首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used the isolated-perfused rat lung model to study the influence of pulmonary ventilation and surfactant instillation on the development of postreperfusion lung microvascular injury. We hypothesized that the state of lung inflation during ischemia contributes to the development of the injury during reperfusion. Pulmonary microvascular injury was assessed by continuously monitoring the wet lung weight and measuring the vessel wall (125)I-labeled albumin ((125)I-albumin) permeability-surface area product (PS). Sprague-Dawley rats (n = 24) were divided into one control group and five experimental groups (n = 4 rats per group). Control lungs were continuously ventilated with 20% O(2) and perfused for 120 min. All lung preparations were ventilated with 20% O(2) before the ischemia period and during the reperfusion period. The various groups differed only in the ventilatory gas mixtures used during the flow cessation: group I, ventilated with 20% O(2); group II, ventilated with 100% N(2); group III, lungs remained collapsed and unventilated; group IV, same as group III but pretreated with surfactant (4 ml/kg) instilled into the airway; and group V, same as group III but saline (4 ml/kg) was instilled into the airway. Control lungs remained isogravimetric with baseline (125)I-albumin PS value of 4.9 +/- 0.3 x 10(-3) ml x min(-1) x g wet lung wt(-1). Lung wet weight in group III increased by 1.45 +/- 0.35 g and albumin PS increased to 17.7 +/- 2.3 x 10(-3), indicating development of vascular injury during the reperfusion period. Lung wet weight and albumin PS did not increase in groups I and II, indicating that ventilation by either 20% O(2) or 100% N(2) prevented vascular injury. Pretreatment of collapsed lungs with surfactant before cessation of flow also prevented the vascular injury, whereas pretreatment with saline vehicle had no effect. These results indicate that the state of lung inflation during ischemia (irrespective of gas mixture used) and supplementation of surfactant prevent reperfusion-induced lung microvascular injury.  相似文献   

2.
We examined the factors that influence the permeability characteristics of isolated perfused rat lungs and compared the ex vivo permeability-surface area product (PS) with that obtained in vivo. In lungs perfused for 20 min with homologous blood or a physiological salt solution (PSS) containing 4 g/100 ml albumin, mean PS values, obtained by the single-sample method of Kern et al. [Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H229-H236, 1983], were 9.9 +/- 0.6 (SE) and 6.8 +/- 0.3 cm3.min-1.g wet lung-1.10(-2), respectively. These values were similar to lung PS obtained in intact rats (7.7 +/- 0.4 cm3.min-1.g wet lung-1.10(-2). In perfused lungs, PS values were influenced by the perfusate albumin concentration, the length of perfusion time, and the degree of vascular recruitment. Twenty minutes after lung isolation, PS was 126% higher in lungs perfused with albumin-free PSS containing Ficoll than in lungs perfused with albumin-PSS. Moreover, PS in Ficoll-PSS-perfused lungs increased even higher after 2 h of perfusion, and this time-dependent increase in PS was attenuated by addition of 0.1 g/100 ml albumin to the perfusate. Two hours of ex vivo ventilation with hypoxic (0 or 3% 0(2)) or hyperoxic (95% 0(2)) gas mixture did not affect PS values in perfused lungs. However, PS was elevated in lungs perfused ex vivo with protamine, which causes endothelial cell injury, or in lungs from rats exposed in vivo to human recombinant tumor necrosis factor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Brain extraction of (18)F-labeled 2-fluoro-2-deoxy-D-glucose (FDG) was significantly higher in pentylene tetrazole (PTZ)-treated rats (32 +/- 4%) than controls (25 +/- 4%). The FDG permeability-surface area product (PS) was also significantly higher with PTZ treatment (0.36 +/- 0.05 ml. min(-1). g(-1)) than in controls (0.20 +/- 0.06 ml. min(-1). g(-1)). Cerebral blood flow rates were also elevated by 50% in seizures. The internal carotid artery perfusion technique indicated mean [(14)C]glucose clearance (and extraction) was increased with PTZ treatment, and seizures increased the PS by 37 +/- 16% (P < 0.05) in cortical regions. Because kinetic analyses suggested the glucose transporter half-saturation constant (K(m)) was unchanged by PTZ, we derived estimates of 1) treated and 2) control maximal transporter velocities (V(max)) and 3) a single K(m). In cortex, the glucose transporter V(max) was 42 +/- 11% higher (P < 0.05) in PTZ-treated animals (2.46 +/- 0.34 micromol. min(-1). g(-1)) than in control animals (1.74 +/- 0.26 micromol. min(-1). g(-1)), and the K(m) = 9.5 +/- 1.6 mM. Blood-brain barrier (BBB) V(max) was 31 +/- 10% greater (P < 0.05) in PTZ-treated (2.36 +/- 0. 30 micromol. min(-1). g(-1)) than control subcortex (1.80 +/- 0.25 micromol. min(-1). g(-1)). We conclude acute upregulation of BBB glucose transport occurs within 3 min of an initial seizure. Transporter V(max) and BBB glucose permeability increase by 30-40%.  相似文献   

