首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine and its metabolite, inosine, have been described as molecules that participate in regulation of inflammatory response. The aim of this study was to investigate the effect of adenosine and inosine in a mouse model of carrageenan-induced pleurisy as well as the participation of adenosine receptors in this response. Injection of carrageenan into the pleural cavity induced an acute inflammatory response characterized by leukocyte migration, pleural exudation, and increased release of interleukin-1β and tumor necrosis factor-α in pleural exudates. The treatment with adenosine (0.3–100 mg/kg, i.p.) and inosine (0.1–300 mg/kg, i.p.) 30 min before carrageenan injection reduced significantly all these parameters analyzed. Our results also demonstrated that A2A and A2B receptors seem to mediate the adenosine and inosine effects observed, since pretreatment with selective antagonists of adenosine A2A (ZM241385) and A2B (alloxazine) receptors, reverted the inhibitory effects of adenosine and inosine in pleural inflammation. The involvement of A2 receptors was reinforced with adenosine receptor agonist CGS21680 treatment, since its anti-inflammatory effects were reversed completely and partially with ZM241385 and alloxazine injection, respectively. Moreover, the combined treatment with subeffective dose of adenosine (0.3 mg/kg) and inosine (1.0 mg/kg) induced a synergistic anti-inflammatory effect. Thus, based on these findings, we propose that inosine contributes with adenosine to exert anti-inflammatory effects in pleural inflammation, reinforcing the notion that endogenous nucleosides play an important role in controlling inflammatory diseases. This effect is likely mediated by the activation of adenosine A2 subtype receptors and inhibition of production or release of pro-inflammatory cytokines.  相似文献   

2.
Adenosine, acting at its receptors, particularly A(2A) receptors, is a potent endogenous anti-inflammatory agent that modulates the functions and differentiation of inflammatory and immune cells. Because the inflammatory milieu abounds in proinflammatory cytokines, we investigated the effects of Th1-inflammatory cytokines on function and expression of adenosine A(2A) receptors in the human monocytic cell line THP-1. We found that, consistent with previous reports, adenosine and 2-[p-(2-carnonylethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS-21680), a selective A(2A) receptor agonist, suppress IL-12 production but increase IL-10 production in LPS-activated THP-1 cells. These effects were blocked by the A(2A) receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM-241385). More importantly, the suppressive effect of adenosine and CGS-21680 on IL-12 production was significantly enhanced in cells pretreated with either IL-1 (10 U/ml) or TNF-alpha (100 U/ml) but markedly attenuated in cells pretreated with IFN-gamma (100 U/ml). Similarly, IL-1 and TNF-alpha treatment potentiated the stimulatory effect of adenosine and CGS-21680 on IL-10 production, whereas IFN-gamma treatment almost completely abolished this effect. CGS-21680 stimulated an increase in intracellular cAMP in a time- and dose-dependent manner in IL-1- and TNF-alpha-treated cells but not in control or IFN-gamma-treated cells. Both IL-1 and TNF-alpha increased A(2A) receptor mRNA and protein. In parallel with its effect on A(2A) receptor function, IFN-gamma down-regulated A(2A) receptor message and protein. Because adenosine mediates many of the antiinflammatory effects of drugs such as methotrexate, these observations suggest that local changes in the cytokine milieu may influence the therapeutic response to those drugs by altering the expression and function of adenosine receptors on inflammatory cells.  相似文献   

3.
Efficient execution of apoptotic cell death followed by efficient clearance mediated by professional macrophages is a key mechanism in maintaining tissue homeostasis. Removal of apoptotic cells usually involves three central elements: 1) attraction of phagocytes via soluble "find me" signals, 2) recognition and phagocytosis via cell surface-presenting "eat me" signals, and 3) suppression or initiation of inflammatory responses depending on additional innate immune stimuli. Suppression of inflammation involves both direct inhibition of proinflammatory cytokine production and release of anti-inflammatory factors, which all contribute to the resolution of inflammation. In the current study, using wild-type and adenosine A(2A) receptor (A2AR) null mice, we investigated whether A2ARs, known to mediate anti-inflammatory signals in macrophages, participate in the apoptotic cell-mediated immunosuppression. We found that macrophages engulfing apoptotic cells release adenosine in sufficient amount to trigger A2ARs, and simultaneously increase the expression of A2ARs, as a result of possible activation of liver X receptor and peroxisome proliferators activated receptor δ. In macrophages engulfing apoptotic cells, stimulation of A2ARs suppresses the NO-dependent formation of neutrophil migration factors, such as macrophage inflammatory protein-2, using the adenylate cyclase/protein kinase A pathway. As a result, loss of A2ARs results in elevated chemoattractant secretion. This was evident as pronounced neutrophil migration upon exposure of macrophages to apoptotic cells in an in vivo peritonitis model. Altogether, our data indicate that adenosine is one of the soluble mediators released by macrophages that mediate engulfment-dependent apoptotic cell suppression of inflammation.  相似文献   

