首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent attempts to understand the processes governing community assembly have increasingly focused on patterns of phylogenetic relatedness and functional similarity among co-existing species. Considerations of the species pool, the number and identity of functional traits and the metrics used to identify patterns have come under scrutiny as possible influences on the detection of non-random patterns. Most mechanistic explanations of community assembly based on functional and phylogenetic approaches rely on deterministic explanations, while ignoring the role of stochastic processes and historical contingency, despite the prominent historical role of both types of explanations of species coexistence. We evaluated the phylogenetic and functional structure of 20 temperate forest bird assemblages in northeastern North America. We compared three approaches for characterizing the functional structure of assemblages. Regardless of approach, assemblages were generally no different than expected by chance. In contrast, phylogenetic structures of bird assemblages were overdispersed, clumped or consistent with random assembly depending on the site. Nonetheless, we found little evidence for differences in phylogenetic structure arising as a consequence of the identity of the species pool. We identified a strong relationship between the proportion of residents and phylogenetic relatedness that was unrelated to the species richness of assemblages. Our results suggest that different assembly mechanisms may structure resident and migratory subsets of temperate breeding bird communities. Resident assemblages are likely structured by interspecific interactions and habitat filtering prior to arrival of migrants. In contrast, the composition of migrant assemblages may be a consequence of priority effects in which the presence and abundance of residents and earliest arriving species affect the ability of subsequent migrants to colonize sites. This phenomenon enhances the likelihood of multiple alternative community structures in similar environments.  相似文献   

2.
Closely related species that occur together in communities and experience similar environmental conditions are likely to share phenotypic traits because of the process of environmental filtering. At the same time, species that are too similar are unlikely to co-occur because of competitive exclusion. In an effort to explain the coexistence of 17 oak species within forest communities in North Central Florida, we examined correlations between the phylogenetic relatedness of oak species, their degree of co-occurrence within communities and niche overlap across environmental gradients, and their similarity in ecophysiological and life-history traits. We show that the oaks are phylogenetically overdispersed because co-occurring species are more distantly related than expected by chance, and oaks within the same clade show less niche overlap than expected. Hence, communities are more likely to include members of both the red oak and the white + live oak clades than only members of one clade. This pattern of phylogenetic overdispersion arises because traits important for habitat specialization show evolutionary convergence. We hypothesize further that certain conserved traits permit coexistence of distantly related congeners. These results provide an explanation for how oak diversity is maintained at the community level in North Central Florida.  相似文献   

3.
森林群落的构建过程及其内在机制是生态学研究的热点问题。植物功能性状是指能够代表植物的生活史策略,反映植物对环境变化响应的一系列植物属性。通过植物功能性状的分布格局及其对环境因素的响应有助于推测群落的构建过程及其内在作用机制。以吉林蛟河21.12hm2温带针阔混交林样地为研究对象,采集并测量了样地内34种木本植物的6种不同的功能性状。以20m×20m的样方为研究单元,通过计算平均成对性状距离指数(mean pairwise trait distance;PW)和平均最近邻体性状距离指数(mean nearest neighbor trait distance;NN)来探讨群落中单个性状和综合性状的分布格局。同时结合地形因子采用回归分析探讨功能性状的分布格局对局域生境变化的响应。基于PW的结果显示:单个性状中除叶面积外,其余性状的分布格局均为聚集分布多于离散分布;基于NN的结果显示:除叶面积和最大树高外,其余性状的分布格局为聚集分布多于离散分布。此外,由6种单个性状组成的综合性状的分布格局同样为聚集分布多于离散分布。基于回归分析的结果显示:森林群落中功能性状的分布格局受到海拔、坡度和坡向等因素的显著影响,而凹凸度的影响则不显著。研究结果表明包括环境过滤和生物相互作用的非随机过程能够影响温带针阔混交林的群落构建过程,中性过程对该区域群落构建过程的影响不显著。  相似文献   

