共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
In vivo synthesis of carbamyl phosphate from NH3 by the large subunit of Escherichia coli carbamyl phosphate synthetase 总被引:2,自引:0,他引:2
The cloned carAB operon of Escherichia coli coding for the small and large subunits of carbamyl phosphate synthetase has been used to construct a recombinant plasmid with a 4.16 kilobase ClaI fragment of the car operon that lacks the major promoters, P1 and P2. The plasmid, pHN12, carries a functional carB gene. A mutant E. coli strain lacking both subunits of carbamyl phosphate synthetase when transformed with pHN12 overproduces the large subunit by 200-fold (8-10% of the cellular protein). The elevated levels of the large subunit enable the transformed cells to utilize NH3 but not glutamine as nitrogen donor for carbamyl phosphate synthesis. The large subunit has been purified from the overexpressing strain. The purified native large subunit is capable of synthesizing carbamyl phosphate from ammonia, HCO-3, and ATP. The kinetic properties of the large subunit compared with the holoenzyme indicate that the Michaelis constants of the large subunit for HCO-3 and ATP are modulated by its association with the small glutamine binding subunit. 相似文献
3.
4.
Autosomal recessive inheritance of human mitochondrial carbamyl phosphate synthetase deficiency. 下载免费PDF全文
J W McReynolds B Crowley M J Mahoney L E Rosenberg 《American journal of human genetics》1981,33(3):345-353
The mode of inheritance of hepatic mitochondrial carbamyl phosphate synthetase (CPS I) deficiency has not been established conclusively in the past. In this study, hepatic tissue obtained by percutaneous biopsy from all members of the immediate family of two girls affected with partial CPS I deficiency was assayed for CPS I, ornithine transcarbamylase (OTC), and arginase activities. Only values for CPS I activity differed significantly from those in controls. The two affected girls each had markedly reduced CPS I activities of about 6% of the control mean. Their brother had activity well within the normal range. Of greatest significance was the finding that both parents had activities below the 95% confidence limits in controls, and intermediate between the deficient values of the two girls and the control range. The father and mother had, respectively, 32% and 54% of mean control activity. These data indicate that CPS I deficiency is inherited as an autosomal recessive trait and that the two affected girls are homozygous for the mutant gene, their brother is homozygous for the normal allele, and the parents are heterozygous. 相似文献
5.
Catalytic domains of carbamyl phosphate synthetase. Glutamine-hydrolyzing site of Escherichia coli carbamyl phosphate synthetase 总被引:3,自引:0,他引:3
We present evidence that cysteine 269 of the small subunit of Escherichia coli carbamyl phosphate synthetase is essential for the hydrolysis of glutamine. When cysteine 269 is replaced with glycine or with serine by site-directed mutagenesis of the carA gene, the resulting enzymes are unable to catalyze carbamyl phosphate synthesis with glutamine as nitrogen donor. Even though the glycine 269, and particularly the serine 269 enzyme bind significant amounts of glutamine, neither glycine 269 nor serine 269 can hydrolyze glutamine. The mutations at cysteine 269 do not affect carbamyl phosphate synthesis with NH3 as substrate. The NH3-dependent activity of the mutant enzymes was equal to that of wild-type. Measurements of Km indicate that the enzyme uses unionized NH3 rather than ammonium ion as substrate. The apparent Km for NH3 of the wild-type enzyme is calculated to be about 5 mM, independent of pH. The substitution of cysteine 269 with glycine or with serine results in a decrease of the apparent Km value for NH3 from 5 mM with the wild-type to 3.9 mM with the glycine, and 2.9 mM with the serine enzyme. Neither the glycine nor the serine mutation at position 269 affects the ability of the enzyme to catalyze ATP synthesis from ADP and carbamyl phosphate. Allosteric properties of the large subunit are also unaffected. However, substitution of cysteine 269 with glycine or with serine causes an 8- and 18-fold stimulation of HCO-3 -dependent ATPase activity, respectively. The increase in ATPase activity and the decrease in apparent Km for NH3 provide additional evidence for an interaction of the glutamine binding domain of the small subunit with one of the two known ATP sites of the large subunit. 相似文献
6.
7.
8.
This paper demonstrates the formation of "active CO2" (CO2-P), a precursor of carbamoyl phosphate (CP), with frog liver carbamoyl-phosphate synthetase. Absence of ammonia is essential for the demonstration by pulse incubation with H14CO3- of CO2-P. Adenosine triphosphate (ATP) and acetylglutamate are required for the synthesis of CO2-P, which is highly unstable in aqueous solutions (t1/2 = 0.75 s at 24 degrees C at neutral pH). In the absence of ammonia, CO2-P attains rapidly a steady-state level, which depends on the concentration of ATP and HCO3-. The "apparent KM'S" are approximately equal to those found for the adenosine triphosphate (ATPase) activity of the enzyme. The maximum level of CO2-P is limited by the amount of enzyme, and approximates 4 mol of intermediate/mol of enzyme. The unprotonated form of ammonia seems to be the species reacting with CO2-P to produce CP. The reaction of CO2-P and NH3 is very fast (rate constant kn = 8 x 10(4) M-1 S-1) and does not consume free ATP. Therefore, the 2 mol of ATP necessary for CP synthesis binds or reacts with the enzyme and/or CO2 prior to reaction with NH3. The reaction of CO2-P with NH3 also takes place in acetone under conditions at which the enzyme is not active, suggesting little or no assistance from enzyme catalysis or that a part of the catalytic site is "frozen" by the solvent in the active conformation. In the light of these and other findings, a new scheme is proposed for the mechanism of frog liver carbamoyl-phosphate synthetase and some considerations are made on the chemical nature of the intermediate and on the possible evolutionary significance of the reaction of CO2-P with NH3 in acetone. 相似文献
9.
