首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The chemokine receptor genes of the CCR cluster on human chromosome 3p21 play important roles in humoral and cellular immune responses. Several of these receptors have been shown to influence human immunodeficiency virus infection and progression to AIDS, and their homologues may play a role in feline immunodeficiency virus infection. We report the isolation and sequencing of a 150-kb domestic cat BAC clone containing the feline CCR genes CCR1, CCR2, CCR3, and CCR5 to further analyze these four receptor genes within the family Felidae. Comparative and phylogenetic analyses reveal evidence for historic gene conversion between the adjacent CCR2 and CCR5 genes in the Felidae and in three independent mammalian orders (Primates, Cetartiodactyla, and Rodentia), resulting in higher than expected levels of sequence similarity between the two paralogous genes within each order. The gene conversion was restricted to the structural (transmembrane) domains of the CCR2 and CCR5 genes. We also discovered a recent gene conversion event between the third extracellular loop of CCR2 and CCR5 genes that was fixed in Asian lions and found at low frequency in African lions (Panthera leo), suggesting that this domain may have an important functional role. Our results suggest that ongoing parallel gene conversion between CCR2 and CCR5 promotes receptor heterodimerization in independent evolutionary lineages and offers an effective adaptive strategy for gene editing and coevolution among interactive immune response genes in mammals.  相似文献   

3.
We have developed an elimination test to identify chromosomal regions that contain tumor inhibitory genes. Monochromosomal human/mouse microcell hybrids are generated and passaged through SCID mice. Derived tumors are then analyzed for deletions on the transgenomic chromosome. Using this strategy, we have previously identified a 1.6-cM common eliminated region 1 (CER1) on human 3p21. 3. We now report that CER1 contains 14 markers that are deleted in 19 SCID-derived tumors. A 1-Mb PAC contig that spans CER1 was assembled. Five chemokine receptor genes (CCR1, CCR3, CCR2, CCR5, and CCR6) were localized in CER1 in a 225-kb cluster. The lactotransferrin gene (LTF, or lactoferrin, LF), which reportedly has tumor inhibitory activity, also maps to CER1. Our results create a basis for characterization and further functional testing of genes within CER1.  相似文献   

4.
5.
We describe a small molecule chemokine receptor antagonist, UCB35625 (the trans-isomer J113863 published by Banyu Pharmaceutical Co., patent WO98/04554), which is a potent, selective inhibitor of CCR1 and CCR3. Nanomolar concentrations of UCB35625 were sufficient to inhibit eosinophil shape change responses to MIP-1alpha, MCP-4, and eotaxin, while greater concentrations could inhibit the chemokine-induced internalization of both CCR1 and CCR3. UCB35625 also inhibited the CCR3-mediated entry of the human immunodeficiency virus-1 primary isolate 89.6 into the glial cell line, NP-2 (IC(50) = 57 nm). Chemotaxis of transfected cells expressing either CCR1 or CCR3 was inhibited by nanomolar concentrations of the compound (IC(50) values of CCR1-MIP-1alpha = 9.6 nm, CCR3-eotaxin = 93.7 nm). However, competitive ligand binding assays on the same transfectants revealed that considerably larger concentrations of UCB35625 were needed for effective ligand displacement than were needed for the inhibition of receptor function. Thus, it appears that the compound may interact with a region present in both receptors that inhibits the conformational change necessary to initiate intracellular signaling. By virtue of its potency at the two major eosinophil chemokine receptors, UCB35625 is a prototypic therapy for the treatment of eosinophil-mediated inflammatory disorders, such as asthma and as an inhibitor of CCR3-mediated human immunodeficiency virus-1 entry.  相似文献   

