首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of the reagents suppressing or supporting axoplasmic microtubule assembly were studied on the Na ionic current of squid giant axons by perfusing the axon internally with the solution containing the reagent. Among the reagents suppressing the assembly, colchicine, vinblastine, podophyllotoxin, sulfhydryl reagents such as DTNB and NEM, and chaotropic anions such as iodide and bromide, were examined. These reagents reduced maximum Na conductance and shifted the voltage dependence of steady-state Na activation in a depolarizing direction along the voltage axis. They also made the voltage dependence less steep, but did not affect sodium inactivation appreciably. Effects on Na ionic current of reagents which support microtubule assembly (Taxol, DMSO, D2O and temperature) were opposite the effects of those agents suppressing assembly. At the same time, we demonstrated that after Na currents were partially reduced, they could be restored by internally perfusing the axon with a solution containing microtubule proteins, 260K proteins and cAMP under conditions favorable for microtubule assembly. For full restoration, it was found that the following conditions were necessary: (1) The microenvironment within the axon is suitable for microtubule assembly. (2) Tubulins incorporated into microtubules are fully tyrosinated at their C-termini. (3) A peripheral protein having a molecular weight of 260,000 daltons (260K protein) is indispensable. These results suggest that axoplasmic microtubules and 260K proteins in the structure underlying the axolemma play a role in generating Na currents in squid giant axons.  相似文献   

2.
Summary Effects of the reagents suppressing or supporting axoplasmic microtubule assembly were studied on the Na ionic current of squid giant axons by perfusing the axon internally with the solution containing the reagent. Among the reagents suppressing the assembly, colchicine, vinblastine, podophyllotoxin, sulfhydryl reagents such as DTNB and NEM, and chaotropic anions such as iodide and bromide, were examined. These reagents reduced maximum Na conductance and shifted the voltage dependence of steady-state Na activation in a depolarizing direction along the voltage axis. They also made the voltage dependence less steep, but did not affect sodium inactivation appreciably. Effects on Na ionic current of reagents which support microtubule assembly (Taxol, DMSO, D2O and temperature) were opposite the effects of those agents suppressing assembly. At the same time, we demonstrated that after Na currents were partially reduced, they could be restored by internally perfusing the axon with a solution containing microtubule proteins, 260K proteins and cAMP under conditions favorable for microtubule assembly. For full restoration, it was found that the following conditions were necessary: (1) The microenvironment within the axon is suitable for microtubule assembly. (2) Tubulins incorporated into microtubules are fully tyrosinated at their C-termini. (3) A peripheral protein having a molecular weight of 260,000 daltons (260K protein) is indispensable. These results suggest that axoplasmic microtubules and 260K proteins in the structure underlying the axolemma play a role in generating Na currents in squid giant axons.  相似文献   

3.
Native microtubules prepared from extruded and dissociated axoplasm have been observed to transport organelles and vesicles unidirectionally in fresh preparations and more slowly and bidirectionally in older preparations. Both endogenous and exogenous (fluorescent polystyrene) particles in rapid Brownian motion alight on and adhere to microtubules and are transported along them. Particles can switch from one intersecting microtubule to another and move in either direction. Microtubular segments 1 to 30 microns long, produced by gentle homogenization, glide over glass surfaces for hundreds of micrometers in straight lines unless acted upon by obstacles. While gliding they transport particles either in the same (forward) direction and/or in the backward direction. Particle movement and gliding of microtubule segments require ATP and are insensitive to taxol (30 microM). It appears, therefore, that the mechanisms producing the motive force are very closely associated with the native microtubule itself or with its associated proteins. Although these movements appear irreconcilable with several current theories of fast axoplasmic transport, in this article we propose two models that might explain the observed phenomena and, by extension, the process of fast axoplasmic transport itself. The findings presented and the possible mechanisms proposed for fast axoplasmic transport have potential applications across the spectrum of microtubule-based motility processes.  相似文献   

