derivative with an epoxide group in the 3,4-position, (-)-tetrahydrobenz[a]anthracene (3R,4S)-epoxide, has been identified as the best substrate known for epoxide hydrolase, with a Vmax at 37 degrees C and pH 8.4 of 6800 nmol/min/mg of protein, and the two diastereomeric (+/-)-benz[a]anthracene 1,2-diol 3,4-epoxides, unlike all the other diol epoxides examined to date, are moderately good substrates for epoxide hydrolase. This novel observation is accounted for by the fact that the very high reactivity of the tetrahydrobenz[a]anthracene 3,4-epoxide system towards epoxide hydrolase is large enough to overcome a kinetically unfavorable effect of hydroxyl substitution. The enantioselectivity and positional selectivity of the enzyme have been determined for the tetrahydro-1,2- and -3,4-epoxides of benz[a]anthracene as well as the 1,2-diol 3,4-epoxides. When the epoxide is located in the 3,4-position, the benzylic carbon is the preferred site of attack, whereas for the enantiomers of the bay-region tetrahydro-1,2-epoxides, the chemically less reactive non-benzylic carbon is preferred. The regio- and enantioselectivity of epoxide hydrolase are discussed in terms of a possible model for the hydrophobic binding site of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号