首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of nonindigenous species (NIS) arrival has received limited theoretical consideration despite importance in predicting and preventing the establishment of NIS. We formulate a mechanistically based hierarchical model of NIS arrival and demonstrate simplifications leading to a marginal distribution of the number of surviving introduced individuals from parameters of survival probability and propagule pressure. The marginal distribution is extended as a stochastic process from which establishment emerges with a waiting time distribution. This provides a probability of NIS establishment within a specified period and may be useful for identifying patterns of successful invaders. However, estimates of both the propagule pressure and the individual survival probability are rarely available for NIS, making estimates of the probability of establishment difficult. Alternatively, researchers are able to measure proportional estimates of propagule pressure through models of NIS transport, such as gravity models, or of survival probability through habitat-matching indexes measuring the similarity between potentially occupied and native NIS ranges. Therefore, we formulate the relative waiting time between two locations and the probability of one location being invaded before the other.  相似文献   

2.
Most introduced species apparently have little impact on native biodiversity, but the proliferation of human vectors that transport species worldwide increases the probability of a region being affected by high-impact invaders – i.e. those that cause severe declines in native species populations. Our study determined whether the number of high-impact invaders can be predicted from the total number of invaders in an area, after controlling for species–area effects. These two variables are positively correlated in a set of 16 invaded freshwater and marine systems from around the world. The relationship is a simple linear function; there is no evidence of synergistic or antagonistic effects of invaders across systems. A similar relationship is found for introduced freshwater fishes across 149 regions. In both data sets, high-impact invaders comprise approximately 10% of the total number of invaders. Although the mechanism driving this correlation is likely a sampling effect, it is not simply the proportional sampling of a constant number of repeat-offenders; in most cases, an invader is not reported to have strong impacts on native species in the majority of regions it invades. These findings link vector activity and the negative impacts of introduced species on biodiversity, and thus justify management efforts to reduce invasion rates even where numerous invasions have already occurred.  相似文献   

3.
Darwin's naturalization hypothesis predicts that the success of alien invaders will decrease with increasing taxonomic similarity to the native community. Alternatively, shared traits between aliens and the native assemblage may preadapt aliens to their novel surroundings, thereby facilitating establishment (the preadaptation hypothesis). Here we examine successful and failed introductions of amphibian species across the globe and find that the probability of successful establishment is higher when congeneric species are present at introduction locations and increases with increasing congener species richness. After accounting for positive effects of congeners, residence time, and propagule pressure, we also find that invader establishment success is higher on islands than on mainland areas and is higher in areas with abiotic conditions similar to the native range. These findings represent the first example in which the preadaptation hypothesis is supported in organisms other than plants and suggest that preadaptation has played a critical role in enabling introduced species to succeed in novel environments.  相似文献   

4.
1.  Concern over the impact of invasive species has led to the development of risk assessment methodologies to identify potential invaders and prevent future ecological and economic problems. However, developing a risk assessment tool is challenging because of the difficulties of accurately predicting the outcome of species introductions.
2.  In this study, we develop a global risk assessment for birds. We integrate two approaches, generalized linear mixed models (GLMM) and hierarchical tree models, to help identify those introductions with the highest risk of establishment success.
3.  Past work has shown that the number of individuals released is the main factor influencing establishment success in animals, a conclusion that was supported in our analyses. Establishment success was also higher for species with broader ecological niches and larger brains relative to body size. These features should increase the likelihood of finding an appropriate niche in the region of introduction.
4.  The GLMM and tree model predicted the probability of establishment success of birds in Europe and Australia with high accuracy (over 80% of introductions correctly classified). This highlights that establishment risk can be reasonably assessed with information on general habitat use, brain size and the size of the founder population. When compared with an alternative risk assessment tool based on a qualitative ranking, our quantitative approaches achieved higher accuracy with less information.
5.   Synthesis and applications. Quantitative risk assessments based on traits related to establishment success are difficult but feasible, providing a useful tool for guiding preventive polices aimed at mitigating the impact of invasive species.  相似文献   

5.
The primary goal of invasive species management is to eliminate or reduce populations of invasive species. Although management efforts are often motivated by broader goals such as to reduce the negative impacts of invasive species on ecosystems and society, there has been little assessment of the consistency between population-based (e.g., removing invaders) and broader goals (e.g., recovery of ecological systems) for invasive species management. To address this, we conducted a comprehensive review of studies (N = 151) that removed invasive species and assessed ecological recovery over time. We found positive or mixed outcomes in most cases, but 31% of the time ecological recovery did not occur or there were negative ecological outcomes, such as increases in non-target invasive species. Ecological recovery was more likely in areas with relatively little anthropogenic disturbance and few other invaders, and for the recovery of animal populations and communities compared to plant communities and ecosystem processes. Elements of management protocols, such as whether invaders were eradicated (completely removed) versus aggressively suppressed (≥90% removed), did not affect the likelihood of ecological recovery. Our findings highlight the importance of considering broader goals and unintended outcomes when designing and implementing invasive species management programs.  相似文献   