4.
Insulin and muscle contractions stimulate glucose transport in skeletal muscle through a translocation of intracellular GLUT4 glucose transporters to the cell surface. Judged by immunofluorescence microscopy, part of the GLUT4 storage sites is associated with the extensive microtubule cytoskeleton found in all muscle fibers. Here, we test whether microtubules are required mediators of the effect of insulin and contractions. In three different incubated rat muscles with distinct fiber type composition, depolymerization of microtubules with colchicine for < or =8 h did not inhibit insulin- or contraction-stimulated 2-deoxyglucose transport or force production. On the contrary, colchicine at least partially prevented the approximately 30% decrease in insulin-stimulated transport that specifically developed during 8 h of incubation in soleus muscle but not in flexor digitorum brevis or epitrochlearis muscles. In contrast, nocodazole, another microtubule-disrupting drug, rapidly and dose dependently blocked insulin- and contraction-stimulated glucose transport. A similar discrepancy between colchicine and nocodazole was also found in their ability to block glucose transport in muscle giant "ghost" vesicles. This suggests that the ability of insulin and contractions to stimulate glucose transport in muscle does not require an intact microtubule network and that nocodazole inhibits glucose transport independently of its microtubule-disrupting effect.  相似文献   

5.
Colchicine and some other microtubule-active agents inhibit the electrical responses of cockroach tibial spine mechanoreceptors. Lumicolchicine, a colchicine analog which does not bind to microtubule protein, does not inhibit mechanoreceptive responses. Colchicine inhibition of peripheral mechanoreceptive responses is fully reversible and dose dependent, but colchicine has no effect on conduction in leg nerve axons. Colchicine inhibition is therefore an effect on the sensory dendrites or soma. The inhibition produced by colchicine could be produced by several effects. Colchicine may inhibit because it (1) disrupts the numerous intracellular microtubules which are a part of this sensory receptor's dendrite, (2) blocks axoplasmic transport of essential materials to the sensory dendrite, or (3) binds to tubulin or other proteins in the dendritic membrane.  相似文献   

6.
Summary The effects of application of the microtubule-disassembling reagents to squid giant axons upon resting potential, the height of the propagated action potential, and the threshold to evoke action potential were studied using colchicine, podophyllotoxin, vinblastine, griseofulvin, sulfhydryl reagents including NEM, diamide, DTNB and PCMB, and Ca2+ ions. At the same time, the effects of concentrations of K halides and K glutamate on the above physiological properties were studied in comparison within vitro characteristics of microtubule assembly from purified axoplasmic tubulin.It was found that there was good correlation between conditions supporting maintenance of membrane excitability and microtubule assembly. The experiments suggest that associated with the internal surface of the plasma membrane there are microtubules which regulate in part both resting and action potentials.  相似文献   

7.
Microtubule-depolymerizing drugs, such as colchicine, vinblastine sulfate, colcemide and podophyllotoxin, cause an apparent inhibition of the ability of rat hepatocytes to degrade asialo-orosomucoid. However, the binding of asialo-orosomucoid to the cell surface at 0 degrees C, the endocytosis of pre-bound glycoprotein at 37 degrees C, and the dissociation of internal receptor-glycoprotein complexes are unaffected by these microtubule drugs. Receptor recycling is slowed but still occurs, although degradation is blocked. The rate of degradation is decreased by low concentrations of drugs. (For example, 0.25 microM vinblastine sulfate, colchicine and colcemide inhibited 93%, 79% and 26%, respectively.) Neither beta- nor gamma-lumicolchicine affected any of the processes examined. The degree of inhibition with colchicine could be enhanced by a brief treatment of the cells at low temperature to depolymerize microtubules. However, if cells were allowed to endocytose asialo-orosomucoid at 37 degrees C prior to addition of the microtubule drug, then the inhibition of protein degradation was greatly reduced. The decrease in the inhibition of degradation was proportional to the amount of time that cells were exposed to asialoglycoprotein before addition of the drug. The results indicate that the segregation of protein from receptor after they dissociate and/or the subsequent translocation of internalized asialoglycoprotein from the cell perimeter to the lysosomal region requires intact microtubules.  相似文献   

