首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small heat shock proteins (sHsps), which are ubiquitous stress proteins proposed to act as chaperones, are encoded by an unusually complex gene family in plants. Plant sHsps are classified into different subfamilies according to amino acid sequence similarity and localization to distinct subcellular compartments. In the whole Arabidopsis thaliana genome, 19 genes were annotated to encode sHsps, of which 14 belong to previously defined plant sHsp families. In this paper, we report studies of the five additional sHsp genes in A. thaliana, which can now be shown to represent evolutionarily distinct sHsp subfamilies also found in other plant species. While two of these five sHsps show expression patterns typical of the other 14 genes, three have unusual tissue specific and developmental profiles and do not respond to heat induction. Analysis of intracellular targeting indicates that one sHsp represents a new class of mitochondrion-targeted sHsps, while the others are cytosolic/nuclear, some of which may cooperate with other sHsps in formation of heat stress granules. Three of the five new proteins were purified and tested for chaperone activity in vitro. Altogether, these studies complete our basic understanding of the sHsp chaperone family in plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Small heat shock proteins (sHsps) are a class of chaperones with low molecular weight, feathered by a C-terminal α-crystallin domain (ACD). They participate in reestablishing the stability of partially denatured proteins and therefore contribute to cellular homeostasis. In this work, we identified a sHsp homolog (designated as sHsp19) from Haliotis discus hannai, an economically important farmed mollusk in East Asia. sHsp19 possesses a sHsp hallmark domain, which exhibits the typical fold of ACD as revealed by a three-dimensional model constructed through an iterative threading assembly refinement method. The amino acid sequence sHsp19 shares low identities with any other known sHsps, with percentages below 35 %. Besides, sHsp19 shows relatively distant phylogenetic relationships with sHsps of various mollusks, including two other identified sHsps of abalone subspecies. qRT-PCR analysis indicated that the expression of sHsp19 occurred in multiple tissues. Upon exposure to thermal, oxidative, and multiple toxic metal stresses, the level of sHsp19 mRNA was rapidly elevated in a persistent fashion, with the maximum increase up to 170.58-, 405.84-, and 361.96-fold, respectively. These results indicate sHsp is a novel sHsp that possesses the distinguishing structural feature of sHsps but has remote homologies with known sHsps. It is likely to be important in stress adaptation of abalone and may be applied as a bioindicator for monitoring pollution or detrimental changes of environment in abalone culture.  相似文献   

3.
The small heat shock proteins (sHsps) from human (Hsp27) and mouse (Hsp25) form large oligomers which can act as molecular chaperones in vitro and protect cells from heat shock and oxidative stress when overexpressed. In addition, mammalian sHsps are rapidly phosphorylated by MAPKAP kinase 2/3 at two or three serine residues in response to various extracellular stresses. Here we analyze the effect of sHsp phosphorylation on its quaternary structure, chaperone function, and protection against oxidative stress. We show that in vitro phosphorylation of recombinant sHsp as well as molecular mimicry of Hsp27 phosphorylation lead to a significant decrease of the oligomeric size. We demonstrate that both phosphorylated sHsps and the triple mutant Hsp27-S15D,S78D,S82D show significantly decreased abilities to act as molecular chaperones suppressing thermal denaturation and facilitating refolding of citrate synthase in vitro. In parallel, Hsp27 and its mutants were analyzed for their ability to confer resistance against oxidative stress when overexpressed in L929 and 13.S.1.24 cells. While wild type Hsp27 confers resistance, the triple mutant S15D,S78D,S82D cannot protect against oxidative stress effectively. These data indicate that large oligomers of sHsps are necessary for chaperone action and resistance against oxidative stress whereas phosphorylation down-regulates these activities by dissociation of sHsp complexes to tetramers.  相似文献   

