首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is evidence that GABA plays a major role in sleep regulation. GABA(A) receptor agonists and different compounds interacting with the GABA(A) receptor complex, such as barbiturates and benzodiazepines, can interfere with the sleep/wake cycle. On the other hand, there is very little information about the possible role of GABA(B) receptors in sleep modulation. The nucleus basalis of Meynert (NBM), a cholinergic area in the basal forebrain, plays a pivotal role in the modulation of sleep and wakefulness, and both GABA(A) and GABA(B) receptors have been described within the NBM. This study used unilateral infusions in the NBM to determine the effects of 3-hydroxy-5-aminomethylisoxazole hydrobromide (muscimol hydrobromide, a GABA(A) receptor subtype agonist) and beta-(aminomethyl)-4-chlorobenzenepropanoic acid (baclofen, a GABA(B) receptor subtype agonist) on sleep parameters in freely moving rats by means of polygraphic recordings. Muscimol (0.5 nmol) and baclofen (0.7 nmol) induced an increase in slow-wave sleep and an inhibition of wakefulness. Muscimol, but not baclofen, also caused a decrease in desynchronized sleep parameters. The results reported here indicate that 1) the NBM activation of both GABA(A) and GABA(B) receptors influences the sleep/wake cycle, and 2) GABA(A) but not GABA(B) receptors are important for desynchronized sleep modulation, suggesting that the two GABAergic receptors play different roles in sleep modulation.  相似文献   

2.
The neurotransmitter gamma-aminobutyric acid (GABA) mediates inhibitory signaling in the brain via stimulation of both GABA(A) receptors (GABA(A)R), which are chloride-permeant ion channels, and GABA(B) receptors (GABA(B)R), which signal through coupling to G proteins. Here we report physical interactions between these two different classes of GABA receptor. Association of the GABA(B) receptor 1 (GABA(B)R1) with the GABA(A) receptor gamma2S subunit robustly promotes cell surface expression of GABA(B)R1 in the absence of GABA(B)R2, a closely related GABA(B) receptor that is usually required for efficient trafficking of GABA(B)R1 to the cell surface. The GABA(B)R1/gamma2S complex is not detectably functional when expressed alone, as assessed in both ERK activation assays and physiological analyses in oocytes. However, the gamma2S subunit associates not only with GABA(B)R1 alone but also with the functional GABA(B)R1/GABA(B)R2 heterodimer to markedly enhance GABA(B) receptor internalization in response to agonist stimulation. These findings reveal that the GABA(B)R1/gamma2S interaction results in the regulation of multiple aspects of GABA(B) receptor trafficking, allowing for cross-talk between these two distinct classes of GABA receptor.  相似文献   

3.
4.
GABA对小鼠大脑皮质中GABA受体胚胎发育的调节   总被引:1,自引:1,他引:0  
陈忠  陆勤 《动物学研究》1997,18(3):299-304
本文用GABA及其受体激动剂和拮抗剂处理培养的胚胎小鼠大脑皮层神经细胞以及精确计时的妊娠小鼠,用放射配体结合法检测GABAA及GABAB的结合位点数目,研究了GABA对小鼠大脑皮层GABA受体胚胎发育的调节作用,结果表明:①GABA可使培养15—17天妊龄的胚胎小鼠大脑皮层神经细胞及出生第1天的仔鼠大脑皮层中的GABAA及GABAB受体数目增加,这种作用可被蝇蕈醇(Mus)及巴氯芬(Bac)分别模拟,对GABAA受体的作用可为荷包牡丹碱(Bic)所阻断;②用GABA处理妊娠7—13天的小鼠,仔鼠出生第1天其大脑皮层的GABAA及GABAB受体数目均无变化;③用GABA处理妊娠14—19天的小鼠,仔鼠出生的第1天其大脑皮层中的GABAA受体数目增加而GABAB受体数目不变;④用GABA处理妊娠7-19天的小鼠,仔鼠出生第1天其大脑皮层中GABAA及GABAB受体数目增加。这说明在胚胎发育的特定时期内,GABA可诱导其受体数目的增加,这个作用是由GABA受体调节的。  相似文献   