8.
Microtubule cytoskeletons are involved in many essential functions throughout the life cycle of cells, including transport of materials into cells, cell movement, and proper progression of cell division. Small compounds that can bind at the colchicine site of tubulin have drawn great attention because these agents can suppress or inhibit microtubule dynamics and tubulin polymerization. To find novel tubulin polymerization inhibitors as anti-mitotic agents, we performed a virtual screening study of the colchicine binding site on tubulin. Novel tubulin inhibitors were identified and characterized by their inhibitory activities on tubulin polymerization in vitro. The structural basis for the interaction of novel inhibitors with tubulin was investigated by molecular modeling, and we have proposed binding models for these hit compounds with tubulin. The proposed docking models were very similar to the binding pattern of colchicine or podophyllotoxin with tubulin. These new hit compound derivatives exerted growth inhibitory effects on the HL60 cell lines tested and exhibited strong cell cycle arrest at G2/M phase. Furthermore, these compounds induced apoptosis after cell cycle arrest. In this study, we show that the validated derivatives of compound 11 could serve as potent lead compounds for designing novel anti-cancer agents that target microtubules.  相似文献   

9.
Our ultrastructural study was focused on the perikaryal region and initial segment of the axon of rat retinal ganglion cells in controls and after intraocular injections of colchicine. In control rats that region contained, among other organelles, elements of the Golgi complex and, close to them, short isolated microtubules oriented preferentially toward the axon where they funnel and aggregate in bundles. One day after sufficient doses of colchicine to inhibit axoplasmic transport (2-20 micrograms) these cytoplasmic microtubules were absent, whereas some axonal microtubules were still present but reduced in number. In addition, colchicine induced an altered distribution of organelles, leaving empty spaces in the periphery and most organelles concentrated in the perinuclear region, especially around Golgi elements where numerous vesicles and tubules accumulate at the trans face of Golgi elements. These results suggest that the vesicles that leave the Golgi and have been directed towards axoplasmic transport may need the cytoplasmic microtubules located between Golgi elements and the axonal initial segments to reach the axon.  相似文献   

10.
Microtubule-depolymerizing drugs, such as colchicine, vinblastine sulfate, colcemide and podophyllotoxin, cause an apparent inhibition of the ability of rat hepatocytes to degrade asialo-orosomucoid. However, the binding of asialo-orosomucoid to the cell surface at 0°C, the endocytosis of pre-bound glycoprotein at 37°C, and the dissociation of internal receptor-glycoprotein complexes are unaffected by these microtubule drugs. Receptor recycling is slowed but still occurs, although degradation is blocked. The rate of degradation is decreased by low concentrations of drugs. (For example, 0.25 μM vinblastine sulfate, colchicine and colcemide inhibited 93%, 79% and 26%, respectively.) Neither β- nor γ-lumicolchicine affected any of the processes examined. The degree of inhibition with colchicine could be enhanced by a brief treatment of the cells at low temperature to depolymerize microtubules. However, if cells were allowed to endocytose asialo-orosomucoid at 37°C prior to addition of the microtubule drug, then the inhibition of protein degradation was greatly reduced. The decrease in the inhibition of degradation was proportional to the amount of time that cells were exposed to asialoglycoprotein before addition of the drug. The results indicate that the segregation of protein from receptor after they dissociate and/or the subsequent translocation of internalized asialoglycoprotein from the cell perimeter to the lysosomal region requires intact microtubules.  相似文献   