4.
In plants small heat shock proteins (sHsp) are abundantly expressed upon heat stress in vegetative tissue, however, sHsp expression is also developmentally induced in pollen. The developmental induction of sHsp has been related to the potential for stress-induced microspore embryogenesis. We investigated the polymorphism among sHsp and their expression during pollen development and after heat stress in tobacco. Real-time RT-PCR was used for quantification of mRNA of two known and nine newly isolated cDNAs representing cytosolic sHsp. At normal temperature most of these genes are not transcribed in vegetative tissues, however, all genes were expressed during pollen development. Low levels of mRNAs were found for sHsp-1A and -1B in early-unicellular stage, increasing four to sevenfold in mature pollen. Nine other genes are up-regulated in unicellular and down-regulated in bicellular pollen; three these genes show stage-specific expression. Western analysis revealed that cytosolic class I and II sHsp are developmentally expressed during all stages of pollen development. Different subsets of cytosolic sHsp genes are expressed in a stage-specific fashion suggesting that certain sHsp genes may play specific roles in early, others during later stages of pollen development. Heat stress results in a relatively weak and incomplete response in pollen: (i) the heat-induced levels of mRNA (excepting sHsp-2B, −3Cand -6) are much lower than in leaves, (ii) several sHsp are not detected after heat stress in pollen, although, they are heat-inducibly expressed in leaves. Application of heat stress, cold, and starvation, which induce microspore embryogenesis, modify mRNA levels and the patterns of 2-D-separated sHsp, but only heat stress enhances the expression of sHsp in microspores. There is no correlation of the expression of specific sHsp with the potential for microspore embryogenesis.Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

5.
6.
Embryogenesis can be initiated directly from microspores or pollen grains. This is known as androgenesis and refers to the process of redirection of normal pollen development (gametophytic pathway) towards the embryo formation (sporophytic). This review mainly deals with the current knowledge of stress and developmental aspects of induction of androgenesis. The crucial role of stress inductive treatment together with changes in cell polarity are discussed in relation to other relevant biological systems. The intriguing speculations are made on the basis of these comparisons which may point out the direction of future investigations.  相似文献   

7.
α-Crystallin-type small heat shock proteins (sHsps) are expressed in many bacteria, animals, plants, and archaea. Among mycoplasmas (Mollicutes), predicted sHsp homologues so far were found only in the Acholeplasmataceae family. In this report, we describe the cloning and functional characterization of a novel sHsp orthologue, IbpA protein, present in Acholeplasma laidlawii. Importantly, similar to the endogenously expressed sHsp proteins, the recombinant IbpA protein was able to spontaneously generate oligomers in vitro and to rescue chemically denatured bovine insulin from irreversible denaturation and aggregation. Collectively, these data suggest that IbpA is a bona fide member of the sHsps family. The immune-electron microscopy data using specific antibodies against IbpA have revealed different intracellular localization of this protein in A. laidlawii cells upon heat shock, which suggests that IbpA not only may participate in the stabilization of individual polypeptides, but may also play a protective role in the maintenance of various cellular structures upon temperature stress.  相似文献   

8.
In stress conditions, microspores and young pollen grains can be switched from their normal pollen development toward an embryogenic pathway via a process called androgenesis. Androgenic embryos can produce completely homozygous, haploid or double-haploid plants. This study aimed to investigate changes in the abundance of protein species during cold pretreatment and subsequent cultivation of maize anthers on induction media using gel-based proteomics. Proteins upregulated on the third day of anther induction were identified and discussed here. Simultaneous microscopic observations revealed that the first division occurred in microspores within this period. Using 2-D electrophoresis combined with MALDI TOF/TOF MS/MS analysis 19 unique proteins were identified and classified into 8 functional groups. Proteins closely associated with metabolism, protein synthesis and cell structure were the most abundant ones. Importantly, ascorbate peroxidase, an enzyme decomposing hydrogen peroxide, was also upregulated. Isozyme analysis of peroxidases validated the proteomic data and showed increased peroxidase activities during androgenic induction. Further, the isozyme pattern of SOD revealed increased activity of the MnSOD, which could provide hydrogen peroxide as a substrate for in vivo peroxidase reactions (including ascorbate peroxidase). Together, these data reveal the role of enzymes controlling oxidative stress during induction of maize androgenesis.  相似文献   

