首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(3-6):317-323
The objective of this study is using radiolabelled PBN to determine the tissue distribution, excretion, and metabolism of PBN in rats in order to evaluate the effective time to trap free radical in appropriate tissue(s). Our results demonstrated that PBN is rapidly absorbed when it is injected intraperitoneally in the animal. PBN can be used as an effective spin trapping agent for a variety of tissues since it is evenly distributed among a wide range of tissues measured. Since there is no difference in the tissue concentrations and distribution pattern of PBN at 15, 30 and 60min after injection of PBN. it is appropriate to choose any of these time intervals to terminate the experiment and extract the spin adduct. The excretion of PBN, however, is slow. The majority of the radioactivity (70%) was excreted by the first 3 days. Only 5.7% of radioactivity was collected from 3 to 14 days. The remaining 25% of the radioactivity may be in the form of expired 14CO2. Trace amounts of radioactivity were recovered in the feces. PBN has probably only one major form of metabolite excreted in the urine. A small amount of the parent compound, however, was also excreted in the urine. The chemical structure of the metabolite(s) is still unknown.  相似文献   

2.
The recovery of radioactivity in the urine of guineapigs following a bolus intravenous dose of chromatographically pure 14C-Ntau-methylhistidine was measured in order to test whether the excretion of Ntau-methylhistidine (Ntau-MH) is a valid index of myofibrillar protein breakdown in these animals. Four male and four female guineapigs were dosed and after 7 days, 91.65+/-2.82% and 3.58+/-0.91% of injected radioactivity was recovered in the excreta and tissues, respectively. The average total recovery of 95.2+/-3.0% was not significantly different from 100%. Male guineapigs excreted the radioactivity more slowly than females (70% of the dose excreted within 74 h vs 39 h, respectively) but cumulative excretion at 7 days was the same for each sex. Chromatographic analysis of the urine showed almost all of the radioactivity to be associated with a single peak corresponding to Ntau-MH, indicating a lack of significant metabolism. These data show that although the clearance of 14C-Ntau-MH is slower than in rats or humans the urinary excretion of Ntau-MH is a valid index for myofibrillar protein degradation in the guineapig.  相似文献   

3.
Metabolism of intravenously administered testosterone trans-4-n-butylcyclohexanoate (T bucyclate), a potent, long-acting androgen, was studied in cynomolgus monkeys (Macaca fascicularis). About 5% of the radioactivity of a dose of doubly labeled ester (14C, 3H) was excreted via the gastrointestinal tract. Most of the administered radioactivity was excreted in the urine within 120 h. No intact T bucyclate was recovered from either compartment. Tritium attributed to bucyclic acid and its metabolites was excreted rapidly (peak excretion was at 6 h after injection), while 14C excretion, attributed to testosterone and its metabolites, extended over 4 days. Testosterone metabolites were excreted predominantly as sulfate esters. Analysis of urinary products derived from the bucyclic acid moiety of T bucyclate showed no products susceptible to glucuronidase treatment, and showed a mixture of unidentified solvolyzable and unconjugated products. No unmetabolized trans-4-n-butylcyclohexanoic acid was detected in urine or feces. It is concluded that metabolism of testosterone bucyclate is initiated in vivo in cynomolgus monkeys by hydrolysis of ester to testosterone and bucyclic acid. The bucyclate side chain is rapidly cleared, and the testosterone is retained in the circulation.  相似文献   

4.
During 5 days after intraperitoneal injection of 14C-phenazepam into albino rats, about 77% of the total radioactivity was excreted with urine and feces in both intact animals and in those premedicated with phenazepam for 15 days. The excretory processes are described by the first order equations. The rates of phenazepam total excretion are identical in single and repeated injections. At the same time, phenazepam injected into the animals at a single dose is predominantly excreted with urine, while in multiple administration it is excreted with feces. Excretion of phenazepam with urine acquires the biexponential features, provided it is injected in multiple doses.  相似文献   

5.
Tritium and Carbon 14 analogs of the angiotensin converting enzyme inhibitor ketoACE were synthesized and their oral absorption, metabolism and excretion in rats were investigated. KetoACE, a ketomethylene analog of the tripeptide Bz-Phe-Gly-Pro, was slowly absorbed at a 35% level upon oral administration. It is rapidly eliminated from the blood with a half-life of about 10 minutes. Its excretion is primarily via the bile duct and it is excreted as 80% unchanged drug. The only identified metabolite consisting of 5-10% of the excreted radioactivity was determined to be the reduced ketoACE in which the ketone group was reduced to a hydroxyl.  相似文献   

