首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of neurons in the ventrolateral region of the periaqueductal gray (vlPAG) can elicit a decrease in renal sympathetic nerve activity and blood pressure. The present study investigated whether the vlPAG-evoked sympathoinhibitory response depends on neurons in the caudal midline medulla (CMM). In pentobarbital-anesthetized rats, activation of neurons in the vlPAG evoked a decrease in renal sympathetic nerve activity to 29.4 +/- 4.8% below baseline levels and arterial blood pressure fell 8.9 +/- 1.6 mmHg (n = 20). Microinjection of the GABA agonist muscimol into sympathoinhibitory regions of the CMM significantly attenuated the vlPAG-evoked sympathoinhibition to 17.9 +/- 4.1% below baseline and the depressor response to 4.3 +/- 1.2 mmHg. At 65% (13/20) of the sites examined, the vlPAG-evoked sympathoinhibition was responsive to CMM muscimol microinjection and attenuated from 34.2% to 11.5%, with the depressor response reduced from 14.8 to 3 mmHg. Microinjection of muscimol at the remaining 35% of the CMM sympathoinhibitory sites was ineffective on the vlPAG-evoked sympathoinhibition and depressor response. These data indicate that sympathoinhibitory and hypotensive responses elicited by activation of neurons in the vlPAG can be mediated by neurons in the sympathoinhibitory region of the CMM. The finding that the vlPAG-evoked response is not affected by muscimol at all CMM sympathoinhibitory sites also suggests that sympathoinhibitory sites in the CMM are not homogeneous and can mediate functionally different responses.  相似文献   

2.
The role of the 5-hydroxytryptamine (5-HT1A) receptors in the rostral ventrolateral medulla (RVLM) on somatosympathetic, baroreceptor, and chemoreceptor reflexes was examined in anesthetized rats. Microinjection of the selective 5-HT1A agonist 8-hydroxy-di-n-propylamino tetralin (8-OH-DPAT) decreased arterial blood pressure and splanchnic sympathetic nerve activity (SNA). Electrical stimulation of the hindlimb evoked early and late excitatory sympathetic responses. Bilateral microinjection in the RVLM of 8-OH-DPAT markedly attenuated both the early and late responses. This potent inhibition of the somatosympathetic reflex persisted even after SNA and arterial blood pressure returned to preinjection levels. Preinjection of the selective 5-HT1A antagonist NAN-190 in the RVLM blocked the sympathoinhibitory effect of 8-OH-DPAT and attenuated the inhibitory effect on the somatosympathetic reflex. 8-OH-DPAT injected in the RVLM did not affect baroreceptor or chemoreceptor reflexes. Our findings suggest that activation of 5-HT1A receptors in the RVLM exerts a potent, selective inhibition on the somatosympathetic reflex.  相似文献   

3.
Glutamate stimulation of the caudal midline medulla (CMM) causes profound sympathoinhibition due to GABAergic inhibition of presympathetic neurons in the rostral ventrolateral medulla (RVLM). We investigated whether the sympathoinhibitory pathway from CMM to RVLM, like the central baroreceptor reflex pathway, includes a glutamatergic synapse in the caudal ventrolateral medulla (CVLM). In pentobarbital sodium-anesthetized rats, the RVLM on one side was inhibited by a muscimol microinjection. Then the response evoked by glutamate microinjections into the CMM or by baroreceptor stimulation was determined before and after 1) microinjection of the GABA receptor antagonist bicuculline into the RVLM on the other side or 2) microinjections of the glutamate receptor antagonist kynurenate bilaterally into the CVLM. Bicuculline in the RVLM greatly reduced both CMM- and baroreceptor-evoked sympathoinhibition. Compared with the effect of vehicle solution, kynurenate in the CVLM greatly reduced baroreceptor-evoked sympathoinhibition, whereas its effect on CMM-evoked sympathoinhibition was not different from that of the vehicle solution. These findings indicate that the output pathway from CMM sympathoinhibitory neurons, unlike the baroreceptor and other reflex sympathoinhibitory pathways, does not include a glutamatergic synapse in the CVLM.  相似文献   