9.
The small heat shock protein (sHsp) chaperones are crucial for cell survival and can prevent aggregation of client proteins that partially unfold under destabilizing conditions. Most investigations on the chaperone activity of sHsps are based on a limited set of thermosensitive model substrate client proteins since the endogenous targets are often not known. There is a high diversity among sHsps with a single conserved β‐sandwich fold domain defining the family, the α‐crystallin domain, whereas the N‐terminal and C‐terminal regions are highly variable in length and sequence among various sHsps and conserved only within orthologues. The endogenous targets are probably also varying among various sHsps, cellular compartments, cell type and organism. Here we have investigated Hsp21, a non‐metazoan sHsp expressed in the chloroplasts in green plants which experience huge environmental fluctuations not least in temperature. We describe how Hsp21 can also interact with the chloroplast thylakoid membranes, both when isolated thylakoid membranes are incubated with Hsp21 protein and when plants are heat‐stressed. The amount of Hsp21 associated with the thylakoid membranes was precisely determined by quantitative mass spectrometry after metabolic 15N‐isotope labeling of either recombinantly expressed and purified Hsp21 protein or intact Arabidopsis thaliana plants. We found that Hsp21 is among few proteins that become associated with the thylakoid membranes in heat‐stressed plants, and that approximately two thirds of the pool of chloroplast Hsp21 is affected. We conclude that for a complete picture of the role of sHsps in plant stress resistance also their association with the membranes should be considered.  相似文献   

10.
Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp–substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp–substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions.  相似文献   

11.
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that bind denatured proteins in vitro, thereby facilitating their subsequent refolding by ATP-dependent chaperones. The mechanistic basis of this refolding process is poorly defined. We demonstrate that substrates complexed to sHsps from various sources are not released spontaneously. Dissociation and refolding of sHsp bound substrates relies on a disaggregation reaction mediated by the DnaK system, or, more efficiently, by ClpB/DnaK. While the DnaK system alone works for small, soluble sHsp/substrate complexes, ClpB/DnaK-mediated protein refolding is fastest for large, insoluble protein aggregates with incorporated sHsps. Such conditions reflect the situation in vivo, where sHsps are usually associated with insoluble proteins during heat stress. We therefore propose that sHsp function in cellular protein quality control is to promote rapid resolubilization of aggregated proteins, formed upon severe heat stress, by DnaK or ClpB/DnaK.  相似文献   

12.
Summary Responses of pollen grains of Nicotiana tabacum to high humidity (95% RH, 4 h) and temperature (38°/45° C, 4 h) stresses were investigated. Pollen grains were subjected to only RH or only temperature, or to both of these stresses. Their viability was assessed on the basis of the fluorochromatic reaction (FCR) test, and vigour was assessed on the basis of the time taken for in vitro germination as well as on the emergence of pollen tubes through the cut end of semi-vivo implanted styles. None of the stress conditions affected pollen viability and high RH or high temperature stress did not individually affect pollen vigour. However, pollen vigour was markedly affected when both the stresses were given together. Pollen grains subjected to high RH at 38° C took a longer time to germinate in vitro and the pollen tubes emerged later from the cut end of the semi-vivo styles; division of the generative cell was also delayed. Pollen grains subjected to high RH at 45° C failed to germinate in vitro, but did germinate on the stigma. Many pollen tubes subjected to this treatment showed abnormalities, and the growth of pollen tubes in the pistil was much slower than that observed in other treatments. Pollen samples subjected to all of the stress conditions were able to induce fruit and seed set. The implications of these results on the relationship between the FCR test and viability, and between viability and vigour, especially in stressed pollen, are discussed.  相似文献   