4.
We and others have shown that adenosine, acting at its receptors, is a potent modulator of inflammation and angiogenesis. To better understand the regulation of adenosine receptors during these processes we studied the effects of IL-1, TNF-alpha, and IFN-gamma on expression and function of adenosine receptors and select members of their coupling G proteins in human dermal microvascular endothelial cells (HMVEC). HMVEC expressed message and protein for A(2A) and A(2B), but not A(1) or A(3) receptors. IL-1 and TNF-alpha treatment increased message and protein expression of A(2A) and A(2B) receptor. IFN-gamma treatment also increased the expression of A(2B) receptors, but decreased expression of A(2A) receptors. Resting HMVEC and IFN-gamma-treated cells showed minimal cAMP response to the selective A(2A) receptor agonist 2-[2-(4-chlorophenyl)ethoxy]adenosine (MRE0094). In contrast, MRE0094 stimulated a dose-dependent increase in cAMP levels in TNF-alpha-treated cells that was almost completely blocked by the A(2A) receptor antagonist ZM-241385 (4-[2-[7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl]phenol). The nonselective adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine increased cAMP levels in both TNF-alpha- and IFN-gamma-treated cells, but not control cells, and its effect was only partially reversed by ZM-241385 in TNF-alpha-treated cells and not affected in IFN-gamma-treated cells. HMVEC expressed a higher level of G protein beta1 isoform than beta4 isoform. Although none of the cytokines tested affected G(beta1) expression, both IL-1 and TNF-alpha significantly up-regulated G(beta4) expression. These findings indicate that inflammatory cytokines modulate adenosine receptor expression and function on HMVECs and suggest that the interaction between proinflammatory cytokines and adenosine receptors may affect therapeutic responses to anti-inflammatory drugs that act via adenosine-dependent mechanisms.  相似文献   

5.
The adenosine 2A receptor (A2AR) is greatly involved in inflammation pathologies such as rheumatoid arthritis. By interacting with A2AR, the purine nucleoside adenosine acts as a potent endogenous inhibitor of the inflammatory process in a variety of tissues. Hyaluronan (HA) fragments act to prime inflammation via CD44 and the toll-like receptor 4 (TLR-4). The aim of this study was to investigate whether the inhibition/stimulation of A2AR modulates the inflammation cascade primed by small HA fragments in mouse articular chondrocytes.6-mer HA treatment induced up-regulation of CD44, TLR4 and A2AR mRNA expression and the related protein levels, and NF-kB activation, that in turn increased TNF-α, IL-1β, and IL-6 and production. Treatment with a selective 2A adenosine receptor agonist (2-phenylaminoadenosine) enhanced A2AR increase, as well as the inhibition of CD44 and TLR4 activity using two specific antibodies abolished up-regulation of CD44 and TLR4, and significantly reduced, especially by antibody inhibition, NF-kB activation and pro-inflammatory cytokine production. Furthermore, the exposure of chondrocytes to A2AR specific interference mRNA (A2AR siRNA) enhanced HA 6-mer induced NF-kB activation and inflammatory cytokine increase. Finally, the use of an exchange protein activated by cAMP (EPAC) siRNA and a specific PKA inhibitor showed a predominant EPAC involvement in the mediation of the anti-inflammatory activity exerted by A2AR stimulation.These data suggest that HA depolymerization occurring during inflammation contributes to priming of the inflammatory cascade, while endogenous adenosine, by exerting anti-inflammatory response via A2AR, could be a modulatory mechanism that attempts to attenuate the inflammation process.  相似文献   