4.
We describe the feasibility of chronic measurement of cardiac output (CO) in conscious mice. With the use of gas anesthesia, mice >30 g body wt were instrumented either with transit-time flow probes or electromagnetic probes placed on the ascending aorta. Ascending aortic flow values were recorded 6-16 days after surgery when probes had fully grown in. In the first set of experiments, while mice were under ketamine-xylazine anesthesia, estimates of stroke volume (SV) obtained by the transit-time technique were compared with those simultaneously obtained by echocardiography. Transit-time values of SV were similar to those obtained by echocardiography. The average difference +/- SD between the methods was 2 +/- 7 microl. In the second set of studies, transit-time values of CO were compared with those obtained by the electromagnetic flow probes. In conscious resting conditions, estimates +/- SD) of cardiac index (CI) obtained by the transit-time and electromagnetic flow probes were 484 +/- 119 and 531 +/- 103 ml x min(-1) x kg body wt(-1), respectively. Transit-time flow probes were also implanted in mice with a myocardial infarction (MI) induced by ligation of a coronary artery 3 wk before probe implantation. In these MI mice (n = 7), average (+/- SD) resting and stimulated (by volume loading) values of CO were significantly lower than in noninfarcted mice (n = 15) (resting CO 16 +/- 3 vs. 20 +/- 4 ml/min; stimulated CO 20 +/- 5 vs. 26 +/- 6 ml/min). Finally, using transfer function analysis, we found that, in resting conditions for both intact and MI mice, spontaneous variations in CO (> 0.1 Hz) were mainly due to those occurring in SV rather than in heart rate. These data indicate that CO can be measured chronically and reliably in conscious mice, also in conditions of heart failure, and that variations in preload are an important determinant of CO in this species.  相似文献   

5.
Mild pulmonary interstitial edema was shown to cause fragmentation of interstitial matrix proteoglycans. We therefore studied compartmental fluid accumulation by light and electron microscopy on lungs of anesthetized rabbits fixed in situ by vascular perfusion after 0.5 ml.kg(-1).min(-1) iv saline infusion for 180 min causing approximately 6% increase in lung weight. Morphometry showed that a relevant portion (44%) of extravascular fluid is detected early in the alveolar septa, 85% of this fluid accumulating in the thick portion of the air-blood barrier. The arithmetic mean thickness of the barrier increased in interstitial edema from 1.06 +/- 0.05 (SE) to 1.33 +/- 0.06 microm. The harmonic mean thickness increased from 0.6 +/- 0.03 to 0.86 +/- 0.07 microm, mostly due to thickening of the thin portion causing an increase in gas diffusion resistance. Despite some structural damage, the air-blood barrier displays a relatively high structural resistance providing a safety factor against the development of severe edema. It is suggested that the increase in extra-alveolar perivascular space occurs as a consequence of fluid accumulation in the air-blood barrier.  相似文献   