4.
Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.  相似文献   

5.
Stimulation of cardiac mechanoreceptors during volume expansion elicits reflex compensatory changes in sympathetic nerve activity (SNA). The hypothalamic paraventricular nucleus (PVN) and nucleus of the tractus solitarius (NTS) are autonomic regions known to contribute to this reflex. Both of these nuclei project to the rostral ventrolateral medulla (RVLM), critical in the tonic generation of SNA. Recent reports from our laboratory show that these pathways 1) are activated following cardiac mechanoreceptor stimulation, and 2) produce nitric oxide, known to influence SNA. The aims of the present study were to determine whether 1) the activated neurons within the PVN and NTS were nitrergic and 2) these neurons projected to the RVLM. Animals were prepared, under general anesthesia, by microinjection of a retrogradely transported tracer into the pressor region of the RVLM and the placement of a balloon at the right venoatrial junction. In conscious rats, the balloon was inflated to stimulate the cardiac mechanoreceptors or was left uninflated. Balloon inflation elicited a significant increase in Fos-positive neurons in the parvocellular PVN (sevenfold) and NTS (fivefold). In the PVN, 51% of nitrergic neurons and 61% of RVLM-projecting nitrergic neurons were activated. In the NTS, these proportions were 8 and 18%, respectively. The data suggest that nitrergic neurons within the PVN and, to a lesser extent, in the NTS, some of which project to the RVLM, may contribute to the central pathways influencing SNA elicited by cardiac mechanoreceptor stimulation.  相似文献   

6.
The rostral ventrolateral medulla (RVLM) may play an important role in the sympatholytic and hypotensive effects of clonidine. The present study examined which type of presympathetic RVLM neuron is inhibited by clonidine, and whether the adrenergic presympathetic RVLM neurons are essential for clonidine-induced sympathoinhibition. In chloralose-anesthetized and ventilated rats, clonidine (10 microg/kg iv) decreased arterial pressure (116 +/- 6 to 84 +/- 2 mmHg) and splanchnic nerve activity (93 +/- 3% from baseline). Extracellular recording and juxtacellular labeling of barosensitive bulbospinal RVLM neurons revealed that most cells were inhibited by clonidine (26/28) regardless of phenotype [tyrosine hydroxylase (TH)-immunoreactive cells: 48 +/- 7%; non-TH-immunoreactive cells: 42 +/- 5%], although the inhibition of most neurons was modest compared with the observed sympathoinhibition. Depletion of most bulbospinal catecholaminergic neurons, including 76 +/- 5% of the rostral C1 cells, by microinjection of saporin anti-dopamine beta-hydroxylase into the thoracic spinal cord (levels T2 and T4, 42 ng. 200 nl(-1). side(-1)) did not alter the sympatholytic or hypotensive effects of clonidine. These data show that although clonidine inhibits presympathetic C1 neurons, bulbospinal catecholaminergic neurons do not appear to be essential for the sympatholytic and hypotensive effects of systemically administered clonidine. Instead, the sympatholytic effect of clonidine is likely the result of a combination of effects on multiple cell types both within and outside the RVLM.  相似文献   

7.
The role of ANG type 1 (AT1) receptors in the rostral ventrolateral medulla (RVLM) in the maintenance of sympathetic vasomotor tone in normotensive animals is unclear. In this study, we tested the hypothesis that AT1 receptors make a significant contribution to the tonic activity of presympathetic neurons in the RVLM of normotensive rats under conditions where the excitatory input to these neurons is enhanced, such as during systemic hypoxia. In urethane-anesthetized rats, microinjections of the AT1 receptor antagonist candesartan in the RVLM during moderate hypoxia unexpectedly resulted in substantial increases in arterial pressure and renal sympathetic nerve activity (RSNA), whereas under normoxic conditions the same dose resulted in no significant change in arterial pressure and RSNA. Under hypoxic conditions, and after microinjection of the GABA(A) receptor antagonist bicuculline in the RVLM, subsequent microinjection of candesartan in the RVLM resulted in a significant decrease in RSNA. In control experiments, bilateral microinjections in the RVLM of the compound [Sar1,Thr8]ANG II (sarthran), which decreases sympathetic vasomotor activity via a mechanism that is independent of AT1 receptors, significantly reduced arterial pressure and RSNA under both normoxic and hypoxic conditions. The results indicate that, at least under some conditions, endogenous ANG II has a tonic sympathoinhibitory effect in the RVLM, which is dependent on GABA receptors. We suggest that the net effect of endogenous ANG II in this region depends on the balance of both tonic excitatory and inhibitory actions on presympathetic neurons and that this balance is altered in different physiological or pathophysiological conditions.  相似文献   