6.
The genetic elimination of A2A adenosine receptors (A2AR) was shown to disengage the critical immunosuppressive mechanism and cause the dramatic exacerbation of acute inflammatory tissue damage by T cells and myeloid cells. This prompted the evaluation of the proinflammatory vs the anti-inflammatory effects of the widely consumed behavioral drug caffeine, as the psychoactive effects of caffeine are mediated largely by its antagonistic action on A2AR in the brain. Because caffeine has other biochemical targets besides A2AR, it was important to test whether the consumption of caffeine during an acute inflammation episode would lead to the exacerbation of immune-mediated tissue damage. We examined acute and chronic treatment with caffeine for its effects on acute liver inflammation. It is shown that caffeine at lower doses (10 and 20 mg/kg) strongly exacerbated acute liver damage and increased levels of proinflammatory cytokines. Because caffeine did not enhance liver damage in A2AR-deficient mice, we suggest that the potentiation of liver inflammation was mediated by interference with the A2AR-mediated tissue-protecting mechanism. In contrast, a high dose of caffeine (100 mg/kg) completely blocked both liver damage and proinflammatory cytokine responses through an A2AR-independent mechanism. Furthermore, caffeine administration exacerbated liver damage even when mice consumed caffeine chronically, although the extent of exacerbation was less than in "naive" mice that did not consume caffeine before. This study suggests an unappreciated "man-made" immunological pathogenesis whereby consumption of the food-, beverage-, and medication-derived adenosine receptor antagonists may modify an individual's inflammatory status and lead to excessive organ damage during acute inflammation.  相似文献   

7.
Interleukin 12 (IL-12) is a crucial cytokine in the regulation of T helper 1 vs. T helper 2 immune responses. In the present study, we investigated the effect of the endogenous purine nucleoside adenosine on the production of IL-12. In mouse macrophages, adenosine suppressed IL-12 production. Although the order of potency of adenosine receptor agonists suggested the involvement of A2a receptors, data obtained with A2a receptor-deficient mice showed that the adenosine suppression of IL-12 and even TNF-alpha production is only partly mediated by A2a receptor ligation. Studies with adenosine receptor antagonists or the adenosine uptake blocker dipyridamole showed that adenosine released endogenously also decreases IL-12. Although adenosine increases IL-10 production, the inhibition of IL-12 production is independent of the increased IL-10. The mechanism of action of adenosine was not associated with alterations of the activation of the p38 and p42/p44 mitogen-activated protein kinases or the phosphorylation of the c-Jun terminal kinase. Adenosine failed to affect steady-state levels of either IL-12 p35 or p40 mRNA, but augmented IL-10 mRNA levels. In summary, adenosine inhibits IL-12 production via various adenosine receptors. These results support the notion that adenosine-based therapies might be useful in certain autoimmune and/or inflammatory diseases.  相似文献   

8.
Prior studies demonstrate that adenosine, acting at one or more of its receptors, mediates the anti-inflammatory effects of methotrexate in animal models of both acute and chronic inflammation. Both adenosine A2A and A3 receptors contribute to the anti-inflammatory effects of methotrexate treatment in the air pouch model of inflammation, and the regulation of inflammation by these two receptors differs at the cellular level. Because different factors may regulate inflammation at different sites we examined the effect of low-dose weekly methotrexate treatment (0.75 mg/kg/week) in a model of acute peritoneal inflammation in adenosine A2A receptor knockout mice and A3 receptor knockout mice and their wild-type littermates. Following intraperitoneal injection of thioglycollate there was no significant difference in the number or type of leukocytes, tumor necrosis factor alpha (TNF-α) and IL-10 levels that accumulated in the thioglycollate-induced peritoneal exudates in adenosine A2A knockout mice or wild-type control mice. In contrast, there were more leukocytes, TNF-α and IL-10 in the exudates of the adenosine A3 receptor-deficient mice. Low-dose, weekly methotrexate treatment increased the adenosine concentration in the peritoneal exudates of all mice studied, and reduced the leukocyte accumulation in the wild-type mice and A3 receptor knockout mice but not in the A2A receptor knockout mice. Methotrexate reduced exudate levels of TNF-α in the wild-type mice and A3 receptor knockout mice but not the A2A receptor knockout mice. More strikingly, IL-10, a critical regulator of peritoneal inflammation, was increased in the methotrexate-treated wild-type mice and A3 knockout mice but decreased in the A2A knockout mice. Dexamethasone, an agent that suppresses inflammation by a different mechanism, was similarly effective in wild-type mice, A2A mice and A3 knockout mice. These findings provide further evidence that adenosine is a potent regulator of inflammation that mediates the anti-inflammatory effects of methotrexate. Moreover, these data provide strong evidence that the anti-inflammatory effects of methotrexate and adenosine are mediated by different receptors in different inflammatory loci, an observation that may explain why inflammatory diseases of some organs but not of other organs respond to methotrexate therapy.  相似文献   