6.
Adenosine (Ado), a smooth muscle vasodilator and modulator of cardiac function, is taken up by many cell types via a saturable transporter, blockable by dipyridamole. To quantitate the influences of endothelial cells in governing the blood-tissue exchange of Ado and its concentration in the interstitial fluid, one must define the permeability-surface area products (PS) for Ado via passive transport through interendothelial gaps [PS(g)(Ado)] and across the endothelial cell luminal membrane (PS(ecl)) in their normal in vivo setting. With the use of the multiple-indicator dilution (MID) technique in Krebs-Ringer perfused, isolated guinea pig hearts (preserving endothelial myocyte geometry) and by separating Ado metabolites by HPLC, we found permeability-surface area products for an extracellular solute, sucrose, via passive transport through interendothelial gaps [PS(g)(Suc)] to be 1.9 +/- 0.6 ml. g(-1). min(-1) (n = 16 MID curves in 4 hearts) and took PS(g)(Ado) to be 1. 2 times PS(g)(Suc). MID curves were obtained with background nontracer Ado concentrations up to 800 micrometer, partially saturating the transporter and reducing its effective PS(ecl) for Ado. The estimated maximum value for PS(ecl) in the absence of background adenosine was 1.1 +/- 0.1 ml. g(-1). min(-1) [maximum rate of transporter conformational change to move the substrate from one side of the membrane to the other (maximal velocity; V(max)) times surface area of 125 +/- 11 nmol. g(-1). min(-1)], and the Michaelis-Menten constant (K(m)) was 114 +/- 12 microM, where +/- indicates 95% confidence limits. Physiologically, only high Ado release with hypoxia or ischemia will partially saturate the transporter.  相似文献   

7.
Moderate exercise elicits a relative postexercise hypotension that is caused by an increase in systemic vascular conductance. Previous studies have shown that skeletal muscle vascular conductance is increased postexercise. It is unclear whether these hemodynamic changes are limited to skeletal muscle vascular beds. The aim of this study was to determine whether the splanchnic and/or renal vascular beds also contribute to the rise in systemic vascular conductance during postexercise hypotension. A companion study aims to determine whether the cutaneous vascular bed is involved in postexercise hypotension (Wilkins BW, Minson CT, and Halliwill JR. J Appl Physiol 97: 2071-2076, 2004). Heart rate, arterial pressure, cardiac output, leg blood flow, splanchnic blood flow, and renal blood flow were measured in 13 men and 3 women before and through 120 min after a 60-min bout of exercise at 60% of peak oxygen uptake. Vascular conductances of leg, splanchnic, and renal vascular beds were calculated. One hour postexercise, mean arterial pressure was reduced (79.1 +/- 1.7 vs. 83.4 +/- 1.8 mmHg; P < 0.05), systemic vascular conductance was increased by approximately 10%, leg vascular conductance was increased by approximately 65%, whereas splanchnic (16.0 +/- 1.8 vs. 18.5 +/- 2.4 ml.min(-1).mmHg(-1); P = 0.13) and renal (20.4 +/- 3.3 vs. 17.6 +/- 2.6 ml.min(-1).mmHg(-1); P = 0.14) vascular conductances were unchanged compared with preexercise. This suggests there is neither vasoconstriction nor vasodilation in the splanchnic and renal vasculature during postexercise hypotension. Thus the splanchnic and renal vascular beds neither directly contribute to nor attenuate postexercise hypotension.  相似文献   

8.
We examined the effects of decreases in perfusate concentrations of calcium and magnesium on the pulmonary vascular permeability in the isolated perfused rabbit lung. The albumin permeability-surface area product (PS) and the albumin reflection coefficient (sigma) were determined in the same lung using 125I- and 131I-labeled albumin tracers. Decreases in vascular Ca2+ and Mg2+ concentrations were induced by adding ethylenediaminetetraacetic acid (EDTA) to the perfusate. Decreases in the concentration of these cations resulted in an increase in the PS from a control value of 1.18 +/- 0.13 X 10(-3) to 7.69 +/- 0.75 X 10(-3) cm3 X min-1 X g wet lung wt-1 and a decrease in the sigma from 0.96 +/- 0.01 to 0.74 +/- 0.02. The decrease in sigma suggests an increase in the calculated equivalent pore radius from 44 to 63 A. The results indicate that Ca2+ and Mg2+ play a role in the maintenance of normal pulmonary vascular permeability to proteins.  相似文献   