6.
7.
8.
The aim of our study was to determine the effect of monocyte chemotactic protein-1 (MCP-1), CC chemokine receptor 2 (CCR2), and CC chemokine receptor 5 (CCR5) gene polymorphisms on the susceptibility and clinicopathological characteristics of prostate cancer. Genotyping was performed by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method in 156 histopathologically confirmed prostate cancer patients and 152 healthy subjects. Individuals with AA genotype or at least one A allele of CCR2 V64I gene polymorphism had a higher risk for prostate cancer as compared with those with GG genotype (p=0.010 and p=0.028, respectively). CCR5 Δ32/wt genotype and CCR5 Δ32 allele were also found to be involved in the susceptibility to prostate cancer (p=0.028 and p=0.030, respectively). However, there was no significant association between MCP-1-2518 A/G gene polymorphism and prostate cancer risk. Prostate cancer patients carrying AA genotype or at least one A allele of CCR2 V64I had significantly increased risk for high stage disease (p=0.002 and p=0.039, respectively) and metastasis (p=0.004 and p=0.022, respectively). The CCR2 A allele (64I allele) was significantly associated with high T stage (p=0.001) and metastasis (p=0.005) as compared with CCR2 G allele (64V allele). Our data indicate that gene polymorphism of CCR2 V64I may influence the susceptibility and clinicopathological characteristics of prostate cancer and CCR5 Δ32 allele may also be an important risk factor for prostate cancer in Turkish men population.  相似文献   

9.
Chemokine receptors belong to a class of integral membrane G-protein coupled receptors (GPCRs) and are responsible for transmitting signals from the extracellular environment. However, the structural changes in the receptor, connecting ligand binding to G-protein activation, remain elusive for most GPCRs due to the difficulty to produce them for structural and functional studies. We here report high-level production in E.coli of 4 human GPCRs, namely chemokine receptors (hCRs) CCR5, CCR3, CXCR4 and CX3CR1 that are directly involved in HIV-1 infection, asthma and cancer metastasis. The synthetic genes of CCR5, CCR3, CXCR4 and CX3CR1 were synthesized using a two-step assembly/amplification PCR method and inserted into two different kinds of expression systems. After systematic screening of growth conditions and host strains, TB medium was selected for expression of pEXP-hCRs. The low copy number pBAD-DEST49 plasmid, with a moderately strong promoter tightly regulated by L-arabinose, proved helpful for reducing toxicity of expressed membrane proteins. The synthetic Trx-hCR fusion genes in the pBAD-DEST49 vector were expressed at high levels in the Top10 strain. After a systematic screen of 96 detergents, the zwitterionic detergents of the Fos-choline series (FC9-FC16) emerged as the most effective for isolation of the hCRs. The FC14 was selected both for solubilization from bacterial lysates and for stabilization of the Trx-hCRs during purification. Thus, the FC-14 solubilized Trx-hCRs could be purified using size exclusion chromatography as monomers and dimers with the correct apparent MW and their alpha-helical content determined by circular dichroism. The identity of two of the expressed hCRs (CCR3 and CCR5) was confirmed using immunoblots using specific monoclonal antibodies. After optimization of expression systems and detergent-mediated purification procedures, we achieved large-scale, high-level production of 4 human GPCR chemokine receptor in a two-step purification, yielding milligram quantities of CCR5, CCR3, CXCR4 and CX3CR1 for biochemical, biophysical and structural analysis.  相似文献   

10.
Microglia are the main human immunodeficiency virus (HIV) reservoir in the central nervous system and most likely play a major role in the development of HIV dementia (HIVD). To characterize human adult microglial chemokine receptors, we analyzed the expression and calcium signaling of CCR5, CCR3, and CXCR4 and their roles in HIV entry. Microglia expressed higher levels of CCR5 than of either CCR3 or CXCR4. Of these three chemokine receptors, only CCR5 and CXCR4 were able to transduce a signal in microglia in response to their respective ligands, MIP-1β and SDF-1α, as recorded by single-cell calcium flux experiments. We also found that CCR5 is the predominant coreceptor used for infection of human adult microglia by the HIV type 1 dementia isolates HIV-1DS-br, HIV-1RC-br, and HIV-1YU-2, since the anti-CCR5 antibody 2D7 was able to dramatically inhibit microglial infection by both wild-type and single-round luciferase pseudotype reporter viruses. Anti-CCR3 (7B11) and anti-CXCR4 (12G5) antibodies had little or no effect on infection. Last, we found that virus pseudotyped with the DS-br and RC-br envelopes can infect cells transfected with CD4 in conjunction with the G-protein-coupled receptors APJ, CCR8, and GPR15, which have been previously implicated in HIV entry.  相似文献   

