首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
About 14.5 kb of DNA fragments from Acetobacter xylinum ATCC23769 and ATCC53582 were cloned, and their nucleotide sequences were determined. The sequenced DNA regions contained endo-beta-1,4-glucanase, cellulose complementing protein, cellulose synthase subunit AB, C, D and beta-glucosidase genes. The results from a homology search of deduced amino acid sequences between A. xylinum ATCC23769 and ATCC53582 showed that they were highly similar. However, the amount of cellulose production by ATCC53582 was 5 times larger than that of ATCC23769 during a 7-day incubation. In A. xylinum ATCC53582, synthesis of cellulose continued after glucose was consumed, suggesting that a metabolite of glucose, or a component of the medium other than glucose, may be a substrate of cellulose. On the other hand, cell growth of ATCC23769 was twice that of ATCC53582. Glucose is the energy source in A. xylinum as well as the substrate of cellulose synthesis, and the metabolic pathway of glucose in both strains may be different. These results suggest that the synthesis of cellulose and the growth of bacterial cells are contradictory.  相似文献   

2.
The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B(2) (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria.  相似文献   

3.
Recently, it was shown that a cellulose-negative mutant (Cel1) of Acetobacter xylinum ATCC 23769 carried an insertion of an indigenous transposable element (IS1031A) about 500 bp upstream of the bcs operon, required for cellulose synthesis. Here we show that Cel1 can be complemented by wild-type DNA covering the insertion point. Nucleotide sequencing of this region revealed the presence of two open reading frames, ORF1 and ORF2. ORF2, which is disrupted by the IS1031A insertion in Cel1, potentially encodes the complementing function. ORF1 encodes a protein (CMCax) with significant homology to previously described endoglucanases. A cloned DNA fragment containing ORF1 expressed a carboxymethyl cellulose-hydrolyzing activity in Escherichia coli. In A. xylinum, CMCax is secreted into the culture growth medium. The CMCax mature protein consists of 322 amino acids and has a molecular mass of 35.6 kDa.  相似文献   

4.
The objective of this study was to identify and characterize other proteins than fimbrial proteins potentially involved in R. albus 20 adhesion to cellulose using an adhesion-related antiserum preparation (i.e. anti-Adh serum). From protein fractions of R. albus 20 grown on cellulose, the serum recognized at least 10 cellulose-binding proteins (CBPs), among which homologs of glycoside hydrolases (family 5, 9 and 48) of R. albus 8 (i.e. Cel5G, Cel9B and Cel48A) were identified by a proteomic approach. In strain 20, Cel9B and Cel48A were identified as two major CBPs and as bacterial cell-associated proteins. The anti-Adh serum was also shown to target the C-terminal family 37 carbohydrate-binding module (CBM37) of Cel9B and Cel48A, indicating that this module, unique to R. albus, may play a significant role in bacterial adhesion to cellulose as suggested previously for R. albus 8. Overall, our results support the hypothesis of an adhesion mechanism involving the CBM37 of Cel9B and Cel48A. This adhesion mechanism may not be restricted to these two enzymes but may also involve other CBM37-containing proteins such as Cel5G and the other uncharacterised proteins recognized by the anti-Adh serum. The EMBL accession numbers for the sequences reported in this paper are FM872295 for Cel9B and FM872296 for Cel48A.  相似文献   

5.
细菌纤维素的研究进展   总被引:13,自引:0,他引:13  
细菌纤维素是由醋酸杆菌属、根瘤菌属、土壤杆菌属、八叠球菌属等的某些细菌在一定条件下产生的,其中最有代表性的细菌是木醋杆菌。与传统植物纤维素相比,细菌纤维素具有很高的化学纯度。主要介绍细菌纤维素性质、生物合成的方法及其在食品工业、造纸工业和作为一种生物材料在医学工程等方面的应用。  相似文献   