4.
The relationships between functional traits and environmental gradients are useful to identify different community assembly processes. In this work, we used an approach based on functional traits to analyse if changes in hydroperiod and tree covers of ponds are relevant for local amphibian community assembly processes. Ephemeral ponds with low vegetation cover are expected to impose constraints on different species with particular trait combinations and, therefore, to exhibit communities with lower functional diversity than more stable ponds with greater tree cover. Sampling was conducted in 39 temporary ponds located along vegetation and hydroperiod gradients in the most arid portion of the Chaco ecoregion. Seven functional traits were measured in each species present in the regional pool. Associations between these traits and environmental gradients were detected using multivariate ordination techniques and permutation test (RLQ and fourth‐corner analyses respectively). Functional diversity indices were then calculated and related to variations in the environmental gradients. The results obtained allowed us to identify different sets of traits associated with hydroperiod and tree cover, suggesting that these environmental variables are relevant for structuring amphibian communities according to interspecific variations in functional traits from both, larval and adult stages. Contrary to our expectations, communities associated with more stable ponds and with greater tree cover exhibited lower functional diversity than expected by chance (and were the ponds with highest species richness). This result indicates that the reduction in relative importance of environmental restrictions imposed by a very short hydroperiod and the lack of tree cover, favours different species of the regional pool that are similar in several functional traits. Accordingly, communities associated with stable ponds with high tree cover exhibited high functional redundancy.  相似文献   

5.
The relative importance of dispersal limitation versus environmental filtering for community assembly has received much attention for macroorganisms. These processes have only recently been examined in microbial communities. Instead, microbial dispersal has mostly been measured as community composition change over space (i.e., distance decay). Here we directly examined fungal composition in airborne wind currents and soil fungal communities across a 40 000 km2 regional landscape to determine if dispersal limitation or abiotic factors were structuring soil fungal communities. Over this landscape, neither airborne nor soil fungal communities exhibited compositional differences due to geographic distance. Airborne fungal communities shifted temporally while soil fungal communities were correlated with abiotic parameters. These patterns suggest that environmental filtering may have the largest influence on fungal regional community assembly in soils, especially for aerially dispersed fungal taxa. Furthermore, we found evidence that dispersal of fungal spores differs between fungal taxa and can be both a stochastic and deterministic process. The spatial range of soil fungal taxa was correlated with their average regional abundance across all sites, which may imply stochastic dispersal mechanisms. Nevertheless, spore volume was also negatively correlated with spatial range for some species. Smaller volume spores may be adapted to long-range dispersal, or establishment, suggesting that deterministic fungal traits may also influence fungal distributions. Fungal life-history traits may influence their distributions as well. Hypogeous fungal taxa exhibited high local abundance, but small spatial ranges, while epigeous fungal taxa had lower local abundance, but larger spatial ranges. This study is the first, to our knowledge, to directly sample air dispersal and soil fungal communities simultaneously across a regional landscape. We provide some of the first evidence that soil fungal communities are mostly assembled through environmental filtering and experience little dispersal limitation.  相似文献   

6.
植物群落构建机制研究进展   总被引:25,自引:15,他引:10  
柴永福  岳明 《生态学报》2016,36(15):4557-4572
群落构建研究对于解释物种共存和物种多样性的维持是至关重要的,因此一直是生态学研究的中心论题。尽管近年来关于生态位和中性理论的验证研究已经取得了显著的成果,但对于局域群落构建机制的认识仍存在很大争议。随着统计和理论上的进步使得用功能性状和群落谱系结构解释群落构建机制变为可能,主要是通过验证共存物种的性状和谱系距离分布模式来实现。然而,谱系和功能性状不能相互替代,多种生物和非生物因子同时控制着群落构建,基于中性理论的扩散限制、基于生态位的环境过滤和竞争排斥等多个过程可能同时影响着群落的构建。所以,综合考虑多种方法和影响因素探讨植物群落的构建机制,对于预测和解释植被对干扰的响应,理解生物多样性维持机制有重要意义。试图在简要回顾群落构建理论及研究方法发展的基础上,梳理其最新研究进展,并探讨整合功能性状及群落谱系结构的研究方法,解释群落构建和物种多样性维持机制的可能途径。在结合功能性状和谱系结构研究群落构建时,除了考虑空间尺度、环境因子、植被类型外,还应该关注时间尺度、选择性状的种类和数量、性状的种内变异、以及人为干扰等因素对群落构建的影响。  相似文献   