9.
Adenosine is an endogenous metabolite produced during hypoxia or inflammation. Previously implicated as an anti-inflammatory mediator in CD4(+) T cell regulation, we report that adenosine acts via dendritic cell (DC) A(2B) adenosine receptor (A(2B)AR) to promote the development of Th17 cells. Mouse naive CD4(+) T cells cocultured with DCs in the presence of adenosine or the stable adenosine mimetic 5'-(N-ethylcarboximado) adenosine resulted in the differentiation of IL-17- and IL-22-secreting cells and elevation of mRNA that encode signature Th17-associated molecules, such as IL-23R and RORγt. The observed response was similar when DCs were generated from bone marrow or isolated from small intestine lamina propria. Experiments using adenosine receptor antagonists and cells from A(2B)AR(-/-) or A(2A)AR(-/-)/A(2B)AR(-/-) mice indicated that the DC A(2B)AR promoted the effect. IL-6, stimulated in a cAMP-independent manner, is an important mediator in this pathway. Hence, in addition to previously noted direct effects of adenosine receptors on regulatory T cell development and function, these data indicated that adenosine also acts indirectly to modulate CD4(+) T cell differentiation and suggested a mechanism for putative proinflammatory effects of A(2B)AR.  相似文献   

10.
Inosine, a naturally occurring purine formed from the breakdown of adenosine, is associated with immunoregulatory effects. Evidence shows that inosine modulates lung inflammation and regulates cytokine generation. However, its role in controlling allergen-induced lung inflammation has yet to be identified. In this study, we aimed to investigate the role of inosine and adenosine receptors in a murine model of lung allergy induced by ovalbumin (OVA). Intraperitoneal administration of inosine (0.001–10 mg/kg, 30 min before OVA challenge) significantly reduced the number of leukocytes, macrophages, lymphocytes and eosinophils recovered in the bronchoalveolar lavage fluid of sensitized mice compared with controls. Interestingly, our results showed that pre-treatment with the selective A2A receptor antagonist (ZM241385), but not with the selective A2B receptor antagonist (alloxazine), reduced the inhibitory effects of inosine against macrophage count, suggesting that A2A receptors mediate monocyte recruitment into the lungs. In addition, the pre-treatment of mice with selective A3 antagonist (MRS3777) also prevented inosine effects against macrophages, lymphocytes and eosinophils. Histological analysis confirmed the effects of inosine and A2A adenosine receptors on cell recruitment and demonstrated that the treatment with ZM241385 and alloxazine reverted inosine effects against mast cell migration into the lungs. Accordingly, the treatment with inosine reduced lung elastance, an effect related to A2 receptors. Moreover, inosine reduced the levels of Th2-cytokines, interleukin-4 and interleukin-5, an effect that was not reversed by A2A or A2B selective antagonists. Our data show that inosine acting on A2A or A3 adenosine receptors can regulate OVA-induced allergic lung inflammation and also implicate inosine as an endogenous modulator of inflammatory processes observed in the lungs of asthmatic patients.  相似文献   