6.
The genome of Clostridium thermocellum contains a number of genes for polysaccharide degradation-associated proteins that are not cellulosome bound. The list includes beta-glucanases, glycosidases, chitinases, amylases and a xylanase. One of these 'soluble'-enzyme genes codes for a second glycosyl hydrolase (GH)48 cellulase, Cel48Y, which was expressed in Escherichia coli and biochemically characterized. It is a cellobiohydrolyse with activity on native cellulose such as microcrystalline and bacterial cellulose, and low activity on carboxymethylcellulose. It is about 100 times as active on amorphic cellulose and mixed-linkage barley beta-glucan compared with cellulase Cel9I. The enzyme Cel48Y shows a distinct synergism of 2.1 times with the noncellulosomal processive endoglucanase Cel9I on highly crystalline bacterial cellulose at a 17-fold excess of Cel48Y over Cel9I. These data show that C. thermocellum has, besides the cellulosome, the genes for a second cellulase system for the hydrolysis of crystalline cellulose that is not particle bound.  相似文献   

7.
Dispersed cellulose ribbons from bacterial cellulose were subjected to digestion with cloned Cel7A (cellobiohydrolase [CBH] I) and Cel6A (CBH II) from Humicola insolens either alone or in a mixture and in the presence of an excess of beta-glucosidase. Both Cel7A and Cel6A were effective in partially converting the ribbons into soluble sugars, Cel7A being more active than Cel6A. In combination, these enzymes showed substantial synergy culminating with a molar ratio of approximately two-thirds Cel6A and one-third Cel7A. Ultrastructural transmission electron microscopy (TEM) observations indicated that Cel7A induced a thinning of the cellulose ribbons, whereas Cel6A cut the ribbons into shorter elements, indicating an endo type of action. These observations, together with the examination of the digestion kinetics, indicate that Cel6A can be classified as an endo-processive enzyme, whereas Cel7A is essentially a processive enzyme. Thus, the synergy resulting from the mixing of Cel6A and Cel7A can be explained by the partial endo character of Cel6A. A preparation of bacterial cellulose ribbons appears to be an appropriate substrate, superior to Valonia or bacterial cellulose microcrystals, to visualize directly by TEM the endo-processivity of an enzyme such as Cel6A.  相似文献   

8.
Cellulose biosynthesis and function in bacteria.   总被引:66,自引:1,他引:65       下载免费PDF全文
The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most evident for Acetobacter xylinum, polymerization and assembly appear to be tightly coupled. To date, only bacteria have been effectively studied at the biochemical and genetic levels. In A. xylinum, the cellulose synthase, composed of at least two structurally similar but functionally distinct subunits, is subject to a multicomponent regulatory system. Regulation is based on the novel nucleotide cyclic diguanylic acid, a positive allosteric effector, and the regulatory enzymes maintaining its intracellular turnover: diguanylate cyclase and Ca2(+)-sensitive bis-(3',5')-cyclic diguanylic acid (c-di-GMP) phosphodiesterase. Four genes have been isolated from A. xylinum which constitute the operon for cellulose synthesis. The second gene encodes the catalytic subunit of cellulose synthase; the functions of the other three gene products are still unknown. Exclusively an extracellular product, bacterial cellulose appears to fulfill diverse biological roles within the natural habitat, conferring mechanical, chemical, and physiological protection in A. xylinum and Sarcina ventriculi or facilitating cell adhesion during symbiotic or infectious interactions in Rhizobium and Agrobacterium species. A. xylinum is proving to be most amenable for industrial purposes, allowing the unique features of bacterial cellulose to be exploited for novel product applications.  相似文献   

9.
The enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum grown on crystalline cellulose as a sole carbon and energy source was explored by two-dimensional electrophoresis. The cellulolytic system of C. cellulolyticum is composed of at least 30 dockerin-containing proteins (designated cellulosomal proteins) and 30 noncellulosomal components. Most of the known cellulosomal proteins, including CipC, Cel48F, Cel8C, Cel9G, Cel9E, Man5K, Cel9M, and Cel5A, were identified by using two-dimensional Western blot analysis with specific antibodies, whereas Cel5N, Cel9J, and Cel44O were identified by using N-terminal sequencing. Unknown enzymes having carboxymethyl cellulase or xylanase activities were detected by zymogram analysis of two-dimensional gels. Some of these enzymes were identified by N-terminal sequencing as homologs of proteins listed in the NCBI database. Using Trap-Dock PCR and DNA walking, seven genes encoding new dockerin-containing proteins were cloned and sequenced. Some of these genes are clustered. Enzymes encoded by these genes belong to glycoside hydrolase families GH2, GH9, GH10, GH26, GH27, and GH59. Except for members of family GH9, which contains only cellulases, the new modular glycoside hydrolases discovered in this work could be involved in the degradation of different hemicellulosic substrates, such as xylan or galactomannan.  相似文献   