11.
The contributions of protein synthesis and formation of microtubules and microfilaments to corticotropin-stimulated steroidogenesis in rat adrenal cell suspensions has been assessed by use of a series of inhibitors to each function. Five inhibitors of protein synthesis (cycloheximide, puromycin, blastocidin S, anisomycin, and trichodermin) each exhibited time-dependent inhibition of corticotropin-stimulated steroidogenesis. For the first 30 min, steroidogenesis was more extensively inhibited than protein synthesis, after which the effectiveness of the inhibitors diminished on steroidogenesis but not on protein synthesis. The reversal effect was not observed at high levels of inhibitors. One inhibitor of microfilament formation (cytochalasin B) and four inhibitors of microtubule formation (colchicine, podophyllotoxin, vinblastine sulfate and griseofulvin) inhibited steroidogenesis without inhibiting protein synthesis and without any reversal effect with prolonged incubation. The actions of all ten inhibitors were shown to be fully reversible. Cell superfusion of adrenal cells showed that the decay of steroidogenesis upon addition of all the protein synthesis inhibitors was similar to decay upon removal of corticotropin from the medium (t1/2 = 4--6 min). Recoveries from inhibition upon removal of the inhibitors were similar to each other and comparable to initial corticotropin stimulation of the cells (lag of 3--5 min, t1/2=7--9 min). Similar kinetics of inhibition and recovery were observed for vinblastine sulfate while a direct inhibition of cytochrome P-450scc by aminoglutethimide was complete within 1 min and was rapidly reversed. Injection of each inhibitor (all classes) into hypophysectomized rats inhibited the elevation of plasma corticosterone by corticotropin. The extent of cholesterol combination with cytochrome P-450scc in adrenal mitochondria isolated from these rats was also decreased by all of the inhibitors. Decreases in plasma corticosterone correlated directly with decreases in cholesterol combination with cytochrome P-450scc (r=0.94). It is concluded that protein synthesis and steroidogenesis must be intimately coupled probably due to the requirement of a labile protein for cholesterol transport to cytochrome P-450scc. An involvement of microtubules and microfilaments in this process is clearly indicated.  相似文献   

12.
13.
Summary The antimitotic agents colchicine, podophyllotoxin, and vinblastine inhibit the action of vasopressin and cyclic AMP on osmotic water movement in the toad urinary bladder. The alkaloids have no effect on either basal or vasopressin-stimulated sodium transport or urea flux across the tissue. Inhibition of vasopressin-induced water movement is half-maximal at the following alkaloid concentrations: colchicine, 1.8×10–6 m; podophyllotoxin, 5×10–7 m; and vinblastine, 1×10–7 m. The characteristics of the specificity, time-dependence and temperature-dependence of the inhibitory effect of colchicine are similar to the characteristics of the interaction of this drug with tubulinin vitro, and they differ from those of its effect on nucleoside transport. Inhibition of the vasopressin response by colchicine, podophyllotoxin, and vinblastine is not readily reversed. The findings support the view that the inhibition of vasopressin-induced water movement by the antimitotic agents is due to the interaction of these agents with tubulin and consequent interference with microtubule integrity and function. Taken together with the results of biochemical and morphological studies, the findings provide evidence that cytoplasmic microtubules play a critical role in the action of vasopressin on transcellular water movement in the toad bladder.  相似文献   

14.
To determine whether microtubules are linked to intracellular transport in absorptive cells of the proximal intestine, quantitative ultrastructural studies were carried out in which microtubule distribution and content were determined in cells from fasting and fed animals. Rats were given a 1-h meal of standard chow, and tissue was taken from the mid-jejunum before, 1/2 h, and 6 h after the meal. The microtubule content of apical, Golgi, and basal regions of cells was quantitated by point-counting stereology. The results show) that microtubules are localized in intracellular regions of enterocytes (apical and Golgi areas) previously shown to be associated with lipid transport, and that the microtubule content within apical and Golgi regions is significantly (P less than 0.01) reduced during transport of foodstuffs. To determine the effect of inhibition of microtubule assembly on transport, colchicine or vinblastine sulfate was administered to postabsorptive rats, and the lipid and microtubule content of enterocytes determined 1 and 3 h later. After treatment with these agents, lipid was found to accumulate in apical regions of the cells; this event was associated with a significant reduction in microtubule content. In conclusion, the regional distribution of microtubules in enterocytes, the decrease in assembled microtubules after a fat-containing meal, and the accumulation of lipid after the administration of antimicrotubule agents suggest that microtubules are related to lipid transport in enterocytes.  相似文献   