11.
Adenosine is a potent endogenous anti-inflammatory agent released by cells in metabolically unfavorable conditions, such as hypoxia or ischemia. Adenosine modulates different functional activities in macrophages. Some of these activities are believed to be induced through the uptake of adenosine into the macrophages, while others are due to the interaction with specific cell surface receptors. In murine bone marrow-derived macrophages, the use of different radioligands for adenosine receptors suggests the presence of A2B and A3 adenosine receptor subtypes. The presence of A2B receptors was confirmed by flow cytometry using specific Abs. The A2B receptor is functional in murine macrophages, as indicated by the fact that agonists of A2B receptors, but not agonists for A1, A2A, or A3, lead to an increase in cAMP levels. IFN-gamma up-regulates the surface protein and gene expression of the A2B adenosine receptor by induction of de novo synthesis. The up-regulation of A2B receptors correlates with an increase in cAMP production in macrophages treated with adenosine receptor agonist. The stimulation of A2B receptors by adenosine or its analogues inhibits the IFN-gamma-induced expression of MHC class II genes and also the IFN-gamma-induced expression of nitric oxide synthase and of proinflammatory cytokines. Therefore, the up-regulation of the A2B adenosine receptor expression induced by IFN-gamma could be a feedback mechanism for macrophage deactivation.  相似文献   

12.
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.  相似文献   

13.
Adenosine has been implicated to play a role in asthma in part through its ability to influence mediator release from mast cells. Most physiological roles of adenosine are mediated through adenosine receptors; however, the mechanisms by which adenosine influences mediator release from lung mast cells are not understood. We established primary murine lung mast cell cultures and used real-time RT-PCR and immunofluorescence to demonstrate that the A(2A), A(2B), and A(3) adenosine receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists suggested that activation of A(3) receptors could induce mast cell histamine release in association with increases in intracellular Ca(2+) that were mediated through G(i) and phosphoinositide 3-kinase signaling pathways. The function of A(3) receptors in vivo was tested by exposing mice to the A(3) receptor agonist, IB-MECA. Nebulized IB-MECA directly induced lung mast cell degranulation in wild-type mice while having no effect in A(3) receptor knockout mice. Furthermore, studies using adenosine deaminase knockout mice suggested that elevated endogenous adenosine induced lung mast cell degranulation by engaging A(3) receptors. These results demonstrate that the A(3) adenosine receptor plays an important role in adenosine-mediated murine lung mast cell degranulation.  相似文献   

14.
Evidence has accumulated in the last three decades to suggest tissue protection and regeneration by adenosine in multiple different cell types. Adenosine produced in hypoxic or inflamed environments reduces tissue injury and promotes repair by receptor-mediated mechanisms. Among other actions, regulation of cytokine production and secretion by immune cells, astrocytes and microglia (the brain immunocytes) has emerged as a main mechanism at the basis of adenosine effects in diseases characterized by a marked inflammatory component. Many recent studies have highlighted that signalling through A1 and A2A adenosine receptors can powerfully prevent the release of pro-inflammatory cytokines, thus inhibiting inflammation and reperfusion injury. However, the activation of adenosine receptors is not invariably protective of tissues, as signalling through the A2B adenosine receptor has been linked to pro-inflammatory actions which are, at least in part, mediated by increased release of pro-inflammatory cytokines from epithelial cells, astrocytes and fibroblasts. Here, we discuss the multiple actions of P1 receptors on cytokine secretion, by analyzing, in particular, the role of the various adenosine receptor subtypes, the complex reciprocal interplay between the adenosine and the cytokine systems, their pathophysiological significance and the potential of adenosine receptor ligands as new anti-inflammatory agents.  相似文献   

15.
Adenosine specifically inhibits superoxide anion generation by N-formyl-methionyl-leucyl-phenylalanine-stimulated neutrophils without affecting either degranulation or "aggregation." We present data that also supports the hypothesis that adenosine engages a specific cell surface receptor to mediate inhibition of stimulated neutrophils. Theophylline (10 and 100 mu M), a competitive antagonist at adenosine receptors, reversed the effects of adenosine (0.1 mu M) on superoxide anion generation by stimulated neutrophils. The adenosine analogue 5'N-ethylcarboxamidoadenosine (NECA) was a more potent inhibitor of superoxide anion generation than either N6-phenylisopropyladenosine (PIA) or adenosine, an order of potency consistent with that previously demonstrated for adenosine A2 receptors. 2-Chloroadenosine inhibited superoxide anion generation at concentrations similar to NECA. [3H]-NECA and [3H]-2-chloroadenosine bound to a single receptor on intact neutrophils. The characteristics of the receptors for [3H]-NECA and [3H]-2-chloroadenosine were similar (Kd = 0.22 and 0.23 mu M, respectively; number of binding sites = 9.31 and 11.1 X 10(3) sites/cell, respectively). NECA, 2-chloroadenosine, adenosine, and PIA inhibited binding of [3H]-NECA with a rank order similar to that for inhibition of superoxide anion generation (NECA = 2-chloroadenosine greater than adenosine greater than PIA). There was 50% inhibition of superoxide anion generation by NECA at approximately 20% receptor occupancy. Adenosine, derived from damaged tissues, may serve as a specific, endogenous modulator of superoxide anion generation by activated neutrophils through interaction at this newly described receptor on human neutrophils.  相似文献   