9.
In order to explore the pathogenetic mechanism underlying the changes in blood-brain barrier sodium transport in experimental diabetes, the effects of hyperglycemia and of hypoinsulinemia were studied in nondiabetic rats. In untreated diabetes, the neocortical blood-brain barrier permeability for sodium decreased by 20% (5.6 +/- 0.7 versus 7.0 +/- 0.8 X 10(5) ml/g/s) as compared to controls. Intravenous infusion of 50% glucose for 2 h was associated with a decrease in the blood-brain barrier permeability to sodium (5.4 +/- 1.2 X 10(5) ml/g/s), whereas rats treated with an inhibitor of insulin-secretion (SMS 201-995, a somatostatin-analogue) had normal sodium permeability (7.3 +/- 2.0 X 10(5) ml/g/s). Acute insulin treatment of diabetic rats normalized the sodium permeability within a few hours as compared to a separate control group (7.7 +/- 1.1 versus 6.9 +/- 1.4 X 10(5) ml/g/s). To elucidate whether the abnormal blood-brain barrier passage is caused by a metabolic effect of glucose or by the concomitant hyperosmolality, rats were made hyperosmolar by intravenous injection of 50% mannitol. Although not statistically significant, blood-brain barrier sodium permeability increased in hyperosmolar rats as compared to the control rats (8.3 +/- 1.0 and 7.0 +/- 1.9 X 10(5) ml/g/s, respectively). It is concluded that either hyperglycemia per se or a glucose metabolite is responsible for the blood-brain barrier abnormality which occurs in diabetes. Further, we suggest that the specific decrease of sodium permeability could be the result of glucose-mediated inhibition of the Na+K+-ATPase localized at the blood-brain barrier.  相似文献   

10.
To evaluate the potential contribution of circulating kynurenines to brain kynurenine pools, the rates of cerebral uptake and mechanisms of blood-brain barrier transport were determined for several kynurenine metabolites of tryptophan, including L-kynurenine (L-KYN), 3-hydroxykynurenine (3-HKYN), 3-hydroxyanthranilic acid (3-HANA), anthranilic acid (ANA), kynurenic acid (KYNA), and quinolinic acid (QUIN), in pentobarbital-anesthetized rats using an in situ brain perfusion technique. L-KYN was found to be taken up into brain at a significant rate [permeability-surface area product (PA) = 2-3 x 10(-3) ml/s/g] by the large neutral amino acid carrier (L-system) of the blood-brain barrier. Best-fit estimates of the Vmax and Km of saturable L-KYN transfer equalled 4.5 x 10(-4) mumol/s/g and 0.16 mumol/ml, respectively. The same carrier may also mediate the brain uptake of 3-HKYN as D,L-3-HKYN competitively inhibited the brain transfer of the large neutral amino acid L-leucine. For the other metabolites, uptake appeared mediated by passive diffusion. This occurred at a significant rate for ANA (PA, 0.7-1.6 x 10(-3) ml/s/g), and at far lower rates (PA, 2-7 x 10(-5) ml/s/g) for 3-HANA, KYNA, and QUIN. Transfer for KYNA, 3-HANA, and ANA also appeared to be limited by plasma protein binding. The results demonstrate the saturable transfer of L-KYN across the blood-brain barrier and suggest that circulating L-KYN, 3-HKYN, and ANA may each contribute significantly to respective cerebral pools. In contrast, QUIN, KYNA, and 3-HANA cross the blood-brain barrier poorly, and therefore are not expected to contribute significantly to brain pools under normal conditions.  相似文献   