15.
GTP-dependent in vitro polymerization of rat brain microtubular protein is inhibited to 50% by substoichiometric concentrations of the antimitotic drugs colchicine (0.12 mol/mol of tubulin) and podophyllotoxin (0.14 mol/mol of tubulin). Substitution of pp(CH2)pG2 for GTP, however, results in an extensive microtubular protein polymerization at such concentrations. In the presence of pp(CH2)pG, suprastoichiometric concentrations of podophyllotoxin (19 mol/mol of tubulin) are required to inhibit the polymerization process by 50%. Colchicine is very ineffective since 3 × 105 moles/mole of tubulin are required to give a 50% inhibition. Electron microscopical analysis shows that the polymers formed by microtubular protein in the presence of suprastoichiometric concentrations of drugs are not the normal short microtubules typical of pp(CH2)pG-driven polymerization, but are ribbons with three or four protofilaments. The colchicine content of the harvested ribbons has been measured directly and found to be approximately 0.8 moles colchicine/mole of tubulin. Treatment of microtubular protein with substoichiometric concentrations of drugs results in an increase in the number of protofilaments forming the ribbons. Many of the ribbons can close into morphologically normal microtubules when microtubular protein is treated with only 0.05 moles of either colchicine or podophyllotoxin per mole of tubulin.  相似文献   

16.
Vesikin, a protein that can associate with squid axoplasmic vesicles or optic lobe microtubules, has been implicated as a force-generating molecule involved in microtubule-dependent vesicle transport [Gilbert and Sloboda, 1986, 1988]. Because vesikin crossreacts with an antibody to porcine brain microtubule associated protein 2 (MAP 2), studies were conducted to compare squid vesikin and brain MAPs. When taxol stabilized microtubules containing vesikin as a microtubule associated protein were incubated in the presence of ATP, vesikin dissociated from the microtubule subunit lattice. This behavior would be expected for an ATP-dependent, force generating molecule that serves as a crossbridge between vesicles and microtubules. When chick brain microtubules were treated under the same conditions, MAP 2 remained bound to the microtubules while MAP 1 dissociated in a manner similar to vesikin. One dimensional peptide mapping procedures revealed that, although digestion of vesikin and MAP 2 generated several peptides common to both proteins, vesikin and MAP 2 are clearly not identical. Furthermore, the addition of vesikin or MAPS 1 and 2 to purified tubulin stimulated microtubule assembly in a manner dependent on the concentration of added protein. These findings demonstrate that brain MAPs share characteristics common to squid vesikin and support the suggestion that brain MAPs 1 and 2 might act as a force generating complex for vesicle transport in higher organisms.  相似文献   

17.
Conflicting data for the effects of colchicine on cholesterol transport and steroidogenesis raise the question of the role of microtubules in cholesterol transport from the lipid droplet to mitochondria in steroidogenic cells. In this study, using corticosterone radioimmunoassay and immunofluorescence microscopy, we re-evaluated the effects of colchicine on hormone production and morphological changes of lipid droplets' and studied the signaling pathway involved in colchicine-induced steroidogenesis. Colchicine stimulated steroid production in a dose- and time-dependent manner. The structural integrity of both the microtubules and the lipid droplet capsule was destroyed by colchicine treatment. Disruption of the lipid droplet capsule occurred later than microtubule depolymerization. After cessation of colchicine treatment and a 3 h recovery in fresh medium, capsular protein relocated to the droplet surface before the cytoplasmic microtubule network was re-established. beta-lumicolchicine, an inactive analogue of colchicine, disrupted the capsule and increased hormone production without affecting microtubular structure. Thus, microtubule depolymerization is not required for the increase in steroid production and capsular disruption. To explore the signaling pathway involved in colchicine-induced steroidogenesis, we measured intracellular cAMP levels. Unlike ACTH, colchicine did not increase cAMP levels, suggesting that the cAMP-PKA system is not involved. Colchicine and ACTH had additive effects on corticosterone production, whereas colchicine and PMA did not, implying that part of the PKC signaling mechanism may be involved in colchicine-induced steroidogenesis. Cycloheximide, a protein synthesis inhibitor, completely inhibited colchicine-induced steroidogenesis and capsular disruption. These results demonstrate that the steroid production and lipid droplet capsule detachment induced by colchicine are both protein neosynthesis-dependent and microtubule-independent.  相似文献   