16.
Despite a widely accepted role of arrestins as "uncouplers" of G protein-coupled receptor (GPCR) signaling, few studies have demonstrated the ability of arrestins to affect second messenger generation by endogenously expressed receptors in intact cells. In this study we demonstrate arrestin specificity for endogenous GPCRs in primary cultures of human airway smooth muscle (HASM). Expression of arrestin-green fluorescent protein (ARR2-GFP or ARR3-GFP) chimeras in HASM significantly attenuated isoproterenol (beta(2)-adrenergic receptor (beta(2)AR)-mediated)- and 5'-(N-ethylcarboxamido)adenosine (A2b adenosine receptor-mediated)-stimulated cAMP production, with fluorescent microscopy demonstrating agonist-promoted redistribution of cellular ARR2-GFP into a punctate formation. Conversely, prostaglandin E(2) (PGE(2))-mediated cAMP production was unaffected by arrestin-GFP, and PGE(2) had little effect on arrestin-GFP distribution. The pharmacological profile of various selective EP receptor ligands suggested a predominantly EP2 receptor population in HASM. Further analysis in COS-1 cells revealed that ARR2-GFP expression increased agonist-promoted internalization of wild type beta(2)AR and EP4 receptors, whereas EP2 receptors remained resistant to internalization. However, expression of an arrestin whose binding to GPCRs is largely independent of receptor phosphorylation (ARR2(R169E)-GFP) enabled substantial agonist-promoted EP2 receptor internalization, increased beta(2)AR internalization to a greater extent than did ARR2-GFP, yet promoted EP4 receptor internalization to the same degree as did ARR2-GFP. Signaling via endogenous EP4 receptors in CHO-K1 cells was attenuated by ARR2-GFP expression, whereas ARR2(R169E)-GFP expression in HASM inhibited EP2 receptor-mediated cAMP production. These findings demonstrate differential effects of arrestins in altering endogenous GPCR signaling in a physiologically relevant cell type and reveal a variable dependence on receptor phosphorylation in dictating arrestin-receptor interaction.  相似文献   

17.
Adenosine and adenosine receptor agonists have a variety of inhibitory effects on the generation of inflammatory mediators by neutrophils and other cell types. In human neutrophils stimulated with the chemotactic peptide FMLP, adenosine agonists inhibit O2- generation and degranulation. Because these findings suggest that the agonists may have potential as antiinflammatory agents, several compounds were evaluated for effects on the exudative and cellular phases of carrageenan-induced pleural inflammation in rats. All of the agonists tested inhibited both parameters of the inflammatory response. Inhibition appeared to correlate better with binding to the A1 than to the A2 receptor and was reversible by a known adenosine receptor antagonist, 8-phenyltheophylline. In mechanistic studies, R-N-(1-methyl-2-phenylethyl)adenosine, a standard A1 selective agonist, reversed the drop in circulating neutrophil count that occurs after injection of carrageenan. These results suggest that the agonists may prevent cell emigration by inhibiting adhesion to the endothelium or diapedesis. In addition (R)-N-(1-methyl-2-phenylethyl)adenosine had weak inhibitory effects on superoxide production by FMLP-stimulated rat neutrophils. Control studies showed that the effects of the agonists were not the result of agonist-induced hypotension nor corticosterone production by the adrenal glands. These findings indicate that adenosine receptor agonists are effective new pharmacologic tools for the study of inflammatory processes.  相似文献   

