首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of growth arrest and differentiation by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) occurs in non-malignant cell types but is often reduced in cancer cells. For example, androgen-independent prostate cancer cells, DU-145 and PC-3, are relatively insensitive to the anti-proliferative action of 1,25-(OH)2D3. This appears to be due to increased 1,25-(OH)2D3-metabolism, as a result of CYP24 enzyme-induction, which in turn leads to decreased anti-proliferative efficacy. In the in vitro rat kidney mitochondria assay, the 2-(4-hydroxybenzyl)-6-methoxy-3,4-dihydro-2H-naphthalen-1-one (4) was found to be a potent inhibitor of Vitamin D3 metabolising enzymes (IC50 3.5 μM), and was shown to be a more potent inhibitor than the broad spectrum P450 inhibitor ketoconazole (IC50 20 μM). The combination of the inhibitor and 1,25-(OH)2D3 caused a greater inhibition of proliferation in DU-145 cells than when treated with both agents alone. Examination of the regulation of VDR target gene mRNA in DU-145 cells revealed that co-treatment of 1,25-(OH)2D3 plus inhibitor of Vitamin D3 metabolising enzymes co-ordinately upregulated CYP24, p21waf1/cip1 and GADD45.  相似文献   

2.
Vitamin D and prostate cancer   总被引:1,自引:0,他引:1  
Our recent epidemiological study (Ahonen et al., Cancer Causes Control 11(2000) (847–852)) suggests that vitamin D deficiency may increase the risk of initiation and progression of prostate cancer. The nested case–control study was based on a 13-year follow-up of about 19 000 middle-aged men free of clinically verified prostate cancer. More than one-half of the serum samples had 25OH-vitamin D (25-VD) levels below 50 nmol/l, suggesting VD deficiency. Prostate cancer risk was highest among the group of younger men (40–51 years) with low serum 25-VD, whereas low serum 25-VD appeared not to increase the risk of prostate cancer in older men (>51 years). This suggests that VD has a protective role against prostate cancer only before the andropause, when serum androgen concentrations are higher. The lowest 25-VD concentrations in the younger men were associated with more aggressive prostate cancer. Furthermore, the high 25-VD levels delayed the appearance of clinically verified prostate cancer by 1.8 years. Since these results suggest that vitamin D has a protective role against prostate cancer, we tried to determine whether full spectrum lighting (FSL) during working hours could increase serum 25-VD concentrations. After 1-month exposure, there was no significant increase in the serum 25-VD level, although there was a bias towards slightly increasing values in the test group as opposed to decreasing values in controls. There was no significant change in the skin urocanic acid production. The possibility to use FSL in cancer prevention is discussed. In order to clarify the mechanism of VD action on cell proliferation and differentiation, we performed studies with the rat and human prostates as well prostate cancer cell lines. It is possible that 25-VD may have a direct role in the host anticancer defence activity, but the metabolism of vitamin D in the prostate may also play an important role in its action. We raised antibodies against human 1-hydroxylase and 24-hydroxylase. Our preliminary results suggest that vitamin D is actively metabolised in the prostate. Vitamin D appears to upregulate androgen receptor expression, whereas androgens seem to upregulate vitamin D receptor (VDR). This may at least partially explain the androgen dependence of VD action. VD alone or administered with androgen causes a suppression of epithelial cell proliferation. VD can activate mitogen-activated kinases, erk-1 and erk-2, within minutes and p38 within hours. Also, auto/paracrine regulation might be involved, since keratinocyte growth factor (mRNA and protein) was clearly induced by VD. Based on these studies, a putative model for VD action on cell proliferation and differentiation is presented.  相似文献   