13.
Small heat shock proteins (sHsps) are oligomers that perform a protective function by binding denatured proteins. Although ubiquitous, they are of variable sequence except for a C-terminal approximately 90-residue "alpha-crystallin domain". Unlike larger stress response chaperones, sHsps are ATP-independent and generally form polydisperse assemblies. One proposed mechanism of action involves these assemblies breaking into smaller subunits in response to stress, before binding unfolding substrate and reforming into larger complexes. Two previously solved non-metazoan sHsp multimers are built from dimers formed by domain swapping between the alpha-crystallin domains, adding to evidence that the smaller subunits are dimers. Here, the 2.5A resolution structure of an sHsp from the parasitic flatworm Taenia saginata Tsp36, the first metazoan crystal structure, shows a new mode of dimerization involving N-terminal regions, which differs from that seen for non-metazoan sHsps. Sequence differences in the alpha-crystallin domains between metazoans and non-metazoans are critical to the different mechanism of dimerization, suggesting that some structural features seen for Tsp36 may be generalized to other metazoan sHsps. The structure also indicates scope for flexible assembly of subunits, supporting the proposed process of oligomer breakdown, substrate binding and reassembly as the chaperone mechanism. It further shows how sHsps can bind coil and secondary structural elements by wrapping them around the alpha-crystallin domain. The structure also illustrates possible roles for conserved residues associated with disease, and suggests a mechanism for the sHsp-related pathogenicity of some flatworm infections. Tsp36, like other flatworm sHsps, possesses two divergent sHsp repeats per monomer. Together with the two previously solved structures, a total of four alpha-crystallin domain structures are now available, giving a better definition of domain boundaries for sHsps.  相似文献   

14.
Small heat shock proteins (sHsps) are a conserved class of ATP-independent chaperones which in stress conditions bind to unfolded protein substrates and prevent their irreversible aggregation. Substrates trapped in sHsps-containing aggregates are efficiently refolded into native structures by ATP-dependent Hsp70 and Hsp100 chaperones. Most γ-proteobacteria possess a single sHsp (IbpA), while in a subset of Enterobacterales, as a consequence of ibpA gene duplication event, a two-protein sHsp (IbpA and IbpB) system has evolved. IbpA and IbpB are functionally divergent. Purified IbpA, but not IbpB, stably interacts with aggregated substrates, yet both sHsps are required to be present at the substrate denaturation step for subsequent efficient Hsp70-Hsp100-dependent substrate refolding. IbpA and IbpB interact with each other, influence each other’s expression levels and degradation rates. However, the crucial information on how these two sHsps interact and what is the basic building block required for proper sHsps functioning was missing. Here, based on NMR, mass spectrometry and crosslinking studies, we show that IbpA-IbpB heterodimer is a dominating functional unit of the two sHsp system in Enterobacterales. The principle of heterodimer formation is similar to one described for homodimers of single bacterial sHsps. β-hairpins formed by strands β5 and β7 of IbpA or IbpB crystallin domains associate with the other one's β-sandwich in the heterodimer structure. Relying on crosslinking and molecular dynamics studies, we also propose the orientation of two IbpA-IbpB heterodimers in a higher order tetrameric structure.  相似文献   

15.
Key message

The developmental stage of anther development is generally more sensitive to abiotic stress than other stages of growth. Specific ROS levels, plant hormones and carbohydrate metabolism are disturbed in anthers subjected to abiotic stresses.