7.
Aims While using phylogenetic and functional approaches to test the mechanisms of community assembly, functional traits often act as the proxy of niches. However, there is little detailed knowledge regarding the correlation between functional traits of tree species and their niches in local communities. We suggest that the co-varying correlation between functional traits and niches should be the premise for using phylogenetic and functional approaches to test mechanisms of community assembly. Using functional traits, phylogenetic and environmental data, this study aims to answer the questions: (i) within local communities, do functional traits of co-occurring species co-vary with their environmental niches at the species level? and (ii) what is the key ecological process underlying community assembly in Xishuangbanna and Ailaoshan forest dynamic plots (FDPs)?Methods We measured seven functional traits of 229 and 36 common species in Xishuangbanna and Ailaoshan FDPs in tropical and subtropical China, respectively. We also quantified the environmental niches for these species based on conditional probability. We then analyzed the correlations between functional traits and environmental niches using phylogenetic independent contrasts. After examining phylogenetic signals of functional traits using Pagel's λ, we quantified the phylogenetic and functional dispersion along environmental gradients within local tree communities.Important findings For target species, functional traits do co-vary with environmental niches at the species level in both of the FDPs, supporting that functional traits can be used as a proxy for local-scale environmental niches. Functional traits show significant phylogenetic signals in both of the FDPs. We found that the phylogenetic and functional dispersion were significantly clustered along topographical gradients in the Ailaoshan FDP but overdispersion in the Xishuangbanna FDP. These patterns of phylogenetic and functional dispersion suggest that environmental filtering plays a key role in structuring local tree assemblages in Ailaoshan FDP, while competition exclusion plays a key role in Xishuangbanna FDP.  相似文献   

8.
Disturbance has many effects on ecological communities, and it is often suggested that disturbance can affect species diversity by altering competitive outcomes. However, disturbance regimes have many distinct aspects that may act, and interact, to influence species diversity. While there are many theoretical models of disturbance-prone communities, few have specifically documented how interactions between different aspects of a disturbance regime change competitive outcomes. Here, we present a model of two plant species subject to disturbance which we then use to examine species coexistence over varying levels of two aspects of disturbance: frequency, and spatial extent (i.e., area disturbed). We show that the competitive outcome is affected differently by changes in each aspect and that the effect of disturbance frequency on species coexistence depends strongly on the spatial extent of the disturbance, and vice versa. We classify the nature of these interactions between disturbance frequency and extent on the basis of the shape of the resulting coexistence regions in a frequency?Cextent parameter plane. Our results illustrate that different types of interaction can result from differences in life-history traits that control species-specific sensitivity to frequency and extent of disturbance. Thus, our analysis shows that the various aspects of disturbance must be carefully considered in concert with the life-history traits of the community members in order to assess the consequences of disturbance.  相似文献   

9.
Trade-offs between competitive ability and the other life-history traits are considered to be a major mechanism of competitive coexistence. Many theoretical studies have demonstrated the robustness of such a coexistence mechanism ecologically; however, it is unknown whether the coexistence is robust evolutionarily. Here, we report that evolution of life-history traits not directly related to competition, such as longevity, and predator avoidance, easily collapses competitive coexistence in several competition systems: spatially structured, and predator-mediated two-species competition systems. In addition, we found that a superior competitor can be excluded by an inferior one by common mechanisms among the models. Our results suggest that ecological competitive coexistence due to a life-history trait trade-off balance may not be balanced on an evolutionary timescale, that is, it may be evolutionarily fragile.  相似文献   