11.
Pressure support (PS) is characterized by a pressure plateau, which is usually generated at the ventilator level (PS(vent)). We have built a PS device in which the pressure plateau can be obtained at the upper airway level (PS(aw)) or at the alveolar level (PS(A)). The effect of these different PS modes was evaluated in seven healthy men during air breathing and 5% CO(2) breathing. Minute ventilation during air breathing was higher with PS(A) than with PS(aw) and lower with PS(vent) (16 +/- 3, 14 +/- 3, and 11 +/- 2 l/min, respectively). By contrast, there were no significant differences in minute ventilation during 5% CO(2) breathing (25 +/- 5, 27 +/- 7, and 23 +/- 5 l/min, respectively). The esophageal pressure-time product per minute was lower with PS(A) than with PS(aw) and PS(vent) during air breathing (29 +/- 26, 44 +/- 44, and 48 +/- 30 cmH(2)O. s, respectively) and 5% CO(2) breathing (97 +/- 40, 145 +/- 62, and 220 +/- 41 cmH(2)O. s, respectively). In conclusion, during PS, moving the inspiratory pressure plateau from the ventilator to the alveolar level reduces pressure output, particularly at high ventilation levels.  相似文献   

12.
Little is known about lung function during early stages of postnatal maturation, although the complex structural changes associated with developing rat lung are well studied. We therefore analyzed corresponding functional (lung volume, respiratory mechanics, intrapulmonary gas mixing, and gas exchange) and structural (alveolar surface area, mean linear intercept length, and alveolar septal thickness) changes of the developing rat lung at 7-90 days. Total lung capacity (TLC) increased from 1.54 +/- 0.07 to 16.7 +/- 2.46 (SD) ml in proportion to body weight, but an increase in body weight exceeded an increase in lung volume by almost twofold. Series dead space volume increased from 0.21 +/- 0.03 to 1.38 +/- 0.08 ml but decreased relative to TLC from 14% to 8%, indicating that parenchymal growth exceeded growth of conducting airways. Diffusing capacity of CO (D(CO)) increased from 8.1 +/- 0.8 to 214.1 +/- 23.5 micromol min(-1) hPa(-1), corresponding to a substantial increase in surface area from 744 +/- 20 to 6,536 +/- 488 cm(2). D(CO) per unit of lung volume is considerably lower in the immature lung, inasmuch as D(CO)/TLC in 7-day-old rats was only 42% of that in adult (90 day-old) rats. In humans, however, infants and adults show comparable specific D(CO). Our functional and structural analysis shows that gas exchange is limited in the immature rat lung. The pivotal step for improvement of gas exchange occurs with the transition from bulk alveolarization to the phase of expansion of air spaces with septal reconstruction and microvascular maturation.  相似文献   

13.
The arterial baroreflex mediates changes in arterial pressure via reflex changes in cardiac output (CO) and regional vascular conductance, and the relative roles may change between rest and exercise and across workloads. Therefore, we quantified the contribution of CO and regional vascular conductances to carotid baroreflex-mediated increases in mean arterial pressure (MAP) at rest and during mild to heavy treadmill exercise (3.2 kph; 6.4 kph, 10% grade; and 8 kph, 15% grade). Dogs (n = 8) were chronically instrumented to measure changes in MAP, CO, hindlimb vascular conductance, and renal vascular conductance in response to bilateral carotid occlusion (BCO). At rest and at each workload, BCO caused similar increases in MAP (average 35 +/- 2 mmHg). In response to BCO, neither at rest nor at any workload were there significant increases in CO; therefore, the pressor response occurred via peripheral vasoconstriction. At rest, 10.7 +/- 1.4% of the rise in MAP was due to vasoconstriction in the hindlimb, whereas 4.0 +/- 0.7% was due to renal vasoconstriction. Linear regression analysis revealed that, with increasing workloads, relative contributions of the hindlimb increased and those of the kidney decreased. At the highest workload, the decrease in hindlimb vascular conductance contributed 24.3 +/- 3.4% to the pressor response, whereas the renal contribution decreased to only 1.6 +/- 0.3%. We conclude that the pressor response during BCO was mediated solely by peripheral vasoconstriction. As workload increases, a progressively larger fraction of the pressor response is mediated via vasoconstriction in active skeletal muscle and the contribution of vasoconstriction in inactive beds (e.g., renal) becomes progressively smaller.  相似文献   