10.
The inhibition effect of cellobiose on the initial stage of hydrolysis when cellobiohydrolase Cel 7A and endoglucanases Cel 7B, Cel 5A, and Cel 12A from Trichoderma reesei were acting on bacterial cellulose and amorphous cellulose that were [(3)H]- labeled at the reducing end was quantified. The apparent competitive inhibition constant (K(i)) for Cel 7A on [(3)H]-bacterial cellulose was found to be 1.6 +/- 0.5 mM, 100-fold higher than that for Cel 7A acting on low-molecular-weight model substrates. The hydrolysis of [(3)H]-amorphous cellulose by endoglucanases was even less affected by cellobiose inhibition with apparent K(i) values of 11 +/- 3 mM and 34 +/- 6 mM for Cel 7B and Cel 5A, respectively. Contrary to the case for the other enzymes studied, the release of radioactive label by Cel 12A was stimulated by cellobiose, possibly due to a more pronounced transglycosylating activity. Theoretical analysis of the inhibition of Cel 7A by cellobiose predicted an inhibition analogous to that of mixed type with two limiting cases, competitive inhibition if the prevalent enzyme-substrate complex without inhibitor is productive and conventional mixed type when the prevalent enzyme-substrate complex is nonproductive.  相似文献   

11.
The family II cellulose-binding modules (CBM) from Thermobifida fusca Cel5A and Cel48A were cloned in the Escherichia coli/Streptomyces shuttle vector pD730, and the plasmids were transformed into Streptomyces lividans TKM31. CBM(Cel5A), and CBM(Cel48A), CBM(Cel6B) were expressed and purified from S. lividans. The molecular masses were determined by mass spectrometry, and the values were 10595 +/- 2, 10915 +/- 2, and 11291 +/- 2 Da for CBM(Cel5A), CBM(Cel6B), and CBM(Cel48A), respectively. Three different binding models (Langmuir, Interstice Penetration, and Interstice Saturation) were tested to describe the binding isotherms of these CBMs on bacterial microcrystalline cellulose (BMCC). The experimental binding isotherms of T. fusca family II CBMs on BMCC are best modeled by the Interstice Saturation model, which includes binding to the constrained interstice surface of BMCC as well as traditional Langmuir binding on the freely accessible surface. The Interstice Saturation model consists of three different steps (Langmuir binding, interstice binding, and interstice saturation). Full reversibility only occurred in the Langmuir region. The irreversibility in the interstice binding and saturation regions probably was caused by interstice entrapment. Temperature shift experiments in different binding regions support the interstice entrapment assumption. There was no systematic difference in binding between the two types of exocellulase CBMs--one that hydrolyzes cellulose from the nonreducing (CBM(Cel6B)) end and one that hydrolyzes cellulose from the reducing end (CBM(Cel48A)).  相似文献   

12.
We examined the binding of polyomavirus large (L-T)-, middle (M-T)-, and small-tumor antigens to DNA cellulose. At pH 6.0, the majority of L-T bound to calf thymus DNA cellulose, while little or no small tumor antigen was retained under these conditions. Unexpectedly, a small but reproducible proportion of M-T bound to both native and denatured DNA cellulose. M-T encoded by polyomavirus mutant dl 8, which expressed shortened L-T and M-T, bound to DNA, indicating that the deleted sequences are not required for DNA binding. Also, M-T from transformed BMT-1 rat cells, which synthesize exclusively this polyomavirus tumor antigen, bound to DNA, indicating that its binding is not due to association with other polyomavirus-encoded proteins. Using the DNA fragment immunoassay, we found that, under conditions in which L-T bound specifically to DNA fragments containing viral regulatory sequences, no viral DNA fragments were bound by M-T. The existence of distinct subpopulations of M-T that differ in their DNA-binding properties was indicated by rebinding experiments in which M-T that had bound to DNA cellulose rebound very efficiently, while that which had not been originally retained by DNA cellulose rebound poorly. Furthermore, the M-T-pp60 c-src complex did not bind to DNA cellulose. These data suggest that polyomavirus M-T is heterogeneous, consisting of populations of molecules that differ in their interactions with DNA cellulose.  相似文献   