6.
The elimination, tissue distribution, and metabolism of [1-14C]perfluorooctanoic acid (PFOA) was examined in male and female rats for 28 days after a single ip dose (9.4 μmol/kg, 4 mg/kg). A sex difference in urinary elimination of PFOA-derived 14C was observed. Female rats eliminated PFOA-derived radioactivity rapidly in the urine with 91% of the dose being excreted in the first 24 hr. In the same period, male rats eliminated only 6% of the administered 14C in the urine. The sex-related difference in urinary elimination resulted in the observed difference in the whole-body elimination half-life (t1/2) of PFOA in males (t1/2 = 15 days) and females (t1/2 < 1 day). Analysis of PFOA-derived 14C in tissues showed that the liver and plasma of male rats and the liver, plasma, and kidney of female rats were the primary tissues of distribution. The relatively high concentration of PFOA in the male liver was further examined using an in situ nonrecirculating liver perfusion technique. It was shown that 11% of the PFOA infused was extracted by the liver in a single pass. The ability of the liver to eliminate PFOA into bile was examined in rats whose renal pedicles were ligated to alleviate sex differences in the urinary excretion of PFOA. In a 6-hr period following IP administration of PFOA, there was no apparent difference in biliary excretion, where both males and females eliminated less than 1% of the PFOA dose via this route. We hypothesized that the sex difference in the persistence of PFOA was due to a more rapid formation of a PFOA-containing lipid (i.e., a PFOA-containing mono-, di-, or triacylglycerol, cholesteryl ester, methyl ester, or phospholipid) in the male rat. Also, the increased urinary elimination of PFOA in females may have been due to increased metabolism to a PFOA-glucuronide or sulfate ester. However, no evidence that PFOA is conjugated to form a persistent hybrid lipid was obtained, nor were polar metabolites of PFOA in urine or bile detected. In addition, daily urinary excretion of fluoride in male and female rats before or after PFOA treatment were similar, suggesting that the parent compound is not defluorinated. Thus, the more rapid elimination of PFOA from female rats is not due to formation of a PFOA metabolite.  相似文献   

7.
A mixture of N-acetyl-[4,5,6,7,8,9-14C]neuraminosyl-alpha (2-3(6]-galactosyl-beta (1-4-glucose[( 14C]sialyl-lactose) and N-acetylneuraminosyl-alpha (2-3(6]-galactosyl-beta(1-4)-glucit-1-[3H]ol(sialyl-[3H]lactitol) as well as porcine submandibular gland mucin labeled with N-acetyl- and N-glycoloyl-[9-(3)H]neuraminic acid were administered orally to mice. The distribution of the different isotopes was followed in blood, tissues and excretion products of the animals. One half of the [14C]sialyl-lactose/sialyl-[3H]lactitol mixture given orally was excreted unchanged in the urine. The other half was hydrolysed by sialidase and partly metabolized further, followed by the excretion of 30% of the 14C-radioactivity as free N-acetyl-[4,5,6,7,8,9-14C]neuraminic acid and 60% of this radioactivity in the form of non-anionic compounds including expired 14CO2 within 24 h. The 14C-radioactivity derived from the [14C]sialyl-lactose/sialyl-[3H]lactitol mixture which remained in the bodies of fasted mice after 24 h was less than 1%. In the case of well-fed mice, a higher amount of the sialic acid residues was metabolized. The bulk of radioactivity of the mucin was resorbed within 24 h. About 40% of the radioactivity administered was excreted by the urine within 48 h; 30% of this radioactivity represented sialic acid and 70% other anionic and non-anionic metabolic products. 60% of the radioactivity administered remained in the body, and bound 3H-labeled sialic acids were isolated from liver. Sialyl-alpha (2-3)-[3H]lactitol was injected intravenously into rats; the substance was rapidly excreted in the urine without decomposition. These studies show that part of the sialic acids bound to oligosaccharides and glycoproteins can be hydrolysed in intestine by sialidase and be resorbed. This is followed either by excretion as free sialic acid or by metabolization at variable degrees, which apparently depends on the compound fed and on the retention time in the digestive tract.  相似文献   