3.
Since the discovery of the Vitamin D receptor (VDR) in mammary cells, the role of the Vitamin D signaling pathway in normal glandular function and in breast cancer has been extensively explored. In vitro studies have demonstrated that the VDR ligand, 1,25(OH)2D3, modulates key proteins involved in signaling proliferation, differentiation and survival of normal mammary epithelial cells. Anti-proliferative and pro-differentiating effects of 1,25(OH)2D3 have also been observed in VDR positive breast cancer cells, indicating that transformation per se does not abolish Vitamin D signaling. However, many breast cancer cell lines are less sensitive to 1,25(OH)2D3 than normal mammary epithelial cells. Reduced sensitivity to 1,25(OH)2D3 has been linked to alterations in Vitamin D metabolizing enzymes as well as down regulation of VDR expression or function. In this report, we describe results from a proteomics screening approach used to search for proteins involved in dictating sensitivity or resistance to Vitamin D mediated apoptosis in breast cancer cells. Several proteins not previously linked to 1,25(OH)2D3 signaling were identified with this approach, and a distinct subset of proteins was linked to 1,25(OH)2D3 resistance. Follow-up studies to determine the relevance of these proteins to Vitamin D signaling in general are in progress.  相似文献   

4.
Our previous studies showed vitamin D deficiency results in increased cardiac contractility, hypertrophy and fibrosis and has profound effects on heart proteomics, structure and function in rat. In this study we found that the heart in vitamin D receptor knockout (VDR-KO) mice is hypertrophied. Six homozygous VDR knockout (−/−), six wild type (+/+) and six heterozygous (+/−) mice were fed a diet containing 2% Ca, 1.25% P and 20% lactose to maintain normal blood calcium and phosphate levels for 12 months. Tail-cuff blood pressure was performed on all mice. Blood pressure determinations showed no differences in systolic or mean blood pressure in WT (+/+), KO (−/−) or HETERO (+/−) mice at 3 and 6 months. However, decreased systolic BP in the KO mice relative to WT at 9 months of age was observed. ECG analysis showed no significant differences in the intact KO, HETERO or WT mice. The mice were killed at 12 months. Heart weight/body weight ratio was 41% (P < .003) greater in the KO mice versus WT and HETERO was 19% (P < .05) increased versus WT. Other VDR-KO tissues did not display hypertrophy. Cross sectional and longitudinal analysis of the heart myofibrils showed highly significant cellular hypertrophy in VDR-KO mice. Trichrome staining of heart tissue showed marked increase in fibrotic lesions in the KO mice. Analysis of plasma renin activity, angiotensin II (AII) and aldosterone levels showed elevated but not significantly different renin activity in KO versus WT and no significant differences in AII or aldosterone levels. Our data do not support the concept that the renin-angiotensin system or hypertension are the factors that elicit these changes. Data presented here reveal that ablation of the VDR signaling system results in profound changes in heart structure. We propose that calcitriol acts directly on the heart as a tranquilizer by blunting cardiomyocyte hypertrophy.  相似文献   

5.
The field of Vitamin D assay technology has progressed significantly over the past 4 decades. Further, the clinical utility of these measurements has moved from esoteric into mainstream clinical diagnosis. This movement has been fueled by the realization that Vitamin D is involved in bodily systems beyond skeletal integrity. The clinical assay techniques for circulating 25(OH)D and 1,25(OH)2D have progressed away from competitive protein binding assay (CPBAs) that utilize tritium reporters to radioimmunoassay (RIAs) that utilize both I125 and chemiluminescent reporters. These advances have allowed direct serum analysis of 25(OH)D in an automated format that provides a huge sample throughput. Detection of circulating 25(OH)D can also be achieved utilizing direct high-performance liquid chromatographic (HPLC) or liquid chromatography coupled with mass spectrometry (LC–MS) techniques. These methods are accurate, however, they require expensive equipment and restrict sample throughput in the large clinical laboratory. Direct serum detection of 1,25(OH)2D is unlikely to occur for many reasons as a sample pre-purification will always be required. However, a semi-automated chemiluminescent detection system with automated sample preparation is in final development for the determination of circulating 1,25(OH)2D. These advances will allow both 25(OH)D and 1,25(OH)2D to be detected in an accurate, rapid fashion to meet the clinical demands we see emerging.  相似文献   

6.
In several cell types 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) causes up-regulation of its receptor. The present study demonstrates that in the osteoblast-like cell line UMR 106 this up-regulation is inhibited by two different calcium channel blockers (nitrendipine, verapamil). Also with chelating extracellular calcium (EGTA) and by inhibition of calcium release from intracellular stores (TMB-8) comparable results were obtained. These findings indicate that calcium is functionally involved in this cellular response to the steroid hormone 1,25(OH)2D3. Moreover, data obtained with EGTA show that the 1,25(OH)2D3 receptor level is closely regulated by the extracellular calcium concentration.  相似文献   