11.
12.
The chemokine receptors CCR5 and CXCR4 are used by human immunodeficiency virus type 1 (HIV-1) in conjunction with CD4 to infect cells. In addition, some virus strains can use alternative chemokine receptors, including CCR2b and CCR3, for infection. A polymorphism in CCR2 (CCR2-V64I) is associated with a 2- to 4-year delay in the progression to AIDS. To investigate the mechanism of this protective effect, we studied the expression of CCR2b and CCR2b-V64I, their chemokine and HIV-1 coreceptor activities, and their effects on the expression and receptor activities of the major HIV-1 coreceptors. CCR2b and CCR2b-V64I were expressed at similar levels, and neither molecule affected the expression or coreceptor activity of CCR3, CCR5, or CXCR4 in cotransfected cell lines. Peripheral blood mononuclear cells (PBMCs) from CCR2-V64I heterozygotes had normal levels of CCR2b and CCR5 but slightly reduced levels of CXCR4. CCR2b and CCR2b-V64I functioned equally well as HIV-1 coreceptors, and CCR2-V64I PBMCs were permissive for HIV-1 infection regardless of viral tropism. The MCP-1-induced calcium mobilization mediated by CCR2b signaling was unaffected by the polymorphism, but MCP-1 signaling mediated by either CCR2b- or CCR2-V64I-encoded receptors resulted in heterologous desensitization (i.e., limiting the signal response of other receptors) of both CCR5 and CXCR4. The heterologous desensitization of CCR5 and CXCR4 signaling by both CCR2 allele receptor types provides a mechanistic link that might help explain the in vivo effects of CCR2 gene variants on progression to AIDS as well as the reported antiviral activity of natural CCR2 ligands.  相似文献   

13.
The evolutionarily conserved PUF proteins stimulate CCR4 mRNA deadenylation through binding to 3′ untranslated region sequences of specific mRNA. We have investigated the mechanisms by which PUF3 in Saccharomyces cerevisiae accelerates deadenylation of the COX17 mRNA. PUF3 was shown to affect PAN2 deadenylation of the COX17 mRNA independent of the presence of CCR4, suggesting that PUF3 acts through a general mechanism to affect deadenylation. Similarly, eIF4E, the cap-binding translation initiation factor known to control CCR4 deadenylation, was shown to affect PAN2 activity in vivo. PUF3 was found to be required for eIF4E effects on COX17 deadenylation. Both eIF4E and PUF3 effects on deadenylation were shown, in turn, to necessitate a functional poly(A)-binding protein (PAB1) in which removal of the RRM1 (RNA recognition motif 1) domain of PAB1 blocked both their effects on deadenylation. While removal of the proline-rich region (P domain) of PAB1 substantially reduces CCR4 deadenylation at non-PUF3-controlled mRNA and correspondingly blocked eIF4E effects on deadenylation, PUF3 essentially bypassed this P domain requirement. These results indicate that the PAB1-mRNP structure is critical for PUF3 action. We also found that multiple components of the CCR4-NOT deadenylase complex, but not PAN2, interacted with PUF3. PUF3 appears, therefore, both to act independently of CCR4 activity, possibly through effects on PAB1-mRNP structure, and to be capable of retaining the CCR4-NOT complex.  相似文献   

14.
HIV-1 variants resistant to small molecule CCR5 inhibitors recognize the inhibitor-CCR5 complex, while also interacting with free CCR5. The most common genetic route to resistance involves sequence changes in the gp120 V3 region, a pathway followed when the primary isolate CC1/85 was cultured with the AD101 inhibitor in vitro, creating the CC101.19 resistant variant. However, the D1/86.16 escape mutant contains no V3 changes but has three substitutions in the gp41 fusion peptide. By using CCR5 point-mutants and gp120-targeting agents, we have investigated how infectious clonal viruses derived from the parental and both resistant isolates interact with CCR5. We conclude that the V3 sequence changes in CC101.19 cl.7 create a virus with an increased dependency on interactions with the CCR5 N-terminus. Elements of the CCR5 binding site associated with the V3 region and the CD4-induced (CD4i) epitope cluster in the gp120 bridging sheet are more exposed on the native Env complex of CC101.19 cl.7, which is sensitive to neutralization via these epitopes. However, D1/86.16 cl.23 does not have an increased dependency on the CCR5 N-terminus, and its CCR5 binding site has not become more exposed. How this virus interacts with the inhibitor-CCR5 complex remains to be understood.  相似文献   