8.
Neurons in the caudal pressor area (CPA) are a source of tonic sympathoexcitation that is dependent on activation of cardiovascular sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM). In the present study, we sought to clarify the mechanism through which CPA neurons elicit increases in RVLM neuronal discharge, vasoconstrictor sympathetic tone, and arterial pressure. In urethan-chloralose-anesthetized, paralyzed, and artificially ventilated rats, bilateral disinhibition of CPA with bicuculline (Bic) after bilateral disinhibition of caudal ventrolateral medulla (CVLM) caused increases in splanchnic sympathetic nerve activity (+277% control) and arterial pressure (+54 mmHg). Inhibition of CVLM neurons with muscimol abolished the pressor response to activation of CPA neurons, suggesting that neurons within CVLM mediate the excitatory responses from CPA. Disinhibition of CVLM and CPA with Bic enhanced the sympathoexcitatory responses to stimulation of CPA with DL-homocysteic acid, which were blocked by microinjections of kynurenic acid into CVLM. We conclude that the pathway from CPA to RVLM involves an obligatory glutamatergic activation of sympathoexcitatory neurons in the vicinity of CVLM.  相似文献   

9.
The depressor and sympathoinhibitory effect of the imidazoline drug clonidine is reported to be associated with functional states of the central glutamate receptors. The rostral ventrolateral medulla (RVLM) has been recognized as a specific target area for mediating the central depressor mechanism of clonidine. The objective of this study was to determine the role of the glutamate receptor subtype alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor within the RVLM in clonidine-induced depressor and sympathoinhibitory action in anesthetized normotensive rats. Unilateral microinjection of 200 pmol of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a potent AMPA/kainate receptor antagonist, into the RVLM completely abolished the pressor action evoked by AMPA (5 pmol) without affecting the pressor action of N-methyl-D-aspartate (20 pmol). Pretreatment with intra-RVLM injection of CNQX (20 and 200 pmol) dose dependently attenuated the reduction in blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA) elicited by intra-RVLM clonidine (5 nmol) or intravenous clonidine (10 microg/kg), while 2 pmol of CNQX did not alter clonidine-induced cardiovascular action. Furthermore, the decreases in BP, HR, and RSNA evoked by intravenous clonidine (10 microg/kg) or intra-RVLM clonidine (5 nmol) were reversed when CNQX (20 and 200 pmol) was subsequently injected into the RVLM. In conclusion, these data show that blockade of AMPA/kainate receptors in the RVLM significantly antagonizes decreases in BP, HR, and sympathetic activity induced by clonidine, suggesting that the AMPA/kainate receptors within the RVLM contribute to the depressor and sympathoinhibitory effect of clonidine.  相似文献   

10.
Physiological and anatomic methods were used to determine whether neurons in the rostral ventrolateral medulla (RVLM), nucleus tractus solitarius (NTS), or hypothalamic paraventricular nucleus (PVN) mediate the cardiovascular response evoked from the dorsomedial hypothalamic nucleus (DMH), which is believed to play a key role in mediating responses to stress. In urethane-anesthetized rats, activation of neurons in the DMH by microinjection of bicuculline resulted in a large increase in arterial pressure, heart rate, and renal sympathetic nerve activity. The pressor and sympathoexcitatory responses, but not the tachycardic response, were greatly reduced after bilateral muscimol injections into the RVLM even when baseline arterial pressure was maintained at a constant level. These responses were not reduced by muscimol injections into the PVN or NTS. Retrograde tracing experiments identified many neurons in the DMH that projected directly to the RVLM. The results indicate that the vasomotor and cardiac components of the response evoked from the DMH are mediated by pathways that are dependent and independent, respectively, of neurons in the RVLM.  相似文献   