14.
Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.  相似文献   

15.
Gas transport in fruit tissue is governed by both diffusion and permeation. The latter phenomenon is caused by overall pressure gradients which may develop due to the large difference in O(2) and CO(2) diffusivity during controlled atmosphere storage of the fruit. A measurement set-up for tissue permeation based on unsteady-state gas exchange was developed. The gas permeability of pear tissue was determined based on an analytical gas transport model. The overall gas transport in pear tissue samples was validated using a finite element model describing simultaneous O(2), CO(2), and N(2) gas transport, taking into account O(2) consumption and CO(2) production due to respiration. The results showed that the model described the experimentally determined permeability of N(2) very well. The average experimentally determined values for permeation of skin, cortex samples, and the vascular bundle samples were (2.17+/-1.71)x10(-19) m(2), (2.35+/-1.96)x10(-19) m(2), and (4.51+/-3.12)x10(-17) m(2), respectively. The permeation-diffusion-reaction model can be applied to study gas transport in intact pears in relation to product quality.  相似文献   

16.
Matching blood flow to metabolic demand in terminal vascular beds involves coordinated changes in diameters of vessels along flow pathways, requiring upstream and downstream transfer of information on local conditions. Here, the role of information transfer mechanisms in structural adaptation of microvascular networks after a small change in capillary oxygen demand was studied using a theoretical model. The model includes diameter adaptation and information transfer via vascular reactions to wall shear stress, transmural pressure, and oxygen levels. Information transfer is additionally effected by conduction along vessel walls and by convection of metabolites. The model permits selective blocking of information transfer mechanisms. Six networks, based on in vivo data, were considered. With information transfer, increases in network conductance and capillary oxygen supply were amplified by factors of 4.9 +/- 0.2 and 9.4 +/- 1.1 (means +/- SE), relative to increases when information transfer was blocked. Information transfer by flow coupling alone, in which increased shear stress triggers vascular enlargement, gave amplifications of 4.0 +/- 0.3 and 4.9 +/- 0.5. Other information transfer mechanisms acting alone gave amplifications below 1.6. Thus shear-stress-mediated flow coupling is the main mechanism for the structural adjustment of feeding and draining vessel diameters to small changes in capillary oxygen demand.  相似文献   

17.
The effects of nitrogen (N2) or carbon monoxide (CO) hypoxia on coronary flow were assessed in the isolated nonworking rat heart perfused via the aorta with oxygenated (95% O2-5% CO2) Kreb's Henseleit solution. After 30 min, the hearts were challenged with solutions containing either CO (10% CO-85% O2-5% CO2) or N2 (10% N2-85% O2-5% CO2) for 2 min (Challenge I). After recovery in oxygenated solution, the hearts were challenged with the alternate test solution (Challenge II). There were no significant differences in heart rate or pulse pressure between the hearts challenged with CO or N2. Coronary flow was significantly higher in the hearts challenged with CO regardless of the challenge sequence. Coronary flows (ml X min-1 X g dry wt) in the CO- and N2-treated hearts, respectively, were 61.5 +/- 4.5 and 52.9 +/- 2.3 after Challenge I, and 64.3 +/- 2.6 and 56.4 +/- 3.0 after Challenge II. Because PO2 and oxygen content were the same in both test solutions, the results suggest that CO has a direct effect on coronary artery vascular smooth muscle.  相似文献   