18.
The effects of the microtubule inhibitor, colchicine, on insulin or glucagon stimulation of alpha-amino[1-14C]-isobutyric acid (AIB) transport were investigated in isolated hepatocytes from normal fed rats. Under all conditions tested, AIB uptake appeared to occur through two components of transport: a low affinity (Km approximately 50 mM) component and a high affinity (Km approximately 1 mM) component. Within 2 h of incubation, insulin and glucagon, at maximal concentrations, increase AIB (0.1 mM) uptake by 2- to 3-fold and 4- to 6-fold, respectively. Colchicine, at the low concentration of 5 X 10(-7) M, slightly reduces basal AIB transport, decreases by 80% the simulatory effect of insulin, and diminishes by 40% the stimulatory effect of either glucagon or dibutyryl cAMP. Kinetic analysis of AIB influx indicates that the drug inhibits the increase in Vmax of a high affinity (Km approximately 1 mM) component of transport stimulated by insulin or glucagon, without affecting the kinetic parameters of a low affinity component of transport (Km approximately 50 mM). Various short term hormonal effects of insulin and glucagon (changes in glucose, urea, and lactate production) were found not to be modified by the drug. Vinblastine elicits similar changes as colchicine on AIB uptake. Lumicolchicine, a colchicine analogue that does not bind to tubulin, has no effect. The concentration of colchicine (10(-7) M) required for half-maximal inhibition of hormone-stimulated AIB transport is in the appropriate range for specific microtubule disruption. These data suggest that microtubules are involved in the regulation of the insulin or glucagon stimulation of AIB transport in isolated rat hepatocytes.  相似文献   

19.
Tubulin, the subunit protein of microtubules, undergoes a time-dependent loss of functional properties known as decay. We have previously shown that the drug 2-(4-fluorophenyl)-1-(2-chloro-3,5-dimethoxyphenyl)-3-methyl-6-phenyl-4(1H)-pyridinone (IKP104) accelerates decay, but that in the presence of colchicine, IKP104 becomes a stabilizer of tubulin. To see if this is due to conformational effects specific to colchicine or simply to occupancy at the colchicine site, we examined the effects of nocodazole and podophyllotoxin, two well-known competitive inhibitors of colchicine for binding to tubulin, on IKP104’s acceleration of decay. We found that podophyllotoxin abolished IKP104’s accelerating effect and, like colchicine, turned it into a stabilizer of tubulin. Nocodazole’s effects were similar to those of podophyllotoxin and colchicine, in that it abolished IKP104-induced enhancement of decay; however, in the presence of nocodazole, IKP104 caused little or no stabilization of tubulin. Since colchicine, nocodazole, and podophyllotoxin have very different interactions with tubulin, but all inhibit the IKP104-induced enhancement of decay, our findings suggest that this inhibition arises from occupancy of the colchicine site rather than from a direct conformational effect of these two drugs.  相似文献   

20.
Tubulin, the subunit protein of microtubules, undergoes a time-dependent loss of functional properties known as decay. We have previously shown that the drug 2-(4-fluorophenyl)-1-(2-chloro-3,5-dimethoxyphenyl)-3-methyl-6-phenyl-4(1H)-pyridinone (IKP104) accelerates decay, but that in the presence of colchicine, IKP104 becomes a stabilizer of tubulin. To see if this is due to conformational effects specific to colchicine or simply to occupancy at the colchicine site, we examined the effects of nocodazole and podophyllotoxin, two well-known competitive inhibitors of colchicine for binding to tubulin, on IKP104’s acceleration of decay. We found that podophyllotoxin abolished IKP104’s accelerating effect and, like colchicine, turned it into a stabilizer of tubulin. Nocodazole’s effects were similar to those of podophyllotoxin and colchicine, in that it abolished IKP104-induced enhancement of decay; however, in the presence of nocodazole, IKP104 caused little or no stabilization of tubulin. Since colchicine, nocodazole, and podophyllotoxin have very different interactions with tubulin, but all inhibit the IKP104-induced enhancement of decay, our findings suggest that this inhibition arises from occupancy of the colchicine site rather than from a direct conformational effect of these two drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号