5.
Evidence from electrophysiological studies suggests that 5-HT neuronal firing in the dorsal raphe nucleus (DRN) may be regulated by both GABA(A) and GABA(B) receptors. Here, we addressed the question of whether the activity of individual 5-HT neurons is regulated by both GABA(A) and GABA(B) receptors. In addition, we examined the concentration-response relationships of GABA(A) and GABA(B) receptor activation and determined if GABA receptor regulation of 5-HT neuronal firing is altered by moderate alterations in circulating corticosterone. The activity of 5-HT neurons in the DRN of the rat was examined using in vitro extracellular electrophysiology. The firing of all individual neurons tested was inhibited by both the GABA(A) receptor agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]-pyridin-3-ol hydrochloride (THIP) (25 microM) and the GABA(B) receptor agonist baclofen (1 microM). Responses to THIP (5, 10, 25 microM) and baclofen (1, 3, 10 microM) were concentration dependent and attenuated by the GABA(A) and GABA(B) receptor antagonists, bicuculline (50 microM) and phaclofen (200 microM), respectively. To examine the effects of corticosterone on the sensitivity of 5-HT neurons to GABA receptor activation, experiments were conducted on adrenalectomized animals with corticosterone maintained for two weeks at either a low or moderate level within the normal diurnal range. These changes in corticosterone levels had no significant effects on the 5-HT neuronal response to either GABA(A) or GABA(B) receptor activation. The data indicate that the control of 5-HT neuronal activity by GABA is mediated by both GABA(A) and GABA(B) receptors and that this control is insensitive to moderate changes in circulating glucocorticoid levels.  相似文献   

6.
Cerebellar granule neurons can be conveniently kept in culture. They constitute a useful model to study regulation of glutamatergic activity, in particular the inhibitory action of GABA (7-aminobutyrate). GABA exerts an inhibitory action on evoked transmitter release acting on both GABA(A) and GABA(B) receptors. The functional properties of these receptors are dependent upon the environment of the neurons during early development in culture as the expression of both receptor subtypes is enhanced by exposure of the neurons to GABA(A) receptor agonists. Thus, the inducible GABA(A) receptors are of low affinity and lack benzodiazepine sensitivity, and the G-protein coupling differs among the native and the inducible GABA(B) receptors. Moreover, the GABA(A) and the GABA(B) receptors are functionally coupled, leading to a disinhibitory action of GABA. Therefore drugs exhibiting selective agonist or antagonist action on subclasses of GABA(A) and GABA(B) may be of potential use as regulators of glutamatergic excitatory activity.  相似文献   

7.
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. The dynamic control of the cell surface stability of GABA(B) receptors is likely to be of fundamental importance in the modulation of receptor signaling. Presently, however, this process is poorly understood. Here we demonstrate that GABA(B) receptors are remarkably stable at the plasma membrane showing little basal endocytosis in cultured cortical and hippocampal neurons. In addition, we show that exposure to baclofen, a well characterized GABA(B) receptor agonist, fails to enhance GABA(B) receptor endocytosis. Lack of receptor internalization in neurons correlates with an absence of agonist-induced phosphorylation and lack of arrestin recruitment in heterologous systems. We also demonstrate that chronic exposure to baclofen selectively promotes endocytosis-independent GABA(B) receptor degradation. The effect of baclofen can be attenuated by activation of cAMP-dependent protein kinase or co-stimulation of beta-adrenergic receptors. Furthermore, we show that increased degradation rates are correlated with reduced receptor phosphorylation at serine 892 in GABA(B)R2. Our results support a model in which GABA(B)R2 phosphorylation specifically stabilizes surface GABA(B) receptors in neurons. We propose that signaling pathways that regulate cAMP levels in neurons may have profound effects on the tonic synaptic inhibition by modulating the availability of GABA(B) receptors.  相似文献   

8.
GABA(B) receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the mammalian central nervous system. They are implicated in a variety of neurological and psychiatric disorders. With the cloning of GABA(B) receptors ten years ago, substantial progress was made in our understanding of this receptor system. Here, we review current concepts of synaptic GABA(B) functions and present the evidence that points to specific roles for receptor subtypes. We discuss ultrastructural studies revealing that most GABA(B) receptors are located remote from GABAergic terminals, which raises questions as to when such receptors become activated. Finally, we provide possible explanations for the perplexing situation that GABA(B) receptor subtypes that have indistinguishable properties in vitro generate distinct GABA(B) responses in vivo.  相似文献   