8.
Endemic chinchilla (Chinchilla spp.) populations are nearly extinct in the wild (South America). In captive animals (Chinchilla lanigera and C. brevicaudata), reproduction is characterized by poor fertility and limited by seasonal breeding patterns. Techniques applied for studying male reproductive physiology in these species are often invasive and stressful (i.e. repeated blood sampling for sexual steroids analysis). To evaluate endocrine testicular function, the present experiments were designed to (a) determine the main route of testosterone excretion (14C-testosterone infusion in four males); (b) validate urine and fecal testosterone metabolite measurements (HPLC was used to separate metabolites and immunoreactivity was assessed in all metabolites using a commercial testosterone radioimmunoassay, and parallelism, accuracy and precision tests were conducted to validate the immunoassay); and (c) investigate the biological relevance of the techniques applied (quantification of testosterone metabolite excretion into urine and feces from five males injected with hCG and comparison between 10 males and 10 females). Radiolabelled metabolites of 14C-testosterone were excreted, 84.7+/-4.2 % in urine and 15.2+/-3.9 % in feces. A total of 82.7+/-4.2% of urinary and 45.7+/-13.6% of fecal radioactivity was excreted over the first 24 h period post-infusion (metabolite concentration peaked at 8.2+/-2.5 h and 22.0+/-7.0 h, respectively). Several urinary and fecal androgen metabolites were separated by HPLC but only fecal metabolites were associated with native testosterone; however, there was immunoreactivity in more than one metabolite derived from 14C-testosterone. After hCG administration, an increase in androgen metabolite excretion was observed (p<0.05). Males excreted greater amounts daily of urinary androgen metabolites as compared with females (p<0.05); this difference was not evident in feces. Results of the present study indicate that the procedure used is a reliable and non-invasive method to repeatedly monitor variations in testicular endocrine activity in this species. It can be a useful tool that would help ensure the survival of the wild populations as well as to provide the basis for a more efficient use by the fur industry.  相似文献   

9.
The excretion and metabolism of orally administered [14C]-labelled benzoic acid (100 mg/kg) was examined in the reptile Sphenedon punctatus (tuatara). The major excreted metabolite was chromatographically and electrophoretically identical with ornithuric acid. Conjugation with glycine or glucuronic acid was not detected. 7–21 percent of the dose was recovered from the urine and faeces, the bulk of the excreted radioactivity being eliminated in the first seven days. Free benzoic acid and conjugates were excreted in the first week but only conjugates could be detected in fauces collected at later intervals. These results are discussed in relation to the taxonomic position of tuatara.  相似文献   

10.
The metabolic fate of [1-14-C]hexadecylsulphate and hexadecyl[35-S]sulphate, administered intravenously as the sodium and trimethylammonium salt to dogs and orally as the erythromycin salt to dogs, rats and humans, was studied. Studies with rats indicated that the compounds were well absorbed and rapidly excreted in the urine. However, after oral administration of the 14-C-and 35-S-labelled hexadecyl sulphate erythromycin salt to dogs, considerable amounts of radioactivity were excreted in the faeces as unmetabolized hexadecyl sulphate. Studies with two humans showed that orally administered erythromycin salt of [1-14C]hexadecyl sulphate was well absorbed in one person but poorly absorbed in the other. Radioactive metabolites in urine were separated by t.l.c. in two solvent systems. The main metabolite of hexadecyl sulphate in the dog, rat and human was identified as the sulphate ester of 4-hydroxybutyric acid. In addition, psi-[14-C]butyrolactone as a minor metabolic product of [1-14-C]hexadecyl sulphate was also isolated from the urine of rat, dog and man. However, there was still another metabolite in dog urine, which comprised about 20% of the total urinary radioactivity and carried both 14-C and 35-S labels. This metabolite was absent from rat urine. The metabolite in dog urine was isolated and subsequently identified by t.l.c. and g.l.c. and by isotope-dilution experiments as the sulphate ester of glycollic acid. Small amounts (about 5% of the total recovered radioactivity in excreta) of labelled glycollic acid sulphate were also found in human urine after ingestion of erythromycin [1-14-C]hexadecyl sulphate.  相似文献   