10.
Understanding and disentangling different processes underlying the assembly and diversity of communities remains a key challenge in ecology. Species can assemble into communities either randomly or due to deterministic processes. Deterministic assembly leads to species being more similar (underdispersed) or more different (overdispersed) in certain traits than would be expected by chance. However, the relative importance of those processes is not well understood for many organisms, including terrestrial invertebrates. Based on knowledge of a broad range of species traits, we tested for the presence of trait underdispersion (indicating dispersal or environmental filtering) and trait overdispersion (indicating niche partitioning) and their relative importance in explaining land snail community composition on lake islands. The analysis of community assembly was performed using a functional diversity index (Rao's quadratic entropy) in combination with a null model approach. Regression analysis with the effect sizes of the assembly tests and environmental variables gave information on the strength of under‐ and overdispersion along environmental gradients. Additionally, we examined the link between community weighted mean trait values and environmental variables using a CWM‐RDA. We found both trait underdispersion and trait overdispersion, but underdispersion (eight traits) was more frequently detected than overdispersion (two traits). Underdispersion was related to four environmental variables (tree cover, habitat diversity, productivity of ground vegetation, and location on an esker ridge). Our results show clear evidence for underdispersion in traits driven by environmental filtering, but no clear evidence for dispersal filtering. We did not find evidence for overdispersion of traits due to diet or body size, but overdispersion in shell shape may indicate niche differentiation between snail species driven by small‐scale habitat heterogeneity. The use of species traits enabled us to identify key traits involved in snail community assembly and to detect the simultaneous occurrence of trait underdispersion and overdispersion.  相似文献   

11.
The disturbance spectrum consists of disturbance patterns differing in type, size, intensity, and frequency. It is proposed that tree life-history traits are adaptations to particular disturbance regimes. Four independent axes are proposed to define the dominant dimensions of tree strategy space: shade tolerance, tree height, capacity for vegetative reproduction, and seed dispersal distance. A fitness model was developed to elucidate interactions between the proposed life-history traits. The model shows how alternate life-history sets can coexist when disturbance patterns fluctuate in space and time. Variable disturbance regimes were shown, based on data and simulation results, to enhance species coexistence, as predicted. The strategy space model accurately predicts the number of common tree species for the eastern United States, boreal Canada, and southwestern pi?on-juniper woodlands. The model also provides an explanation for latitudinal gradients in tree species richness in North America and Europe. The proposed model predicts a relationship between disturbance characteristics and the species composition of a forest that allows for the coexistence of large numbers of species. The life-history traits of size, growth rate, life span, shade tolerance, age of reproduction, seed dispersal distance, and vegetative reproduction are all incorporated into the model.  相似文献   

12.
Characterizing trait variation across different ecological scales in plant communities has been viewed as a way to gain insights into the mechanisms driving species coexistence. However, little is known about how changes in intraspecific and interspecific traits across sites influence species richness and community assembly, especially in understory herbaceous communities. Here we partitioned the variance of four functional traits (maximum height, leaf thickness, leaf area and specific leaf area) across four nested biological scales: individual, species, plot, and elevation to quantify the scale-dependent distributions of understory herbaceous trait variance. We also integrated the comparison of the trait variance ratios to null models to investigate the effects of different ecological processes on community assembly and functional diversity along a 1200-m elevational gradient in Yulong Mountain. We found interspecific trait variation was the main trait variation component for leaf traits, although intraspecific trait variation ranged from 10% to 28% of total variation. In particular, maximum height exhibited high plasticity, and intraspecific variation accounted for 44% of the total variation. Despite the fact that species composition varied across elevation and species richness decreased dramatically along the elevational gradient, there was little variance at our largest (elevation) scale in leaf traits and functional diversity remained constant along the elevational gradient, indicating that traits responded to smaller scale influences. External filtering was only observed at high elevations. However, strong internal filtering was detected along the entire elevational gradient in understory herbaceous communities, possibly due to competition. Our results provide evidence that species coexistence in understory herbaceous communities might be structured by differential niche-assembled processes. This approach--integrating different biological scales of trait variation--may provide a better understanding of the mechanisms involved in the structure of communities.  相似文献   