9.
The R- and S-enantiomers of 4-amino-3-hydroxybutanoic acid (GABOB) were full agonists at human recombinant rho1 GABA(C) receptors. Their enantioselectivity (R>S) matched that reported for their agonist actions at GABA(B) receptors, but was the opposite to that reported at GABA(A) receptors (S>R). The corresponding methylphosphinic acid analogues proved to be rho1 GABA(C) receptor antagonists with R(+)-CGP44533 being more potent than S(-)-CGP44532, thus showing the opposite enantioselectivity to the agonists R(-)- and S(+)-GABOB. These studies highlight the different stereochemical requirements for the hydroxy group in these analogues at GABA(A), GABA(B) and GABA(C) receptors.  相似文献   

10.
Recent studies have shown that GABA(B) receptors play more than a classical inhibitory role and can function as an important synaptic maturation signal early in life. In a previous study, we reported that GABA(B) receptor activation triggers secretion of brain-derived neurotrophic factor (BDNF) and promotes the functional maturation of GABAergic synapses in the developing rat hippocampus. To identify the signalling pathway linking GABA(B) receptor activation to BDNF secretion in these cells, we have now used the phosphorylated form of the cAMP response element-binding protein as a biological sensor for endogenous BDNF release. In the present study, we show that GABA(B) receptor-induced secretion of BDNF relies on the activation of phospholipase C, followed by the formation of diacylglycerol, activation of protein kinase C, and the opening of L-type voltage-dependent Ca(2+) channels. We further show that once released by GABA(B) receptor activation, BDNF increases the membrane expression of β(2/3) -containing GABA(A) receptors in neuronal cultures. These results reveal a novel function of GABA(B) receptors in regulating the expression of GABA(A) receptor through BDNF-tropomyosin-related kinase B receptor dependent signalling pathway.  相似文献   

11.
The functional properties of GABA(B) receptors were examined in the dorsal raphe nucleus (DRN) and the hippocampus of knock-out mice devoid of the 5-HT transporter (5-HTT-/-) or the 5-HT(1A) receptor (5-HT(1A)-/-). Electrophysiological recordings in brain slices showed that the GABA(B) receptor agonist baclofen caused a lower hyperpolarization and neuronal firing inhibition of DRN 5-HT cells in 5-HTT-/- versus 5-HTT+/+ mice. In addition, [(35)S]GTP-gamma-S binding induced by GABA(B) receptor stimulation in the DRN was approximately 40% less in these mutants compared with wild-type mice. In contrast, GABA(B) receptors appeared functionally intact in the hippocampus of 5-HTT-/-, and in both this area and the DRN of 5-HT(1A)-knock-out mice. The unique functional changes of DRN GABA(B) receptors closely resembled those of 5-HT(1A) autoreceptors in 5-HTT-/- mice, further supporting the idea that both receptor types are coupled to a common pool of G-proteins in serotoninergic neurons.  相似文献   

12.
GABA(B) receptors are heterodimeric G protein-coupled receptors that mediate slow synaptic inhibition in the central nervous system. Whereas heterodimerization between GABA(B) receptor GABA(B)R1 and GABA(B)R2 subunits is essential for functional expression, how neurons coordinate the assembly of these critical receptors remains to be established. Here we have identified Marlin-1, a novel GABA(B) receptor-binding protein that associates specifically with the GABA(B)R1 subunit in yeast, tissue culture cells, and neurons. Marlin-1 is expressed in the brain and exhibits a granular distribution in cultured hippocampal neurons. Marlin-1 binds different RNA species including the 3'-untranslated regions of both the GABA(B)R1 and GABA(B)R2 mRNAs in vitro and also associates with RNA in cultured neurons. Inhibition of Marlin-1 expression via small RNA interference technology results in enhanced intracellular levels of the GABA(B)R2 receptor subunit without affecting the level of GABA(B)R1. Together our results suggest that Marlin-1 functions to regulate the cellular levels of GABA(B) R2 subunits, which may have significant effects on the production of functional GABA(B) receptor heterodimers. Therefore, our observations provide an added level of regulation for the control of GABA(B) receptor expression and for the efficacy of inhibitory synaptic transmission.  相似文献   