15.
Parody TR  Stone MJ 《Cytokine》2004,27(1):38-46
The specificity of leukocyte trafficking in inflammation is controlled by the interactions of chemokines with chemokine receptors. Reliable structure-function studies of chemokine-receptor interactions would benefit from cell lines that express consistent high levels of chemokine receptors. We describe herein two new Chinese hamster ovary (CHO) cell lines in which the genes for chemokine receptors CCR2 and CCR3 have been incorporated into identical positions in the host genome. CCR2 is the primary receptor for the chemokine monocyte chemoattractant protein-1 (MCP-1) whereas CCR3 is the primary receptor for the chemokines eotaxin-1, eotaxin-2 and eotaxin-3. Both receptors are expressed at >5,000,000 copies per cell, substantially higher levels than in previous cell lines, and both are competent for binding and activation by the cognate chemokines for these receptors. Using these cell lines we confirm that eotaxin-1 and eotaxin-3 can act as an agonist and an antagonist, respectively, of CCR2. In addition, we show that eotaxin-2 is an antagonist of CCR2 and MCP-1 is an agonist of CCR3. Comparison of the chemokine sequences reveals several positions that are identical in MCP-1 and eotaxin-1 but different in eotaxin-2 and eotaxin-3, suggesting that these amino acids play a role in CCR2 activation.  相似文献   

16.

Background

The aim of this study was to provide more insight into the question as to why blockade of CCR1, CCR2, and CCR5 may have failed in clinical trials in rheumatoid arthritis (RA) patients, using an in vitro monocyte migration system model.

Methodology/Principal Findings

Monocytes from healthy donors (HD; n = 8) or from RA patients (for CCR2 and CCR5 antibody n = 8; for CCR1 blockade n = 13) were isolated from peripheral blood and pre-incubated with different concentrations of either anti-CCR1, anti-CCR2, or anti-CCR5 blocking antibodies (or medium or isotype controls). In addition, a small molecule CCR1 antagonist (BX471) was tested. Chemotaxis was induced by CCL2/MCP-1 (CCR2 ligand), CCL5/RANTES (CCR1 and CCR5 ligand), or by a mix of 5 RA synovial fluids (SFs), and cellular responses compared to chemotaxis in the presence of medium alone. Anti-CCR2 antibody treatment blocked CCL2/MCP-1-induced chemotaxis of both HD and RA monocytes compared to isotype control. Similarly, anti-CCR5 antibody treatment blocked CCL5/RANTES-induced chemotaxis of RA monocytes. While neither CCR2 nor CCR5 blocking antibodies were able to inhibit SF-induced monocyte chemotaxis, even when both receptors were blocked simultaneously, both anti-CCR1 antibodies and the CCR1 antagonist were able to inhibit SF-induced monocyte chemotaxis.

Conclusions/Significance

The RA synovial compartment contains several ligands for CCR1, CCR2, and CCR5 as well as other chemokines and receptors involved in monocyte recruitment to the site of inflammation. The results suggest that CCR2 and CCR5 are not critical for the migration of monocytes towards the synovial compartment in RA. In contrast, blockade of CCR1 may be effective. Conceivably, CCR1 blockade failed in clinical trials, not because CCR1 is not a good target, but because very high levels of receptor occupancy at all times may be needed to inhibit monocyte migration in vivo.  相似文献   

17.
Polymorphisms of the chemokine receptor genes CCR5 and CCR2 are associated with resistance to HIV-1 infection or delayed progression to AIDS. Few data are available on their combined prevalence in healthy subjects; we therefore examined the occurrence of CCR5-Delta32 and CCR2-64I polymorphisms in a sample of 310 healthy Belgians. Allele frequencies were 0.119 and 0.074 for CCR5-Delta32 and CCR2-64I, respectively. Genotype distributions for both polymorphisms were found to be in accordance with Hardy-Weinberg equilibrium, but a significant (p = 0.002) linkage disequilibrium between CCR5-Delta32 and CCR2-64I was observed. The high prevalence of CCR5-Delta32 and CCR2-64I in Belgians may need to be taken into account in the design of studies of antiretroviral treatments.  相似文献   