10.
Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat 总被引:13,自引:0,他引:13
H Nyunoya K E Broglie E E Widgren C J Lusty 《The Journal of biological chemistry》1985,260(16):9346-9356
The nucleotide sequence of rat carbamyl phosphate synthetase I mRNA has been determined from the complementary DNA. The mRNA comprises minimally 5,645 nucleotides and codes for a polypeptide of 164,564 Da corresponding to the precursor form of the rat liver enzyme. The primary sequence of mature rat carbamyl phosphate synthetase I indicates that the precursor is cleaved at one of two leucines at residues 38 or 39. The derived amino acid sequence of carbamyl phosphate synthetase I is homologous to the sequences of carbamyl phosphate synthetase of Escherichia coli and yeast. The sequence homology extends along the entire length of the rat polypeptide and encompasses the entire sequences of both the small and large subunits of the E. coli and yeast enzymes. The protein sequence data provide strong evidence that the carbamyl phosphate synthetase I gene of rat, the carAB gene of E. coli, and the CPA1 and CPA2 genes of yeast were derived from common ancestral genes. Part of the rat carbamyl phosphate synthetase I gene has been characterized with two nonoverlapping phage clones spanning 28.7 kilobases of rat chromosomal DNA. This region contains 13 exons ranging in size from 68 to 195 base pairs and encodes the 453 carboxyl-terminal amino acids of the rat protein. Southern hybridization analysis of rat genomic DNA indicates the carbamyl phosphate synthetase I gene to be present in single copy. 相似文献
11.
12.
Genetic analysis of carbamyl phosphate synthetase I deficiency 总被引:2,自引:0,他引:2
Eric R. Fearon Richard L. Mallonee John A. Phillips III William E. O'Brien Saul W. Brusilow Mark W. Adcock Lorne T. Kirby 《Human genetics》1985,70(3):207-210
Summary Carbamyl phosphate synthetase I deficiency (CPSD) is an autosomal recessive disorder of ureagenesis characterized by hyperammonemic coma in the neonatal period. To study the genetic basis of CPSD we have performed a molecular analysis of the CPS I genes in CPSD patients from six unrelated families. Using a cDNA probe for the human CPS I gene and restriction endonuclease mapping techniques, we observed no abnormality in the number or size of the hybridizing DNA fragments from the seven affected individuals examined. These findings suggest that no gross alteration affected the CPS I genes. We did detect a frequent restriction fragment length polymorphism (RFLP) at the CPS I locus which we employed as a linkage marker. Our results suggest the polymorphic CPS I restriction fragments cosegregate with the CPSD phenotype, and that linkage disequilibrium exists between the CPSI RFLPs studied and the affected alleles. The RFLPs described may enable prenatal detection of CPSD in families where the coupling phases between CPSD alleles and RFLPs can be determined.A preliminary report of these studies was presented at the Society for Pediatric Research meetings, San Francisco, May 1984 and appeared in abstract form in Pediatric Research 18:296A (1984) 相似文献
13.
14.
Cell-free synthesis of a putative precursor to the rat liver mitochondrial glycerol-3-phosphate dehydrogenase 总被引:1,自引:0,他引:1
Antibodies to purified glycerol-3-phosphate dehydrogenase were raised in rabbits and purified from serum by affinity chromatography on enzyme-bound Sepharose columns. RNA from membrane-free polyribosomes, or poly(A)+ RNA (total cellular RNA) of rat liver, was translated in a rabbit reticulocyte protein-synthesizing system in the presence of [35S]methionine, and the glycerol-3-phosphate dehydrogenase synthesized was isolated by immunoprecipitation using the antibody. The in vitro product moved on sodium dodecyl sulfate-polyacrylamide gels as a polypeptide that was about 5,000 daltons larger than the subunit of the mature enzyme (74,000 daltons). Digestion of both the mature and the in vitro newly synthesized forms of the enzyme yielded respective sets of peptide fragments which had similar patterns upon sodium dodecyl sulfate-gel electrophoresis. When the presumptive precursor that had been synthesized in vitro was incubated with isolated intact rat liver mitochondria, it was converted to "mature" subunits that were no longer susceptible to externally added proteases. Import of the presumptive precursor is dependent upon an electrochemical potential across the inner mitochondrial membranes. The mature form of the protein is assembled in its native location (the outer surface of the inner mitochondrial membrane). 相似文献
15.
16.
17.
18.
19.
In vitro synthesis of a putative precursor of serine: pyruvate aminotransferase of rat liver mitochondria 总被引:2,自引:0,他引:2
T Oda A Ichiyama S Miura M Mori M Tatibana 《Biochemical and biophysical research communications》1981,102(1):568-573
Serine:pyruvate aminotransferase [EC 2.6.1.51] of rat liver, an enzyme induced by glucagon in mitochondria, was synthesized in cell-free protein synthesizing systems derived from nuclease-treated rabbit reticulocyte lysate and wheat germ extract as a putative precursor which was approximately 2,000 daltons larger than the subunit of mature enzyme. The hepatic level of translatable messenger RNA coding for the putative precursor was approximately 40 times higher in rats received a glucagon administration 3.5 h before sacrifice than in control animals. 相似文献