18.
To test the hypothesis that children store less CO2 than adults during exercise, we measured breath 13CO2 washout dynamics after oral bolus of [13C]bicarbonate in nine children [8 +/- 1 (SD) yr, 4 boys] and nine (28 +/- 6 yr, 5 males) adults. Gas exchange [O2 uptake and CO2 production (Vco2)] was measured breath by breath during rest and during light (80% of the anaerobic threshold) intermittent exercise. Breath samples were obtained for subsequent analysis of 13CO2 by isotope ratio mass spectrometry. The tracer estimate of Vco2 was highly correlated to Vco2 measured by gas exchange (r = 0.97, P < 0.0001). The mean residence time was shorter in children (50 +/- 5 min) compared with adults (69 +/- 7 min, P < 0.0001) at rest and during exercise (children, 35 +/- 7 min; adults, 50 +/- 11 min, P < 0.001). The estimate of stored CO2 (using mean Vco2 measured by gas exchange and mean residence time derived from tracer washout) was not statistically different at rest between children (254 +/- 36 ml/kg) and adults (232 +/- 37 ml/kg). During exercise, CO2 stores in the adults (304 +/- 46 ml/kg) were significantly increased over rest (P < 0.001), but there was no increase in children (mean exercise value, 254 +/- 38 ml/kg). These data support the hypothesis that CO2 distribution in response to exercise changes during the growth period.  相似文献   

19.
Role of tracheal and bronchial circulation in respiratory heat exchange   总被引:3,自引:0,他引:3  
Due to their anatomic configuration, the vessels supplying the central airways may be ideally suited for regulation of respiratory heat loss. We have measured blood flow to the trachea, bronchi, and lung parenchyma in 10 anesthetized supine open-chest dogs. They were hyperventilated (frequency, 40; tidal volume 30-35 ml/kg) for 30 min or 1) warm humidified air, 2) cold (-20 degrees C dry air, and 3) warm humidified air. End-tidal CO2 was kept constant by adding CO2 to the inspired ventilator line. Five minutes before the end of each period of hyperventilation, measurements of vascular pressures (pulmonary arterial, left atrial, and systemic), cardiac output (CO), arterial blood gases, and inspired, expired, and tracheal gas temperatures were made. Then, using a modification of the reference flow technique, 113Sn-, 153Gd-, and 103Ru-labeled microspheres were injected into the left atrium to make separate measurements of airway blood flow at each intervention. After the last measurements had been made, the dogs were killed and the lungs, including the trachea, were excised. Blood flow to the trachea, bronchi, and lung parenchyma was calculated. Results showed that there was no change in parenchymal blood flow, but there was an increase in tracheal and bronchial blood flow in all dogs (P less than 0.01) from 4.48 +/- 0.69 ml/min (0.22 +/- 0.01% CO) during warm air hyperventilation to 7.06 +/- 0.97 ml/min (0.37 +/- 0.05% CO) during cold air hyperventilation.  相似文献   

20.
Recent studies from our laboratory have shown that alcohol and burn injury impair intestinal barrier and immune functions. Although multiple factors can contribute to impaired intestinal barrier function, such an alteration could result from a decrease in intestinal blood flow (BF) and oxygen delivery (DO2). Therefore, in this study, we tested the hypothesis that alcohol ingestion before burn injury reduces splanchnic blood flow and oxygen delivery. Rats (250 g) were gavaged with alcohol to achieve a blood ethanol level in the range of 100 mg/dl before burn or sham injury (25% total body surface area). Day 1 after injury, animals were anesthetized with methoxyflurane. Blood pressure, cardiac output (CO), +/-dP/dt, organ BF (in ml.min(-1).100 g(-1)), and DO2 (in mg.ml(-1).100 g(-1)) were determined. CO and organ BF were determined using a radioactive microsphere technique. Our results indicate that blood pressure, CO, and +dP/dt were decreased in rats receiving a combined insult of alcohol and burn injury compared with rats receiving either burn injury or alcohol alone. This is accompanied by a decrease in BF and DO2 to the liver and intestine. No significant change in BF to the coronary arteries (heart), brain, lung, skin, and muscles was observed after alcohol and burn injury. In conclusion, the results presented here suggest that alcohol ingestion before burn injury reduces splanchnic BF and DO2. Such decreases in BF and DO2 may cause hypoxic insult to the intestine and liver. Although a hypoxic insult to the liver would result in a release of proinflammatory mediators, a similar insult to the intestine will likely perturb both intestinal immune cell and barrier functions, as observed in our previous study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号