7.
Serum 25-hydroxyvitamin D (25[OH]D), an index of vitamin D nutrition, and the calcium-regulating hormone 1,25-dihydroxyvitamin D (1,25[OH]2D) were measured in rhesus macaques of various ages. Both metabolites were much higher in monkeys than in man. For 25(OH)D there was no sex difference, and this metabolite increased with age (P > 0.05). The 1,25(OH)2D fell with age for males (P < 0.02), but not for females. Pregnant or lactating females had significantly elevated 1,25(OH)2D levels (P < 0.025).  相似文献   

8.
The field of Vitamin D assay technology has progressed significantly over the past 4 decades. Further, the clinical utility of these measurements has moved from esoteric into mainstream clinical diagnosis. This movement has been fueled by the realization that Vitamin D is involved in bodily systems beyond skeletal integrity. The clinical assay techniques for circulating 25(OH)D and 1,25(OH)2D have progressed away from competitive protein binding assay (CPBAs) that utilize tritium reporters to radioimmunoassay (RIAs) that utilize both I125 and chemiluminescent reporters. These advances have allowed direct serum analysis of 25(OH)D in an automated format that provides a huge sample throughput. Detection of circulating 25(OH)D can also be achieved utilizing direct high-performance liquid chromatographic (HPLC) or liquid chromatography coupled with mass spectrometry (LC–MS) techniques. These methods are accurate, however, they require expensive equipment and restrict sample throughput in the large clinical laboratory. Direct serum detection of 1,25(OH)2D is unlikely to occur for many reasons as a sample pre-purification will always be required. However, a semi-automated chemiluminescent detection system with automated sample preparation is in final development for the determination of circulating 1,25(OH)2D. These advances will allow both 25(OH)D and 1,25(OH)2D to be detected in an accurate, rapid fashion to meet the clinical demands we see emerging.  相似文献   

9.
Since the discovery of the Vitamin D receptor (VDR) in mammary cells, the role of the Vitamin D signaling pathway in normal glandular function and in breast cancer has been extensively explored. In vitro studies have demonstrated that the VDR ligand, 1,25(OH)2D3, modulates key proteins involved in signaling proliferation, differentiation and survival of normal mammary epithelial cells. Anti-proliferative and pro-differentiating effects of 1,25(OH)2D3 have also been observed in VDR positive breast cancer cells, indicating that transformation per se does not abolish Vitamin D signaling. However, many breast cancer cell lines are less sensitive to 1,25(OH)2D3 than normal mammary epithelial cells. Reduced sensitivity to 1,25(OH)2D3 has been linked to alterations in Vitamin D metabolizing enzymes as well as down regulation of VDR expression or function. In this report, we describe results from a proteomics screening approach used to search for proteins involved in dictating sensitivity or resistance to Vitamin D mediated apoptosis in breast cancer cells. Several proteins not previously linked to 1,25(OH)2D3 signaling were identified with this approach, and a distinct subset of proteins was linked to 1,25(OH)2D3 resistance. Follow-up studies to determine the relevance of these proteins to Vitamin D signaling in general are in progress.  相似文献   