11.
Orexin A (or hypocretin 1)-immunoreactive neurons in the rat lateral hypothalamus project to several areas of the medulla oblongata that are closely associated with cardiovascular regulation. The present study was undertaken to further strengthen the hypothesis that orexin A accelerates cardiovascular response by activating sympathoexcitatory neurons in the rat rostral ventrolateral medulla (RVLM). First, immunohistochemical studies revealed the presence of orexin A-immunoreactive fibers in the RVLM. Double labeling the sections with orexin A- and tyrosine hydroxylase (TH)-antisera further showed that orexin A-immunoreactive fibers are in close proximity with TH-immunoreactive neurons, some of which may be barosensitive, bulbospinal neurons in the RVLM. Second, microinjection of orexin A (6.35, 12.7 and 38.1 microM) into the RVLM, which was verified later by histological examination, caused a significant increase of mean arterial pressure (MAP) and a moderate increase of heart rate (HR) in awake rats. L-glutamate (33.3 mM) injected into the same sites, caused a larger increase in MAP, but a decrease in HR; whereas, saline injection was without significant effect. Results from this study suggest that orexin A, which may be released from the nerve fibers originating from the neurons in the lateral hypothalamus, acting on RVLM neurons in the medulla, increases sympathetic outflow targeted to the heart and blood vessels in awake animals.  相似文献   

12.
Neuromedin U (NMU) causes biphasic cardiovascular and sympathetic responses and attenuates adaptive reflexes in the rostral ventrolateral medulla (RVLM) and spinal cord in normotensive animal. However, the role of NMU in the pathogenesis of hypertension is unknown. The effect of NMU on baseline cardiorespiratory variables in the RVLM and spinal cord were investigated in urethane-anaesthetized, vagotomized and artificially ventilated male spontaneously hypertensive rats (SHR) and Wistar–Kyoto rats (WKY). Experiments were also conducted to determine the effects of NMU on somatosympathetic and baroreceptor reflexes in the RVLM of SHR and WKY. NMU injected into the RVLM and spinal cord elicited biphasic response, a brief pressor and sympathoexcitatory response followed by a prolonged depressor and sympathoinhibitory response in both hypertensive and normotensive rat models. The pressor, sympathoexcitatory and sympathoinhibitory responses evoked by NMU were exaggerated in SHR. Phrenic nerve amplitude was also increased following intrathecal or microinjection of NMU into the RVLM of both strains. NMU injection into the RVLM attenuated the somatosympathetic reflex in both SHR and WKY. Baroreflex sensitivity was impaired in SHR at baseline and further impaired following NMU injection into the RVLM. NMU did not affect baroreflex activity in WKY. The present study provides functional evidence that NMU can have an important effect on the cardiovascular and reflex responses that are integrated in the RVLM and spinal cord. A role for NMU in the development and maintenance of essential hypertension remains to be determined.  相似文献   

13.
The present study examines the coexistence of neurons in the same cardiovascular point of the pontomedulla that integrates urinary bladder (UB) motility, and pelvic nerve activity (PNA). Microinjection of monosodium L-glutamate (Glu) into the locus coeruleus (LC), the gigantocellular tegmental field (FTG), the rostral ventrolateral medulla (RVLM), and the dorsomedial medulla (DM) produced pressor responses, whereas injection into the lateral tegmental field (FTL), the nucleus of tractus solitarii (NTS), and the caudal ventrolateral medulla (CVLM) produced depressor responses. However, microinjection of Glu into the dorsomotor nucleus of the vagus (DMV) and the ambiguus nucleus (AN), where the vagus nerve originates, produced marked bradycardia. Many of these cardiovascular responses were accompanied by increased, or decreased parasympathetic PNA. In six animals, sympathetic renal nerve activity (RNA) and PNA also increased simultaneously during the pressor response. The present study also examines the connection between the DMV-AN and the sacral intermediolateral column (IML), where parasympathetic preganglionic neurons (PGNs) of the pelvic nerve located. Biotinylated dextran amine (BDA), an anterograde tracer, was iontophoretically injected into the DMV or AN. No labelled terminal or neuron was detected in the sacral IML, but labelled terminals were observed in the bilateral LC, and also in the bilateral sides of the FTG, FTL, RVLM, DM, and CVLM. These results suggest that neurons of the DMV and/or AN may indirectly regulate the sacral parasympathetic PGNs through the LC for supraspinal control of the pelvic nerve. Furthermore, these results also suggest the coexistence of multiple autonomic integrating mechanisms of different kinds within various cardiovascular areas of the pontomedulla.  相似文献   