18.
Anti-inflammatory signals play an essential role in constraining the magnitude of an inflammatory response. Extracellular adenosine is a critical tissue-protective factor, limiting the extent of inflammation. Given the potent anti-inflammatory effects of extracellular adenosine, we sought to investigate how extracellular adenosine regulates T cell activation and differentiation. Adenosine receptor activation by a pan adenosine-receptor agonist enhanced the abundance of murine regulatory T cells (Tregs), a cell type critical in constraining inflammation. Gene expression studies in both naïve CD4 T cells and Tregs revealed that these cells expressed multiple adenosine receptors. Based on recent studies implicating the Adora2b in endogenous anti-inflammatory responses during acute inflammation, we used a pharmacologic approach to specifically activate Adora2b. Indeed, these studies revealed robust enhancement of Treg differentiation in wild-type mice, but not in Adora2b −/− T cells. Finally, when we subjected Adora2b-deficient mice to endotoxin-induced pulmonary inflammation, we found that these mice experienced more severe inflammation, characterized by increased cell recruitment and increased fluid leakage into the airways. Notably, Adora2b-deficient mice failed to induce Tregs after endotoxin-induced inflammation and instead had an enhanced recruitment of pro-inflammatory effector T cells. In total, these data indicate that the Adora2b adenosine receptor serves a potent anti-inflammatory role, functioning at least in part through the enhancement of Tregs, to limit inflammation.  相似文献   

19.
Adenosine is a neuromodulator that can control brain damage through activation of A(1), A(2A) and A(3) receptors, which are located in both neurons and other brain cells. We took advantage of cultured neurons to investigate the role of neuronal adenosine receptors in the control of neurotoxicity caused by kainate and cyclothiazide. Both A(1), A(2A) and A(3) receptors were immunocytochemically identified in cortical neurons. Activation of A(1) receptors with 100 nM CPA did not modify the extent of neuronal death whereas the A(1) receptor antagonist, DPCPX (50 nM), attenuated neurotoxicity by 28 +/- 5%, and effect similar to that resulting from the removal of endogenous adenosine with 2U/ml of adenosine deaminase (27 +/- 3% attenuation of neurotoxicity). In the presence of adenosine deaminase, DPCPX had no further effect and CPA now exacerbated neurotoxicity by 42 +/- 4%. Activation of A(2A) receptor with 30 nM CGS21680 attenuated neurotoxicity by 40 +/- 8%, an effect prevented by the A(2A) receptor antagonists, SCH58261 (50 nM) or ZM241385 (50 nM), which by themselves were devoid of effect. Finally, neither A(3) receptor activation with Cl-IB-MECA (100-500 nM) nor blockade with MRS1191 (5 microM) modified neurotoxicity. These results show that A(1) receptor activation enhances and A(2A) receptor activation attenuates neurotoxicity in cultured cortical neurons, indicating that these two neuronal adenosine receptors directly control neurodegeneration. Interestingly, the control by adenosine of neurotoxicity in cultured neurons is similar to that observed in vivo in newborn animals and is the opposite of what is observed in adult brain preparations where A(1) receptor activation and A(2A) receptor blockade are neuroprotective.  相似文献   

20.
Small hyaluronan (HA) fragments produced from native HA during inflammation contribute greatly to cell injury in many pathologies. HA oligosaccharides increase proinflammatory cytokine levels by activating both CD44 and toll-like receptor (TLR)-4. Stimulation of CD44 and TLR-4 then activates nuclear factor-κB, which induces the production of proinflammatory cytokines. The adenosine 2A receptor (A(2A)R) is also involved in several inflammation pathologies, and the nucleoside adenosine acts as a potent endogenous inhibitor of inflammation in various tissues by interacting with this receptor. The aim of this study was to investigate the effects of an HA-blocking peptide that inhibits the proinflammatory action of HA oligosaccharides produced during inflammation, together with a specific A(2A)R agonist in a model of normal mouse articular chondrocytes stimulated with interleukin (IL)-1β. IL-1β stimulation significantly increased mRNA expression and the related protein production of TLR-4, TLR-2, CD44 and A(2A)R in articular chondrocytes. The induced nuclear factor-κB activation was also associated with increased levels of inflammatory cytokines, including tumor necrosis factor-α and IL-6, and other inflammatory mediators, such as matrix metalloprotease-13 and inducible nitric oxide synthase. Treatment of chondrocytes with the HA-blocking peptide Pep-1 and/or a specific A(2A)R agonist (CGS-21680) significantly reduced all of the inflammatory parameters upregulated by IL-1β. These results suggest that the inflammatory response may be reduced either by blocking oligosaccharides from HA degradation or by A(2A)R stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号