10.
Shen X  Mula RV  Li J  Weigel NL  Falzon M 《Steroids》2007,72(14):930-938
Parathyroid hormone-related protein (PTHrP) increases the growth and metastatic potential of prostate cancer cells, making it important to control PTHrP expression in these cells. 1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] suppresses PTHrP expression and exerts an anti-proliferative effect in prostate carcinoma cells. We used the human prostate cancer cell line C4-2 as a model system to ask whether down-regulation of PTHrP expression by 1,25(OH)(2)D(3) plays a role in the anti-proliferative effects of 1,25(OH)(2)D(3). Since PTHrP increases the expression of the pro-invasive integrin alpha6beta4, we also asked whether 1,25(OH)(2)D(3) decreases integrin alpha6beta4 expression in C4-2 cells, and whether modulation of PTHrP expression by 1,25(OH)(2)D(3) plays a role in the effects of 1,25(OH)(2)D(3) on integrin alpha6beta4 expression. Two strategies were utilized to modulate PTHrP levels: overexpression of PTHrP (-36 to +139) and suppression of endogenous PTHrP expression using siRNAs. We report a direct correlation between PTHrP expression, C4-2 cell proliferation and integrin alpha6beta4 expression at the mRNA and cell surface protein level. Treatment of parental C4-2 cells with 1,25(OH)(2)D(3) decreased cell proliferation and integrin alpha6 and beta4 expression. These 1,25(OH)(2)D(3) effects were significantly attenuated in cells with suppressed PTHrP expression. 1,25(OH)(2)D(3) regulates PTHrP expression via a negative vitamin D response element (nVDRE) within the noncoding region of the PTHrP gene. The effects of 1,25(OH)(2)D(3) on cell proliferation and integrin alpha6beta4 expression were significantly attenuated in cells overexpressing PTHrP (-36 to +139), which lacks the nVDRE. These findings suggest that one of the pathways via which 1,25(OH)(2)D(3) exerts its anti-proliferative effects is through down-regulation of PTHrP expression.  相似文献   

11.
Vitamin D and cancer   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
14.
While accumulating evidence demonstrates the existence of prostate cancer stem cells (PCSCs), PCSCs have not been isolated and thoroughly characterized. We report here the enrichment and characterization of sphere-propagating cells with stem-like properties from DU145 PC cells in a defined serum-free medium (SFM). Approximately 1.25% of monolayer DU145 cells formed spheres in SFM and 26% of sphere cells formed secondary spheres. Spheres are enriched for cells expressing prostate basal and luminal cytokeratins (34βE12 and CK18) and for cancer stem cell markers, including CD44, CD24, and integrin α2β1. Upon culturing spheres under differentiating media conditions in the presence of 10% serum, cells positive for CD44 and CD24 were substantially reduced. Furthermore, spheres could be generated from the sphere-derived adherent cell cultures and xenograft tumors, demonstrating the stemness of DU145 spheres. We have maintained spheres for more than 30 passages within 1.5 years without noticeable loss of their “stemness”. Sphere cells possess self-renewal capacity, display significant increases in proliferation potential, and initiate xenograft tumors with enhanced capacity compared to monolayer DU145 cells. While EGF promoted the generation and maintenance of these stem-like cells, bFGF inhibited these events. Sphere cells proliferate slowly with a significant reduction in the activation of the PI3K-AKT pathway compared to monolayer DU145 cells. While knockdown of PTEN enhanced AKT activation, this did not affect the generation of primary spheres and the propagation of secondary spheres. Consistent with this observation, we were able to demonstrate the generation and propagation of spheres without the addition of external growth factors. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

15.
The direct role of vitamin D on bone homeostasis   总被引:1,自引:0,他引:1  
  相似文献   

16.
New analogs of 1α,25-dihydroxyvitamin D3 synthesized in our research group that show selective activity in vivo are presented along with supporting biological results. Compounds that act preferentially on intestine are 2-(3′-propylidene-19-nor-(20S or 20R))-1α,25-dihydroxyvitamin D3 and 2-methylene-19-21-dinor-1α,25-dihydroxyvitamin D3. Compounds that act anabolically to induce bone formation are 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 (2MD), the 2α-methyl derivative, the 26,27-dimethyl derivative, and the 26-dimethylene derivative. Compounds that act preferentially on parathyroid glands are 2-methylene-19-nor-1α-hydroxy-homopregnacalciferol, the 20S-bishomo derivative and the 2-methylene-19,26,27-trinor-1α,25-dihydroxyvitamin D3. These latter compounds do not elevate serum calcium until doses of the order of >300 μg/kg body weight are used, while parathyroid hormone levels are suppressed at much lower doses. Some of these novel analogs may ultimately be useful as new and safer therapeutic agents. Regardless of their clinical utility, they represent valuable research tools that can be used to study the specific functions of the Vitamin D hormone in vivo.  相似文献   