Abstract

As sessile organisms, plants are often challenged to multiple extreme abiotic stresses, such as drought, heat, cold, salinity and metal stresses in the field, which reduce plant growth, productivity and yield. The development of reproductive stage is more susceptible to abiotic stresses than the vegetative stage. Anther, the male reproductive organ that generate pollen grains, is more sensitive to abiotic stresses than female organs. Abiotic stresses affect all the processes of anther development, including tapetum development and degradation, microsporogenesis and pollen development, anther dehiscence, and filament elongation. In addition, abiotic stresses significantly interrupt phytohormone, lipid and carbohydrate metabolism, alter reactive oxygen species (ROS) homeostasis in anthers, which are strongly responsible for the loss of pollen fertility. At present, the precise molecular mechanisms of anther development under adverse abiotic stresses are still not fully understood. Therefore, more emphasis should be given to understand molecular control of anther development during abiotic stresses to engineer crops with better crop yield.

  相似文献   

16.
Small heat shock proteins (sHsps) belong to molecular chaperones, which protect prokaryotic and eukaryotic cells against deleterious effects, of stress. sHsps prevent stress induced, irreversible aggregation of damaged proteins and facilitate renaturation of bound substrates cooperating with other molecular chaperones. This review summarizes recent studies focused mainly on the involvement of sHsps in diseases related to protein aggregation. sHsps are often a component of protein aggregates forming during progress of neurodegenerative disorders. Mutation in sHsps genes have been identified, which are responsible for development of cataract, desmin related myopathy and neuropathies. sHsps protect cells against oxidative stress resulting from ischemia/reperfusion during heart or brain stroke. Several studies indicate that sHsp participate in regulation of apoptosis and are involved in cancerogenesis. Uncovering the sHsps role in diseases enable to develop new therapeutic strategies.  相似文献   

17.
18.
The protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.  相似文献   

19.
Small heat shock proteins (sHsps) maintain cellular homeostasis by preventing stress and disease-induced protein aggregation. While it is known that hydrophobicity impacts the ability of sHsps to bind aggregation-prone denaturing proteins, the complex quaternary structure of globular sHsps has made understanding the significance of specific changes in hydrophobicity difficult. Here we used recombinant protein of the lenticular sHsp α A-crystallin from six teleost fishes environmentally adapted to temperatures ranging from -2°C to 40°C to identify correlations between physiological temperature, protein stability and chaperone-like activity. Using sequence and structural modeling analysis we identified specific amino acid differences between the warm adapted zebrafish and cold adapted Antarctic toothfish that could contribute to these correlations and validated the functional consequences of three specific hydrophobicity-altering amino acid substitutions in αA-crystallin. Site directed mutagenesis of three residues in the zebrafish (V62T, C143S, T147V) confirmed that each impacts either protein stability or chaperone-like activity or both, with the V62T substitution having the greatest impact. Our results indicate a role for changing hydrophobicity in the thermal adaptation of α A-crystallin and suggest ways to produce sHsp variants with altered chaperone-like activity. These data also demonstrate that a comparative approach can provide new information about sHsp function and evolution.  相似文献   

20.
The alpha-crystallin-related, small heat shock proteins (sHsps), despite their overall variability in sequence, have discrete regions of conserved sequence that are involved in structural organization, as well as nonconserved regions that may perform similar roles in each protein. Recent X-ray diffraction analyses of an archeal and a plant sHsp have revealed both similarities and differences in how they are organized, suggesting that there is variability, particularly in the oligomeric organization of sHsps. As an adjunct to crystallographic analysis of sHsp structure, we employed the yeast 2-hybrid system to detect interactions between peptide regions of the sHsp of Neurospora crassa, Hsp30. We found that the conserved alpha-crystallin domain can be divided into N-terminal and C-terminal subdomains that interact strongly with one another. This interaction likely represents the tertiary contacts of the monomer that were visualized in the crystallographic structures of MjHsp16.5 and wheat Hsp16.9. The conserved sHsp monomeric fold is apparently determined by these regions of conserved sequence. We found that the C-terminal portion of the alpha-crystallin domain also interacts with itself in 2-hybrid assays; however, this interaction requires peptide extension into the semiconserved carboxyl tail. This C-terminal association may represent a principal contact site between dimers that contributes to higher-order assembly, as seen for the crystallized sHsps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号