18.
CCR2b, a chemokine receptor for MCP-1, -2, -3, -4, plays an important role in a variety of diseases involving infection, inflammation, and/or injury, as well as being a coreceptor for HIV-1 infection. Two models of human CCR2b (hCCR2b) were generated by homology modeling and 1 ns restrained molecular dynamics (MD) simulation. In one only C113-C190 forms a disulfide bond (SS model); in another the potential C32-C277 disulfide bond was formed (2SS model). Analysis of the structures and averaged displacements of Calpha atoms of the N-terminal residues shows that the main differences between the SS and 2SS models lie in a region D25YDYGAPCHKFD36; in the extracellular part of the 2SS model the accessible surfaces of N12, F23, Y26, Y28 and F35 are obviously raised and a more stable H-bond net is formed. The potential energy of the 2SS-water assembly finally fluctuated around -43,020 kJ x mol(-1), which is about 302 kJ x mol(-1) lower than that of the SS-water assembly. All these results suggest that the 2SS model is more favorable. The CCR2b genes of 17 primates were sequenced and four CCR2b models for primates Ateles paniscus (A. pan), Hylobates leucogyneus(H. leu), Papio cynocephalus (P. cyn) and Trachypithecus francoist ( T. fra) were generated based on the 2SS model. A comparison of hCCR2b with primate CCR2b also supports the importance of the region D25YDYGAPCHKFD36. Electrostatic potential maps of human and primate CCR2b all display the dipolar characteristics of CCR2b with the negative pole located in the extracellular part and a strong positive pole in the cytoplasmic part. Based on the CCR2b model, we suggest that the main functional residues fall in the D25YDYGAPCHKFD36 region, and the negative electrostatic feature is a non-specific, but necessary, factor for ligands or gp120/CD4 binding.  相似文献   

19.
CCL3 (MIP-1alpha), a prototype of CC chemokines, is a potent chemoattractant toward human neutrophils pre-treated with GM-CSF for 15 min. GM-CSF-treated neutrophils migrate also to the selective CCR5 agonist CCL4 (MIP-1beta). CCL3- and CCL4-triggered migration of GM-CSF-primed neutrophils was inhibited by the CCR5 antagonist TAK-779. Accordingly, freshly isolated neutrophils express CCR5. Extracellular signal-regulated kinases (ERK)-1/2 and p38 mitogen-activated protein kinase (MAPK) inhibitors blocked CCL3-induced migration of GM-CSF-primed neutrophils. When the activation of ERK-1/2 and p38 MAPK by CCL3 and the classical neutrophilic chemokine CXCL8 (IL-8) were compared, both the chemokines were capable of activating p38 MAPK. On the contrary, whereas both ERK-1 and ERK-2 were activated by CXCL8, no ERK-1 band was detectable after CCL3 triggering. Finally, neutrophil pre-treatment with GM-CSF activated both ERK-1 and ERK-2. This suggests that by activating ERK-1, GM-CSF renders neutrophils rapidly responsive to CCL3 stimulation throughout CCR5 which is constitutively expressed on the cell surface.  相似文献   

20.
Flavonoids and related polyphenols, in addition to their cardioprotective, anti-tumor, anti-inflammatory, anti-carcinogenic and anti-allergic activities, also possess promising anti-HIV effects. Recent studies documented that the beta-chemokine receptors, CCR2b, CCR3 and CCR5, and the alpha-chemokine receptors, CXCR1, CXCR2 and CXCR4 serve as entry coreceptors for HIV-1. Although flavonoids and polyphenolic compounds elicit anti-HIV effects such as inhibition of HIV-1 expression and virus replication, the molecular mechanisms underlying these effects remain to be clearly elucidated. We hypothesize that flavonoids exert their anti-HIV effects, possibly by interfering at the HIV co-receptor level. We investigated the effect of flavonoid constituents of a proprietary grape seed extract (GSE) on the expression of HIV-1 coentry receptors by immunocompetent mononuclear leukocytes. Our results showed that GSE significantly downregulated the expression of the HIV-1 entry co-receptors, CCR2b, CCR3 and CCR5 in normal PBMC in a dose dependent manner. Further, GSE treated cultures showed significantly lower number of CCR3 positive cells as quantitated by flow cytometry analysis which supports RT-PCR gene expression data. Investigations of the mechanisms underlying the anti-HIV-1 effects of grape seed extracts may help to identify promising natural products useful in the prevention and/or amelioration of HIV-1 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号