11.
The metabolic fate of chlormadinone acetate (17alpha-acetoxy-6-chloro-4, 6-pregnadiene-3, 20-dione; CAP) was studied in intact and biliary fistula baboons. The steroid was labeled with 3H at position 1 and with 14C at the carboxyl moiety of the 17alpha-acetate, thus affording the opportunity to ascertain the loss of the 17alpha-acetoxy group and the fate of both labels. The averages of the radioactivity excreted, given as percentages of the amounts injected, and the standard deviations were as follows: In the urine of intact animals after 6 hours, 5.7 +/- 0.2% and 5.5 +/- 0.7% of the 3H and 14C were recovered, respectively. After 6 days, there was 17.5% of the 3H and 16.2% of the 14C in the urine plus 15.3% of the 3H and 16.4% of the 14C in the feces. In baboons with biliary fistulas, the total radioactivity excreted was 7.8 +/- 0.7% of the 3H and 11.6% of the 14C in the urine, and 30.9 +/- 4.4% of the 3H and 30.7% of the 14C in the bile after 6 hours. Glucosiduronates were the predominant conjugates in the urine and bile. The similarity in the urinary excretion of radioactivity in the first 6 hours in intact and biliary fistula animals, the relatively low excretion of radioactivity in the bile and after 6 days in the urine, and the low fecal excretion suggest that the metabolites of CAP are not involved in an extensive enterohepatic circulation in the baboon. Deacetylation of the 17alpha-acetate in CAP was detected in the early collection periods of the urine and bile and constituted a very small percentage of the injected compound. No significant oxygenation of CAP at position 1 was detected. The metabolism of CAP is discussed and compared to our previously reported data on the metabolism of progesterone, ethynodiol diacetate and medroxyprogesterone acetate and the data on other progestogens reported in the literature. It appears that the excretion of CAP is significantly slower in the baboon than that of the other progestogens. The amounts of glucosiduronates of CAP and/or its metabolites formed in vivo are less than those formed with the other progestogens. Also, the extent of deacetylation of the 17alpha-acetate of CAP is much less than that of the 3beta-acetate of ethynodiol diacetate.  相似文献   

12.
14C-Labelled oestradiol-17 beta and progesterone (50 mu Ci each) were injected i.v. into an adult female white rhinoceros and all urine and faeces collected separately over the next 4 days. The total recovery of injected label was 61%, 25% being present in the urine and 36% in the faeces. Of the radioactivity recovered, 69% was excreted on Day 2 of the collection period. Repeated extraction of samples obtained on Day 2 showed that, of the radioactivity in faeces, 92.4% was associated with unconjugated steroids whereas in the urine the proportion of conjugated and unconjugated steroids were similar (41.2% and 51.4% respectively). After phenolic separation of urinary steroids, HPLC followed by derivatization and recrystallization techniques identified progesterone as the major component of the unconjugated portion with 4-pregnen-20 alpha-ol-3-one as the principal metabolite in the conjugated fraction. Pregnanediol was not present. Oestrone appeared to be the most abundant oestrogen metabolite with smaller but significant amounts of oestradiol-17 beta and oestradiol-17 alpha in the unconjugated and conjugated fractions respectively. Small amounts of progesterone were found in the faecal extract in which the radioactivity consisted mainly of oestradiol-17 alpha and oestradiol-17 beta. The results have established the major excreted metabolites of oestradiol-17 beta and progesterone in the white rhinoceros and the development of more appropriate assay methods for monitoring ovarian function in African rhinoceroses should now be possible.  相似文献   

13.
The excretion of three gonadal steroids was studied in the urine and feces of female cotton-top tamarins (Saguinus oedipus oedipus). Each steroid, 14C-estrone, 14C-estradiol, and 14C-progesterone, was injected into a separate female cotton-top tamarin. Urine and feces were collected at 8 hr intervals for 5 days on the three tamarins. Samples were analyzed to determine the proportion of free and conjugated steroids. Steroid excretion patterns were determined by sequential ether extraction, enzyme hydrolysis, and chromatography. Labeled estrone was excreted in a slow and continuous manner into the urine (57%) and feces (43%) with 90% of the steroid conjugated. The nonconjugated form had an elution profile identical to 3H estrone, but the conjugated portion was not completely hydrolyzed by enzyme. Labeled estradiol was excreted primarily in the urine (87%) and was released rapidly. Over 90% of the injected 14C-estradiol was excreted in urine as a conjugate, of which 41% was converted to an estrone conjugate and the remaining 59% was excreted as a polar estradiol conjugate. Labeled progesterone was excreted primarily in the feces (95%), 61% of which was free steroid. Four to six individual peaks of radioactivity were found when using celite chromatography and high performance liquid chromatography (HPLC), indicating that progesterone is metabolized into several urinary and fecal metabolites. One of these peaks matched 3H-progesterone and others may be pregnanediols, pregnanetriols, and 17-hydroxyprogesterone. These steroidal excretion patterns help explain the atypical hormonal patterns seen during the tamarin ovarian cycle.  相似文献   