13.
A new cellulosomal protein from Clostridium cellulolyticum Cel9M was characterized. The protein contains a catalytic domain belonging to family 9 and a dockerin domain. Cel9M is active on carboxymethyl cellulose, and the hydrolysis of this substrate is accompanied by a decrease in viscosity. Cel9M has a slight, albeit significant, activity on both Avicel and bacterial microcrystalline cellulose, and the main soluble sugar released is cellotetraose. Saccharification of bacterial microcrystalline cellulose by Cel9M in association with two other family 9 enzymes from C. cellulolyticum, namely, Cel9E and Cel9G, was measured, and it was found that Cel9M acts synergistically with Cel9E. Complexation of Cel9M with the mini-CipC1 containing the cellulose binding domain, the X2 domain, and the first cohesin domain of the scaffoldin CipC of the bacterium did not significantly increase the hydrolysis of Avicel and bacterial microcrystalline cellulose.  相似文献   

14.
Nine major cellulolytic enzymes were isolated from a culture broth of a mutant strain of the fungus Penicillium verruculosum: five endo-1, 4-β-glucanases (EGs) having molecular masses 25, 33, 39, 52, and 70 kDa, and four cellobiohydrolases (CBHs: 50, 55, 60, and 66 kDa). Based on amino acid similarities of short sequenced fragments and peptide mass fingerprinting, the isolated enzymes were preliminary classified into different families of glycoside hydrolases: Cel5A (EG IIa, 39 kDa), Cel5B (EG IIb, 33 kDa), Cel6A (CBH II, two forms: 50 and 60 kDa), Cel7A (CBH I: 55 and 66 kDa), Cel7B (EG I: 52 and 70 kDa). The 25 kDa enzyme was identical to the previously isolated Cel12A (EG III). The family assignment was further confirmed by the studies of the substrate specificity of the purified enzymes. High-molecular-weight forms of the Cel6A, Cel7A, and Cel7B were found to possess a cellulose-binding module (CBM), while the catalytically active low-molecular-weight forms of the enzymes, as well as other cellulases, lacked the CBM. Properties of the isolated enzymes, such as substrate specificity toward different polysaccharides and synthetic glycosides, effect of pH and temperature on the enzyme activity and stability, adsorption on Avicel cellulose and kinetics of its hydrolysis, were investigated.  相似文献   

15.
A second cellulose synthase gene (acsAII) coding for a 175-kDa polypeptide that is similar in size and sequence to the acsAB gene product has been identified in Acetobacter xylinum AY201. Evidence for the presence of this gene was obtained during analysis of A. xylinum mutants in which the acsAB gene was disrupted (I.M. Saxena, K. Kudlicka, K. Okuda, and R.M. Brown, Jr., J. Bacteriol. 176:5735-5752, 1994). Although these mutants produced no detectable cellulose, they exhibited significant cellulose synthase activity in vitro. The acsAII gene was isolated by using an acsAB gene fragment as a probe. The acsAII gene coded for cellulose synthase activity as determined from sequence analysis and study of mutants in which this gene was disrupted. A mutant in which only the acsAII gene was disrupted showed no significant differences in either the in vivo cellulose production or the in vitro cellulose synthase activity compared with wild-type cells. Mutants in which both the acsAII and acsAB genes were disrupted produced no cellulose in vivo and exhibited negligible cellulose synthase activity in vitro, thus confirming that the cellulose synthase activity observed in the acsAB mutants was coded by the acsAII gene. These results establish the presence of an additional gene for cellulose synthase expressed in cells of A. xylinum, yet this gene is not required for cellulose production when cells are grown under laboratory conditions.  相似文献   

16.
Three sets of cellulose synthase genes were cloned from a cellulose-producing bacterium Acetobacter xylinum JCM 7664. One set of genes (bcsAI/bcsBI/bcsCI/bcsDI) were highly conserved with the well-established type I genes in other strains of A. xylinum, while the other two (bcsABII-A, bcsABII-B) were homologous to the known type II (acsAII). Unexpectedly, they were immediately followed by a gene cluster of bcsX/bcsY/bcsCII/ORF569, likely forming an operon. Western blotting demonstrated that the BcsY protein accumulated in cells. Since BcsY showed striking similarities to a number of membrane-bound transacylases, it was hypothesized that the type II cellulose synthase produces acylated cellulose, which might be anchored on the cytoplasmic membrane. An insertion sequence of IS1380-type was found just upstream of the one type II gene (bcsABII-B), suggestive of nonfunctioning.  相似文献   