13.
14.
Stein V  Nicoll RA 《Neuron》2003,37(3):375-378
In the CNS, gamma-aminobutyric acid (GABA) acts as an inhibitory transmitter via ligand-gated GABA(A) receptor channels and G protein-coupled GABA(B) receptors. Both of these receptor types mediate inhibitory postsynaptic transmission throughout the nervous system. For GABA(A) receptors, this inhibitory action is associated with a hyperpolarization due to an increase in conductance to chloride ions. Previous studies show that GABA(A) receptor activation in neonatal neurons and spinal cord neurons can be excitatory. Two papers recently appeared that clearly demonstrate that GABA can have a depolarizing and excitatory action in mature cortical neurons. Here we discuss the evolving story on chloride ion homeostasis in CNS neurons and its role in the bipolar life of the GABA(A) receptor.  相似文献   

15.
G protein-coupled receptors (GPCRs) have key roles in cell-cell communication. Recent data suggest that these receptors can form large complexes, a possibility expected to expand the complexity of this regulatory system. Among the brain GPCRs, the heterodimeric GABA(B) receptor is one of the most abundant, being distributed in most brain regions, on either pre- or post-synaptic elements. Here, using specific antibodies labelled with time-resolved FRET compatible fluorophores, we provide evidence that the heterodimeric GABA(B) receptor can form higher-ordered oligomers in the brain, as suggested by the close proximity of the GABA(B1) subunits. Destabilizing the oligomers using a competitor or a GABA(B1) mutant revealed different G protein coupling efficiencies depending on the oligomeric state of the receptor. By examining, in heterologous system, the G protein coupling properties of such GABA(B) receptor oligomers composed of a wild-type and a non-functional mutant heterodimer, we provide evidence for a negative functional cooperativity between the GABA(B) heterodimers.  相似文献   

16.
苍白球γ-氨基丁酸能神经传递及其与神经系统疾病的关系   总被引:1,自引:0,他引:1  
Chen L  Yung WH 《生理学报》2004,56(4):427-435
苍白球是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。近年来,苍白球在基底神经节正常及异常功能调节中的重要性已日渐受到重视。然而,目前对苍白球内各种神经递质系统的功能活动了解较少。GABA是苍白球主要的神经递质。采用电生理记录、免疫组织化学及行为测试等实验方法,人们对大鼠苍白球GABA能神经传递系统的受体分布及功能活动有了新的认识。形态学研究揭示,苍白球存在GABAA受体及其苯二氮卓结合位点和GABAB受体。在亚细胞水平,GABAA受体主要位于对称性突触(GABA能突触)的突触后膜,而GABAB受体则位于对称性突触和非对称性突触(兴奋性突触)的突触前膜及突触后膜。功能学研究进一步揭示,激活苍白球突触前膜GABAB自身和异源性受体可分别减少GABA和谷氨酸释放;激活突触后膜GABAB受体,可引起苍白球神经元超极化。除GABAB受体外,激活苍白球GABAA受体苯二氮卓结合位点及阻断GABA重摄取可延长GABA电流持续时间,从而改变苍白球神经元兴奋性。与离体实验结果相一致,激活苍向球GABAB受体和苯二氮卓结合位点及阻断GABA重摄取可引起整体动物旋转行为。苍白球GABA神经递质系统与帕金森病病因学及癫痫发病有关。已证实,苍白球神经元放电频率的降低及簇状放电的产生与帕金森病运动减少及静止性震颤等症状直接相关。此外,电牛理及行为学实验发现,新型抗癫痫药物替加平可调节苍白球神经元功能活动.这为进一步了解苍白球与癫痫发病的关系提供了新的理论及实验依据。  相似文献   