14.
The distribution in the mouse tissues of 13-[14C]-12,13-epoxtrichothec-9-ene administered intravenously was determined by whole-body autoradiography and by tracing the radioactivity of the tissues oxidized in an Auto Sample Oxidizer. The appearance of the label in urine and feces was also followed by the tracer technique. The distributions of radioactivity in tissues as determined by the two methods were almost identical. On the autoradiograms of mice killed 10 min after the injection, marked blackening of the film was observed at the sites corresponding to the liver, kidney, and bladder with urine, and much less darkening at other sites. The radioactivities contained in the liver, kidney, urine and small intestine were 13.3, 2.3, 2.6 and 10.2% of the dose, respectively. The labeled toxin was rapidly excreted into urine and feces, 56.0 and 4.9% in 6 hr and 66.7 and 28.0% in 24 hr after injection, respectively. Oral administration of the labeled toxin to mother mice resulted in the appearance of radioactivity in the stomach contents of 7-day suckling mice, thus demonstrating indirectly the secretion of the toxin into the milk. An attempt to show a respiratory route of excretion in rats given the radioactive compound orally or intravenously failed to detect any radioactivity in the expired CO2 collected for 6 hr, suggesting that the 14C in the epoxy ring was intact.  相似文献   

15.
In order to prove the hypothesis that humans and animals with adequate vitamin A status do not absorb and metabolize orally administered all-trans retinoyl β-glucuronide, unlabeled retinoyl glucuronide (0.1 mmol) was orally dosed to fasting well-nourished young men. Neither retinoyl glucuronide nor retinoic acid, a possible metabolite, appeared in the blood within 12 h after ingestion. Next, radiolabeled all-trans 15-[14C]-retinoyl β-glucuronide was chemically synthesized by a new procedure, and fed orally to rats of different vitamin A status. Analysis of blood and other tissues 5 or 24 h after the dose, showed the presence of radioactivity ( 0.5%) in the blood of vitamin A deficient rats, but not in sufficient rats. Livers of all rats contained small, but detectable amounts (0.3 to 1.1% of the dose) of radioactivity. The accumulation of radioactivity in the liver was highest in deficient rats. Analysis of the retinoids showed that the radioactivity in serum and liver was due to retinoic acid formed from retinoyl glucuronide. Within 24 h after the dose, 31 to 40% of the administered radioactivity was excreted in the feces, and 2 to 4.7% of the dose was excreted in the urine. Results of the present studies show that oral administration of retinoyl β-glucuronide did not give rise to detectable changes in blood retinoyl glucuronide and/or retinoic acid concentrations in humans or rats with adequate vitamin A status.  相似文献   

16.
The excretion and degradation was studied of (35)S-labelled 4-chondroitin sulphate injected into guinea pigs in the form of proteoglycan isolated from cartilage and in the form of free chondroitin 4-sulphate prepared from the same proteoglycan by proteolysis. When the proteoglycan was injected there was a delay of about 15-20min before significant amounts or radioactivity were excreted, whereas after injection of chondroitin 4-sulphate a considerable amount of radioactivity was excreted within 10min and a much higher proportion of the radioactive dose was excreted in 1h or 24h compared with the proteoglycan. In both cases, however, a major part of the radioactivity was not excreted even in 24h. Sterile conditions were used to collect the radioactive material directly from the bladder. When chondroitin 4-sulphate was injected, the molecular sizes of injected and excreted materials were similar, as assessed by gel chromatography on Sephadex G-200, whereas when proteoglycan was injected the molecular size of the excreted labelled material was similar to that of the chondroitin 4-sulphate chains in the original proteoglycan. In neither case did the size of the excreted labelled material change with time over 1h, and low-molecular-weight labelled material was virtually absent. In contrast, when urine was collected for 24h without preservative the labelled material in it was extensively degraded after either the proteoglycan or chondroitin 4-sulphate had been given. Chondroitin 4-sulphate became similarly degraded when incubated with non-sterile urine, but not when the urine was passed through a bacterial filter, suggesting that degradation was caused by contaminating micro-organisms in the experiments in which urine was collected for 24 h. It is concluded that chondroitin 4-sulphate chains of about 18000 molecular weight can be excreted readily as such, whereas intact proteoglycans must be degraded to free glycosaminoglycans first, although both are taken up by the tissues more rapidly than they are excreted.  相似文献   