13.
Seedling dynamics play a crucial role in determining species distributions and coexistence. Exploring causes of variation in seedling dynamics can therefore provide key insights into the factors affecting these phenomena. We examined the relative importance of biotic neighborhood processes and habitat heterogeneity using survival data for 5,827 seedlings in 39 tree and shrub species over 2?years from an old-growth temperate forest in northeastern China. We found significant negative density-dependence effects on survival of tree seedlings, and limited effects of habitat heterogeneity (edaphic and topographic variables) on survival of shrub seedlings. The importance of negative density dependence on young tree seedling survival was replaced by habitat in tree seedlings ??4?years old. As expected, negative density dependence was more apparent in gravity-dispersed species compared to wind-dispersed and animal-dispersed species. Moreover, we found that a community compensatory trend existed for trees. Therefore, although negative density dependence was not as pervasive as in other forest communities, it is an important mechanism for the maintenance of community diversity in this temperate forest. We conclude that both negative density dependence and habitat heterogeneity drive seedling survival, but their relative importance varies with seedling age classes and species traits.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) are globally distributed, monophyletic root symbionts with ancient origins. Their contribution to carbon cycling and nutrient dynamics is ecologically important, given their obligate association with over 70% of vascular plant species. Current understanding of AMF species richness and community structure is based primarily on studies of grasses, herbs and agricultural crops, typically in disturbed environments. Few studies have considered AMF interactions with long‐lived woody perennial species in undisturbed ecosystems. Here we examined AMF communities associated with roots and soils of young, mature and old western redcedar (Thuja plicata) at two sites in the old‐growth temperate rainforests of British Columbia. Due to the unique biology of AMF, community richness and structure were assessed using a conservative, clade‐based approach. We found 91 AMF OTUs across all samples, with significantly greater AMF richness in the southern site, but no differences in richness along the host chronosequence at either site. All host age classes harboured AMF communities that were overdispersed (more different to each other than expected by chance), with young tree communities most resembling old tree communities. A comparison with similar clade richness data obtained from the literature indicates that western redcedar AMF communities are as rich as those of grasses, tropical trees and palms. Our examination of undisturbed temperate old‐growth rainforests suggests that priority effects, rather than succession, are an important aspect of AMF community assembly in this ecosystem.  相似文献   

15.
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator‐mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co‐occurrence patterns to determine the role of pollinator‐mediated processes in structuring plant communities dominated by congeners. We surveyed three species‐rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co‐flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44–48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co‐occurrence. Together, it appears that pollinators influence community assemblage in these three clades.  相似文献   

16.
The effect of competition on species coexistence is usually strongly modified by other factors especially in non-equilibrium systems of sessile organisms with limited availability of propagules. As a consequence, competition-based assembly rules (even if their existence seems to be unambiguously detected) would result in incomplete understanding of the coexistence of species in plant communities. J. Bastow Wilson suggested measuring variance deficit in the number of co-occurring species as a means to detect niche limitation in a community. The method provides a relatively simple and quick “snap-shot” analysis of a community. However, it has been questioned whether niche limitation is the only factor which might account for variance deficit. The paper presents a spatially explicit simulation experiment in which artificial communities are produced by pre-defined rules for competitive interactions. Then we examine whether these rules can be detected by a proposed method for pattern analysis. Two limiting cases are simulated: (A) all the species share the same niche, and (B) all the species have different niches. The difference between these cases in the variance of species numbers is examined. Using the simulation results, some basic spatial constraints upon species assembly are emphasized. It is argued that the assumptions of Wilson’s approach confine its applicability to species-saturated equilibrium communities. The study of assembly rules in dynamically changing, spatially structured communities requires the consideration of a set of coenological characteristics and the use of careful spatio-temporal scaling to detect their patterns. The use of spatially explicit individual-based models to study the mechanisms and constraints limiting species coexistence at different scales is suggested.  相似文献   