17.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

18.
As part of the effort to find better cellulases for bioethanol production processes, we were looking for novel GH-7 family cellobiohydrolases, which would be particularly active on insoluble polymeric substrates and participate in the rate-limiting step in the hydrolysis of cellulose. The enzymatic properties were studied and are reported here for family 7 cellobiohydrolases from the thermophilic fungi Acremonium thermophilum, Thermoascus aurantiacus, and Chaetomium thermophilum. The Trichoderma reesei Cel7A enzyme was used as a reference in the experiments. As the native T. aurantiacus Cel7A has no carbohydrate-binding module (CBM), recombinant proteins having the CBM from either the C. thermophilum Cel7A or the T. reesei Cel7A were also constructed. All these novel acidic cellobiohydrolases were more thermostable (by 4-10 degrees C) and more active (two- to fourfold) in hydrolysis of microcrystalline cellulose (Avicel) at 45 degrees C than T. reesei Cel7A. The C. thermophilum Cel7A showed the highest specific activity and temperature optimum when measured on soluble substrates. The most effective enzyme for Avicel hydrolysis at 70 degrees C, however, was the 2-module version of the T. aurantiacus Cel7A, which was also relatively weakly inhibited by cellobiose. These results are discussed from the structural point of view based on the three-dimensional homology models of these enzymes.  相似文献   

19.
A strategy for the stable expression of proteins, or large protein fragments, from Chlamydia trachomatis into human cells was designed to identify bacterial epitopes endogenously processed and presented by HLA-B27. Fusion protein constructs in which the green fluorescent protein gene was placed at the 5'-end of the bacterial DNA primase gene or some of its fragments were transfected into B*2705-C1R cells. One of these constructs, including residues 90-450 of the bacterial protein, was stably and efficiently expressed. Mass spectrometry-based comparative analysis of HLA-B27-bound peptide pools led to identification of three HLA-B27 ligands differentially presented in the transfectant cells. Sequencing of these peptides confirmed that they were derived from the bacterial DNA primase. One of them, spanning residues 211-221, showed 55% sequence identity with a known self-ligand of HLA-B27 derived from its own molecule. The other two bacterial ligands, P-(112-121) and P-(112-122), were derived from the same region and differed in length by one residue at the C terminus. Both peptides showed >50% identity with multiple human protein sequences that possessed the optimal peptide motifs for HLA-B27 binding. Thus, expression of proteins from arthritogenic bacteria in HLA-B27-positive human cells allows identifying bacterial peptides that are endogenously processed and presented by HLA-B27 and show molecular mimicry with known self-ligands of this molecule and human proteins.  相似文献   

20.
Elucidating the molecular mechanisms that govern synergism is important for the rational engineering of cellulase mixtures. Our goal was to observe how varying the loading molar ratio of cellulases in a binary mixture and the recalcitrance of the cellulose to enzymatic degradation influenced the degree of synergistic effect (DSE) and degree of synergistic binding (DSB). The effect of cellulose recalcitrance was studied using a bacterial microcrystalline cellulose (BMCC), which was exhaustively hydrolyzed by a catalytic domain of Cel5A, an endocellulase. The remaining prehydrolyzed BMCC (PHBMCC) was used to represent a recalcitrant form of cellulose. DSE was observed to be sensitive to loading molar ratio. However, on the more recalcitrant cellulose, synergism decreased. Furthermore, the results from this study reveal that when an exocellulase (Cel6B) is mixed with either an endocellulase (Cel5A) or a processive endocellulase (Cel9A) and reacted with BMCC, synergism is observed in both hydrolysis and binding. This study also revealed that when a "classical" endocellulase (Cel5A) and a processive endocellulase (Cel9A) are mixed and reacted with BMCC, only limited synergism is observed in reducing sugar production; however, binding is clearly increased by the presence of the Cel5A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号