17.
Summary. Three biodisposition studies with taurine were performed in male and female adult rats at dosages of 30 and 300 mg/kg. A single oral dose of 14C-taurine was rapidly absorbed, distributed to tissues and excreted unchanged in urine. Elimination of radioactivity from intracellular pools was slow. Pre-treatment of animals for 14 days with unlabelled taurine did not significantly affect the fate of 14C-taurine. At the higher dose there was more extensive excretion combined with a lower percentage of the dose in the carcass, indicating the possibility of saturation of the tubular reabsorption mechanism for taurine. Daily administration of unlabelled taurine for 14 days did not result in an increase in total taurine in the brain. The data indicate that exogenous taurine rapidly equilibrates with endogenous body pools and that any excess is rapidly eliminated by the kidneys.  相似文献   

18.
M. Kimoto  H. Tsuji  T. Ogawa 《Amino acids》1994,6(3):273-282
Summary The metabolic significance ofN G ,N G -dimethyl-l-arginine (DMA) as a precursor of endogenous dimethylamine (DMN) in rats was examined in connection with the wide distribution and active operation of dimethylargininase (EC3.5.3.18) in rat tissues (Kimoto et al., 1993). When [methyl-14C]DMA was administered intraperitoneally to rats, the radioactive DMN was detected in various tissues as a major radioactive metabolite one hour after injection, and about 65% of the radioactivity administered was recovered in the first 12-h urine as DMN. In the case of the [14C] DMN-injected rats, almost all the radioactivity was excreted in the 12-h urine as DMN, except for a negligible amount of radioactivity found in urea. The time-dependent decrease in the specific radioactivity of DMA and DMN in urine showed that dimethylargininase was significantly involved in thein vivo formation of DMN by the hydrolytic cleavage of DMA released from methylated proteins and that DMA is a dominant precursor of endogenous DMN in rats.  相似文献   

19.
Mice and rats were injected with tracer doses of radioactive N tau-[Me-14C]methylhistidine in order to determine the recovery of the injected radioactivity and the extent of the metabolism of N tau-methylhistidine. In the first 27 h after injection, 96.3, 78.0 and 97.5% of radioactivity was excreted by female mice, male mice and male rats respectively. Recovery after 5 days of collection was 98.4 and 92.8% for female and male mice respectively. However, radioactivity associated with N tau-methylhistidine or its acetylated derivative accounted for 44, 86.5 and 96.0% of the excreted radioactivity for female mice, male mice and rats respectively. In female mice the remaining excreted radioactivity was associated with four major peaks of activity when the metabolites were separated by cation-exchange chromatography. In male mice there were only three of these metabolites present. After chromatographic purification, one metabolite was identified by mass spectroscopy to be 1-methylimidazole-4-acetic acid. Examination of the possible sources of this metabolite indicates that, in mice, N tau-methylhistidine is decarboxylated and enters the chain of reactions common to histamine metabolism. Such extensive metabolism precludes the use of N tau-methylhistidine excretion as an index of myofibrillar protein breakdown in mice.  相似文献   

20.
The time course and end products of estradiol metabolism were studied in the domestic cat, which has been chosen as a model for steroid metabolism studies in nondomestic felidae. Radiolabeled estradiol was injected intravenously into three adult female cats; one had a spontaneous estrus, one was induced with follicle-stimulating hormone, and one had been ovariohysterectomized; feces, urine, and blood were collected daily, and the radioactivity content was determined. Feces and urine contained 47 and 1% of the injected dose (0.33 μCi), respectively. Metabolites appeared earlier in the urine than in feces (d 1 vs d 2 postinjection), and excretion was completed on d 5; no radioactivity was detected in plasma 24 h postinjection. Estradiol metabolites were excreted as unconjugated estrogens (22%) and as conjugates hydrolyzable with β-glucuronidase and acid solvolysis (7 and 50%, respectively); the remaining 14% were not recoverable with any of the above methods. The major portion of the conjugates was estradiol-17β (64–80%) while 11–16% appeared as estrone. Endogenous cycles related to the spontaneous and induced ovarian activity were monitored by observation of estrous behavior, vaginal epithelium cornification, and plasma estradiol determination. The reproductive state of each animal had no effect on the time course or type of metabolite excreted. We found low proportions of injected radioactivity excreted in the urine and high residual levels remaining after hydrolysis and extraction in the feces. These findings suggest that although feces are an abundant source of estradiol metabolite in the cat, and probably in the exotic felidae, development of noninvasive methods for monitoring ovarian cycles in these species will depend on more efficient methods for urine hydrolysis, on the resolution of problems encountered in fecal steroid analysis, or on the identification of metabolites which may be measured directly in the urine without hydrolysis or extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号