17.
The vitamin D receptor (VDR) is a member of the steroid/retinoid receptor superfamily of nuclear receptors and has potential tumor-suppressive functions in prostate and other cancer types. Vitamin D3 (VD3) exerts its biological actions by binding within cells to VDR. The VDR then interacts with specific regions of the DNA in cells, and triggers changes in the activity of genes involved in cell division, cell survival, and cellular function. Using human primary cultures and the prostate cancer (PCa) cell line, ALVA-31, we examined the effects of VD3 under different culture conditions. Complete G0/G1 arrest of ALVA-31 cells and approximately 50% inhibition of tumor stromal cell growth was observed. To determine changes in gene expression patterns related to VD3 activity, microarray analysis was performed. More than approximately 20,000 genes were evaluated for twofold relative increases and decreases in expression levels. A number of the gene targets that were up- and down-regulated are related to potential mechanisms of prostatic growth regulation. These include estrogen receptor (ER), heat shock proteins: 70 and 90, Apaf1, Her-2/neu, and paxillin. Utilizing antibodies generated against these targets, we were able to confirm the changes at the protein level. These newly reported gene expression patterns provide novel information not only potential markers, but also on the genes involved in VD3 induced apoptosis in PCa.  相似文献   

18.
1,25-Dihydroxyvitamin D3 has been known to have the tumor-suppressive activity in various kinds of tumors. However, the exact effect and working mechanism of 1,25-dihydroxyvitamin D3 on the tumor-suppressive activity in human kidney cancer cells remains poorly understood. 1,25-Dihydroxyvitamin D3 has cytotoxicity to ACHN cells and inhibited ACHN cell proliferation compared to the vehicle control. 1,25-Dihydroxyvitamin D3 increased the expression of the cleaved PARP1, active Caspase3, Bax, and Bim but decreased the expression of Bcl2 in ACHN cells. Moreover, 1,25-dihydroxyvitamin D3 down-regulated the phosphorylated Akt and Erk which might lead to apoptosis through activation of FOXO3 in ACHN cells. Transfection of siRNA against FOXO3 attenuated the pro-apoptotic BimEL expression in ACHN cells treated with 1,25-dihydroxyvitamin D3. These results suggest that FOXO3 is involved in the apoptosis induced by 1,25-dihydroxyvitamin D3.  相似文献   

19.
Docetaxel is a commonly used chemotherapeutic drug for patients with late stage prostate cancer. However, serious side effect and drug resistance limit its clinical success. Brefeldin A is a 16-membered macrolide antibiotic from mangrove-derived Fungus Aspergillus sp. (9Hu), which exhibited potent cytotoxicity against human cancer cells. In the present study, we determined the effect of brefeldin A on docetaxel-induced growth inhibition and apoptosis in human prostate cancer PC-3 cells. Brefeldin A in combination with docetaxel inhibited the growth of PC-3 cells in monolayer and in three dimensional cultures. The combination also potently stimulated apoptosis in PC-3 cells as determined by propidium iodide staining and morphological assessment. Mechanistic studies showed that growth inhibition and apoptosis in PC-3 cells treated with brefeldin A and docetaxel were associated with decrease in the level of Bcl-2. The present study indicates that combined brefeldin A with docetaxel may represent a novel approach for improving the efficacy of docetaxel, and Bcl-2 may serve as a target for brefeldin A to enhance the effects of docetaxel chemotherapy.  相似文献   

20.
Prostate cancer is an age-related disease that is linked to the inability of prostate cells to accumulate zinc following transformation. It is shown in the present study that the basal percentage of normal prostate cells expressing senescence-associated beta-galactosidase (SA-beta-gal) is higher than that of the cancer cells. In the presence of high zinc in the cell culture medium, the percentage of normal prostate cells expressing the SA-beta-gal increased but not that of the cancer cells. Increased intracellular zinc occurs in the prostate cancer cells treated with supraphysiologic concentration of zinc but it does not induce senescence or decrease the telomerase activities in these cells. Senescence, however, occurred when the prostate cancer cells DNA is damaged by irradiation. These findings suggest that prostate cancer cells are insensitive to the senescence-inducing effects of zinc but the cancer cells retain the capacity to undergo senescence through other pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号