14.
In this study, we examined the effect of excitatory amino acid (EAA) receptor blockade in the rostral ventrolateral medulla (RVLM) on the renal sympathetic baroreflex in conscious rabbits. Rabbits were implanted with guide cannulas for bilateral microinjections into the RVLM (+2 to +3 mm from the obex, n = 8) or into the intermediate ventrolateral medulla (IVLM; 0 to +1 mm from the obex, n = 5) and with an electrode for measuring renal sympathetic nerve activity (RSNA). After 7 days of recovery, microinjection of the EAA receptor antagonist kynurenate (10 nmol) into the RVLM did not affect resting RSNA or arterial pressure. Kynurenate decreased the gain of the RSNA baroreflex by 53% but did not change the reflex range. By contrast, injection of kynurenate into the IVLM increased resting arterial pressure and RSNA by 27 mmHg and 88%, respectively, but did not alter the RSNA baroreflex gain or range. Pentobarbital sodium anesthesia attenuated the gain and range of the RSNA baroreflex by 78 and 40%, respectively. Under these conditions, microinjection of kynurenate into the RVLM did not cause any further change in the gain of this reflex. These results suggest that endogenous EAA neurotransmitters in the RVLM are important in modulating the sympathetic baroreflex in conscious rabbits. Anesthesia can mask the functional significance of EAAs in the RVLM in modulating the baroreflexes, which may explain why previous studies in anesthetized animals found no effect of blocking EAA receptors in the RVLM on sympathetic baroreflexes.  相似文献   

15.
在麻醉大鼠观察了向延髓腹外侧区微量注射NO合成酶抑制剂N-硝基左旋精氨酸(LNNA)和硝普钢(SNP)对血压、心率和肾交感神经活动的影响,旨在探讨中枢左旋精氨酸-NO通路在动脉血压调节中的作用及其机制。实验结果如下:(1)向延髓腹外侧头端区(RVLM)注射L-NNA后,平均动脉压(MAP)升高,肾交感神经活动(RSNA)增强;心率(HR)减慢,但无统计学意义。MAP和RSNA的变化持续30min以上;此效应可被预先静注左旋精氨酸所逆转。(2)向RVLM微量注射SNP,MAP降低,RSNA减弱;但HR的变化无统计学意义。(3)向延髓腹外侧尾端区(CVLM)注射L-NNA,MAP降低,HR减慢,RSNA减弱。(4)向CVLM微量注射SNP,MAP升高,RSNA增强,而心率无明显变化。以上结果表明,中枢左旋精氨酸-NO通路对延髓腹外侧部的神经元活动有调变作用。  相似文献   

16.
17.
Oxidative stress because of an excessive production of superoxide anion (O2*-) is associated with hypertension. The present study evaluated the hypothesis that in the rostral ventrolateral medulla (RVLM), where the premotor neurons for the maintenance of vascular vasomotor activity are located, increased O2*- contributes to hypertension in spontaneously hypertensive rats (SHR) by modulating the cardiovascular depressive actions of nitric oxide (NO). Compared with normotensive Wistar-Kyoto (WKY) rats, SHR manifested significantly increased basal O2*- production, along with reduced manganese superoxide dismutase (MnSOD) expression and activity, in the RVLM. The magnitude of hypotension, bradycardia, or suppression of sympathetic neurogenic vasomotor tone elicited by microinjection bilaterally into the RVLM of a membrane-permeable SOD mimetic, Mn(III)-tetrakis-(4-benzoic acid) porphyrin (MnTBAP), was also significantly larger in SHR. Transfection bilaterally into the RVLM of adenoviral vectors encoding endothelial nitric oxide synthase resulted in suppression of arterial pressure, heart rate, and sympathetic neurogenic vasomotor tone in both WKY rats and SHR. Microinjection of MnTBAP into the RVLM of SHR further normalized those cardiovascular parameters to the levels of WKY rats. We conclude that an elevated level of O2*- in the RVLM is associated with hypertension in SHR. More importantly, this elevated O2*- may contribute to hypertension by reducing the NO-promoted cardiovascular depression.  相似文献   