17.
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate central nervous system. Metabotropic GABA(B) receptors are heterodimeric G-protein-coupled receptors (GPCRs) consisting of GABA(B1) and GABA(B2) subunits. The intracellular C-terminal domains of GABA(B) receptors are involved in heterodimerization, oligomerization, and association with other proteins, which results in a large receptor complex. Multiple splice variants of the GABA(B1) subunit have been identified in which GABA(B1a) and GABA(B1b) are the most abundant isoforms in the nervous system. Isoforms GABA(B1c) through GABA(B1n) are minor isoforms and are detectable only at mRNA levels. Some of the minor isoforms have been detected in peripheral tissues and encode putative soluble proteins with C-terminal truncations. Interestingly, increased expression of GABA(B) receptors has been detected in several human cancer cells and tissues. Moreover, GABA(B) receptor agonist baclofen inhibited tumor growth in rat models. GABA(B) receptor activation not only induces suppressing the proliferation and migration of various human tumor cells but also results in inactivation of CREB (cAMP-responsive element binding protein) and ERK in tumor cells. Their structural complexity makes it possible to disrupt the functions of GABA(B) receptors in various ways, raising GABA(B) receptor diversity as a potential therapeutic target in some human cancers.  相似文献   

18.
Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity.-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system,and mediates its effects via two classes of receptors:the GABA A and GABA B receptors.GABA A receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission.GABA B receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission.The extent of inhibitory neurotransmission is determined by a variety of factors,such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g.,phosphorylation),as well as by the number of receptors present in the plasma membrane available for signal transduction.The level of GABA B receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation.In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA B receptors in the plasma membrane,and thereby signaling strength.  相似文献   

19.
The gamma-aminobutyric acid, type B (GABA(B)) receptor is well recognized as being composed of two subunits, GABA(B1) and GABA(B2). Both subunits share structural homology with other class-III G-protein-coupled receptors. They are composed of two main domains: a heptahelical domain (HD) typical of all G-protein-coupled receptors and a large extracellular domain (ECD). Although GABA(B1) binds GABA, GABA(B2) is required for GABA(B1) to reach the cell surface. However, it is still not demonstrated whether the association of these two subunits is always required for function in the brain. Indeed, GABA(B2) plays a major role in the coupling of the heteromer to G-proteins, such that it is possible that GABA(B2) can transmit a signal in the absence of GABA(B1). Today only ligands interacting with GABA(B1) ECD have been identified. Thus, the compounds acting exclusively on the GABA(B2) subunit will be helpful in analyzing the specific role of this subunit in the brain. Here, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABA(B) receptor. We showed that it activates the wild type GABA(B) receptor but with a low efficacy. The GABA(B2) HD is necessary for this effect, although one cannot exclude that CGP7930 could also bind to GABA(B1). Of interest, CGP7930 could activate GABA(B2) expressed alone and is the first described agonist of GABA(B2). Finally, we show that CGP7930 retains its agonist activity on a GABA(B2) subunit deleted of its ECD. This demonstrates that the HD of GABA(B2) behaves similar to a rhodopsin-like receptor, because it can reach the cell surface alone, can couple to G-protein, and be activated by agonists. These data open new strategies for studying the mechanism of activation of GABA(B) receptor and examine any possible role of homomeric GABA(B2) receptors.  相似文献   

20.
gamma-Aminobutyric acid, type B (GABA(B)) receptors are heterodimeric G protein-coupled receptors that mediate slow inhibitory synaptic transmission in the central nervous system. To identify novel interacting partners that might regulate GABA(B) receptor (GABA(B)R) functionality, we screened the GABA(B)R2 carboxyl terminus against a recently created proteomic array of 96 distinct PDZ (PSD-95/Dlg/ZO-1 homology) domains. The screen identified three specific PDZ domains that exhibit interactions with GABA(B)R2: Mupp1 PDZ13, PAPIN PDZ1, and Erbin PDZ. Biochemical analysis confirmed that full-length Mupp1 and PAPIN interact with GABA(B)R2 in cells. Disruption of the GABA(B)R2 interaction with PDZ scaffolds by a point mutation to the carboxyl terminus of the receptor dramatically decreased receptor stability and attenuated the duration of GABA(B) receptor signaling. The effects of mutating the GABA(B)R2 carboxyl terminus on receptor stability and signaling were mimicked by small interference RNA knockdown of endogenous Mupp1. These findings reveal that GABA(B) receptor stability and signaling can be modulated via GABA(B)R2 interactions with the PDZ scaffold protein Mupp1, which may contribute to cell-specific regulation of GABA(B) receptors in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号