17.
Understanding the mechanisms of assembly of tree communities is very important for restoring and managing pine-oak mixed forests in the Qinling Mountains, China, but the essential mechanisms remain largely unexplored. The objective of this research was to uncover the underlying mechanisms of species coexistence and to identify the key environmental factors influencing the tree community assemblages in these forests. We investigated tree species and 15 environmental factors of topography, soil properties, and stand development of pine-oak mixed forests at an elevation of 1000-2000 m a.s.l. in the Qinling Mountains. Six classical models for the distribution of species abundance were used to fit the observed distributions; a clustering analysis was conducted to divide the ecological species groups, and a redundancy analysis examined the relationship between species assemblages and various environmental factors. Zipf-Mandelbrot, neutral-theory, log-normal, and Zipf models performed well in fitting the patterns of species-abundance distribution in the pine-oak mixed forests, which was related to the complexity of the community structure of the forests. A special combination of the Zipf-Mandelbrot and neutral-theory models, however, best explained the mechanism of species coexistence for the forests and indicated that these forests were progressive successional communities able to maintain stable development during succession. In addition, multiple factors controlled the tree community assemblage of pine-oak mixed forests in the mountainous regions, although available potassium, slope aspect, average tree DBH, and slope position were significant environmental variables.  相似文献   

18.
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage‐specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co‐occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.  相似文献   

19.
中国森林生物多样性监测网络(CForBio)目前已经沿纬度梯度从寒温带到热带布设23个大型森林动态样地, 监测1,893种木本植物, 代表我国木本植物种类的近1/6。CForBio的主要目标之一是研究森林群落的构建机制。本文综述了近20年来CForBio在群落构建机制探索方面取得的进展, 包括生物多样性时空格局、生境过滤、生物相互作用、局域扩散和区域因素以及利用新技术取得的新认知等。CForBio研究发现: (1)生境过滤和扩散限制共同决定种-面积关系及β多样性等多样性格局, 但二者的相对作用在不同样地及不同尺度存在差异; (2)生境过滤对局域群落构建的作用广泛存在, 但很难量化其对群落构建的重要性; (3)同种负密度制约在不同气候带样地普遍存在, 负密度制约的强度主要由植物菌根类型介导, 并随植物生活史类型、功能性状及环境变化而变化; (4)扩散限制在局域群落构建中发挥关键作用, 而区域因素如区域地质历史、区域物种库大小等塑造不同生物地理区群落之间的生物多样性差异; (5)宏观和微观两个方面的新技术促进群落构建机制的研究。在宏观方面, 遥感技术以低成本使大范围、多尺度的连续群落生物多样性监测和时空比较研究成为可能; 另一方面, 叶绿体基因技术和代谢组学等微观技术能促进推导群落构建的分子机制。同时, 本文还总结了以往研究的不足, 并展望了基于森林动态样地开展群落构建机制研究的未来发展, 特别强调了: (1)关注群落构建研究中的尺度问题; (2)深入开展多维度(物种、功能和系统发育)、多营养级生物互作相关的研究; (3)拓展全球变化对群落构建影响的研究; (4)融合观测-实验-模型多种手段开展群落构建机制的研究; (5)连结“群落构建理论研究”和“森林管理实践”。总之, 中国森林生物多样性监测网络的长期监测和联网研究是森林群落构建机制研究的重要基础, 也是推动群落构建理论、解决森林管理难题的重要平台。  相似文献   

20.
Alien species can be a major threat to ecological communities, but we do not know why some community types allow the entry of many more alien species than do others. Here, for the first time, we suggest that evolutionary diversity inherent to the constituent species of a community may determine its present receptiveness to alien species. Using recent large databases from observational studies, we find robust evidence that assemblage of plant community types from few phylogenetic lineages (in plots without aliens) corresponds to higher receptiveness to aliens. Establishment of aliens in phylogenetically poor communities corresponds to increased phylogenetic dispersion of recipient communities and to coexistence with rather than replacement of natives. This coexistence between natives and distantly related aliens in recipient communities of low phylogenetic dispersion may reflect patterns of trait assembly. In communities without aliens, low phylogenetic dispersion corresponds to increased dispersion of most traits, and establishment of aliens corresponds to increased trait concentration. We conclude that if quantified across the tree of life, high biodiversity correlates with decreasing receptiveness to aliens. Low phylogenetic biodiversity, in contrast, facilitates coexistence between natives and aliens even if they share similar trait states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号