18.
A single bout of exercise results in a postexercise hypotension (PEH) that is accompanied by a reduced baroreflex function. Based on the role of rostral ventrolateral medulla (RVLM) neurons in controlling sympathetic nerve activity (SNA) and blood pressure, the role of gamma-aminobutyric acid (GABA) in controlling RVLM neuronal activity, and the reduced baroreflex-SNA relationship during PEH, we determined whether: 1) RVLM neuronal activity is decreased during PEH, 2) GABA(A)-receptor mechanisms mediate the decrease, and 3) baroreflex control of RVLM activity is reduced. Spontaneously hypertensive rats (SHR) were subjected to 40 min of treadmill or sham exercise (Sham PEH). PEH lasted 10 h in conscious and anesthetized SHR, indicating that the anesthetics did not affect the expression of PEH. Extracellular RVLM neuronal activity having a cardiac and sympathetic rhythm, lumbar SNA, and blood pressure were recorded at rest and during baroreflex function curves. Resting RVLM neuronal activity was lower and was increased to a greater extent by GABA(A)-receptor antagonism in PEH versus Sham PEH (P < 0.05). Baroreflex control of RVLM neuronal activity operated with a reduced gain (P < 0.05). Thus increased GABA signaling at RVLM neurons may contribute to PEH.  相似文献   

19.
In the present study, the changes of amino acids release in the spinal cord after the application of angiotensin II (ANG II) in the rostral ventrolateral medulla (RVLM) and the distribution of ANG receptors on neurons of the RVLM were investigated. A microdialysis experiment showed that microinjection of angiotensin II into the RVLM significantly (P < 0.01) increased the release of aspartate and glutamate in the intermediolateral column of the spinal cord. Immunofluorescence technique combined with confocal microscopy demonstrated that most of the glutamatergic and GABAergic neurons in the RVLM of both Wistar and spontaneously hypertensive rats (SHR) were double labeled with ANG type 1 (AT1) receptor. Immunocytochemical studies demonstrated that the mean optic density of AT1 receptor of the cell surface as well as the whole cell was higher (P < 0.05) in SHR than that in Wistar rats, indicating that the higher expression of AT1 receptors in the RVLM may contribute to the higher responsiveness of SHR to ANG II stimulation. Immunogold staining and electronmicroscopic study demonstrated that AT1 receptor in the RVLM was distributed on the rough endoplasmic reticulum, cell membrane, and nerve processes. The results suggest that effects evoked by ANG II in the RVLM are closely related to glutamatergic and GABAergic pathways. These results indirectly support the hypothesis that ANG II in the RVLM may activate vasomotor sympathetic glutamatergic neurons, leading to an increase in sympathetic nerve activity and arterial blood pressure.  相似文献   

20.
Presympathetic neurons in the different anteroposterior aspects of rostral ventrolateral medulla (RVLM) are colocalized with expiratory [B?tzinger complex (B?tC)] and inspiratory [pre-B?tzinger complex (pre-B?tC)] neurons of ventral respiratory column (VRC), suggesting that this region integrates the cardiovascular and respiratory chemoreflex responses. In the present study, we evaluated in different anteroposterior aspects of RVLM of awake rats the role of ionotropic glutamate and purinergic receptors on cardiorespiratory responses to chemoreflex activation. The bilateral ionotropic glutamate receptors antagonism with kynurenic acid (KYN) (8 nmol/50 nl) in the rostral aspect of RVLM (RVLM/B?tC) enhanced the tachypneic (120 ± 9 vs. 180 ± 9 cpm; P < 0.01) and attenuated the pressor response (55 ± 2 vs. 15 ± 1 mmHg; P < 0.001) to chemoreflex activation (n = 7). On the other hand, bilateral microinjection of KYN into the caudal aspect of RVLM (RVLM/pre-B?tC) caused a respiratory arrest in four awake rats used in the present study. Bilateral P2X receptors antagonism with PPADS (0.25 nmol/50 nl) in the RVLM/B?tC reduced chemoreflex tachypneic response (127 ± 6 vs. 70 ± 5 cpm; P < 0.001; n = 6), but did not change the chemoreflex pressor response. In addition, PPADS into the RVLM/B?tC attenuated the enhancement of the tachypneic response to chemoreflex activation elicited by previous microinjections of KYN into the same subregion (188 ± 2 vs. 157 ± 3 cpm; P < 0.05; n = 5). Our findings indicate that: 1) L-glutamate, but not ATP, in the RVLM/B?tC is required for pressor response to peripheral chemoreflex and 2) both transmitters in the RVLM/B?tC are required for the processing of the ventilatory response to peripheral chemoreflex activation in awake rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号