6.
Human induced global change has greatly altered the structure and composition of food webs through the invasion of non‐native species and the extinction of native species. Much attention has been paid to the effects of species deletions on food web structure and stability. However, recent empirical evidence suggests that for most taxa local species richness has increased as successful invasions outpace extinctions at this scale. This pattern suggests that food webs, which represent feeding interactions at the local scale, may be increasing in species richness. Knowledge of how food web structure relates to invasive species establishment and the effect of successful invaders on subsequent food web structure remains an unknown but potentially important aspect of global change. Here we explore the effect of food web topology on invasion success in model food webs to develop hypotheses about how the distribution of biodiversity across trophic levels affects the success of invasion at each trophic level. Our results suggest a connectance (C) based framework for predicting invasion success in food webs due to the way that C constrains the number of species at each trophic level and thus the number of potential predators and prey for an invader at a given trophic level. We use the relationship between C and the proportion of species at each trophic level in 14 well studied food webs to make the following predictions; 1) the success of basal invaders will increase as C increases due to the decrease in herbivores in high C webs, 2) herbivore invasion success will decrease as C increases due to the decrease in the proportion of basal species and increase in intermediate species and omnivores in high C webs. 3) Top predator invasion success will increase as C increases due to the increase in intermediate prey species. However, it is not clear how the relative influence of trophic structure compares to empirically known predictors of invasion success such as invader traits, propagule pressure, and resource availability.  相似文献   

7.
Invasion ecology has been criticised for its lack of general principles. To explore this criticism, we conducted a meta-analysis that examined characteristics of invasiveness (i.e. the ability of species to establish in, spread to, or become abundant in novel communities) and invasibility (i.e. the susceptibility of habitats to the establishment or proliferation of invaders). There were few consistencies among invasiveness characteristics (3 of 13): established and abundant invaders generally occupy similar habitats as native species, while abundant species tend to be less affected by enemies; germination success and reproductive output were significantly positively associated with invasiveness when results from both stages (establishment/spread and abundance/impact) were combined. Two of six invasibility characteristics were also significant: communities experiencing more disturbance and with higher resource availability sustained greater establishment and proliferation of invaders. We also found that even though ‘propagule pressure’ was considered in only ~29% of studies, it was a significant predictor of both invasiveness and invasibility (55 of 64 total cases). Given that nonindigenous species are likely introduced non-randomly, we contend that ‘propagule biases’ may confound current paradigms in invasion ecology. Examples of patterns that could be confounded by propagule biases include characteristics of good invaders and susceptible habitats, release from enemies, evolution of ‘invasiveness’, and invasional meltdown. We conclude that propagule pressure should serve as the basis of a null model for studies of biological invasions when inferring process from patterns of invasion. An erratum to this article can be found at  相似文献   

8.
We modelled data comprising 1,189 successful and 489 failed introduction records for 280 species of freshwater fishes around the world. We found significant variations in establishment success between genera and families. The number of countries where introductions occurred was a significant predictor of the probability a species would establish in at least one country and all species that had been introduced to nine or more countries (46 species) had established at least one exotic population. We also conducted more detailed quantitative modelling for 135 species introduced to 10 countries to identify factors affecting establishment success. Relative to failed species, established species had better climate matches between the country where they were introduced and their geographic range elsewhere in the world. Established species were also more likely to have high establishment success rates elsewhere in the world. Neither the reason why fish were introduced nor the country where they were introduced was correlated with establishment success. Cross-validations indicated our model correctly categorised establishment success with 78% accuracy. Our findings may guide risk assessments for the import of live exotic fish to reduce the rate new species establish in the wild.  相似文献   

9.
The traditional approach to understanding invasions has focused on properties of the invasive species and of the communities that are invaded. A well‐established concept is that communities with higher species diversity should be more resistant to invaders. However, most recently published field data contradict this theory, finding instead that areas with high native plant diversity also have high exotic plant diversity. An alternative environment‐based approach to understanding patterns of invasions assumes that native and exotic species respond similarly to environmental conditions, and thus predicts that they should have similar patterns of abundance and diversity. Establishment and growth of native and exotic species are predicted to vary in response to the interaction of plant growth rates with the frequency and intensity of mortality‐causing disturbances. This theory distinguishes between the probability of establishment and the probability of dominance, predicting that establishment should be highest under unproductive and undisturbed conditions and also disturbed productive conditions. However, the probability of dominance by exotic species, and thus of potential negative impacts on diversity, is highest under productive conditions. The theory predicts that a change in disturbance regime can have opposite effects in environments with contrasting levels of productivity. Manipulation of productivity and disturbance provides opportunities for resource managers to influence the interactions among species, offering the potential to reduce or eliminate some types of invasive species.  相似文献   

10.
Jodi N. Price  Meelis Pärtel 《Oikos》2013,122(5):649-656
Synthesis We used meta‐analyses to examine experimental evidence that functional similarity between invaders and resident communities reduces invasion. We synthesized evidence from studies that experimentally added seed to resident communities in which the functional group composition had been manipulated. We found communities containing functionally similar resident species reduced invasion of forb but not grass invaders. However, experimental design dramatically influenced the results – with evidence for limiting similarity only found in artificially assembled communities, and not when studies used functional group removal from more ‘natural communities’. We suggest that functional group similarity plays a limited role in biotic resistance in established communities. The principle of limiting similarity suggests that species must be functionally different to coexist; based on the assumption that inter‐specific competition should be greatest between functionally similar species. There has been controversy over the generality of this assembly rule for plant communities with some studies finding evidence for limiting similarity and others not. One approach to testing this is to examine the ‘invasion’ success of species into communities in which the functional group composition has been manipulated. Using a meta‐analysis approach, we examined the generality of limiting similarity for plant communities based on published experimental studies. We asked – is establishment of an invading species less successful if it belongs to a functional group that is already present in the community compared to a community in which that functional group is absent? We explored separately colonisation (i.e. germination, establishment or seedling survival) and performance (i.e. biomass, cover or growth) of different functional groups (forbs and grasses) and experimental designs (removal experiments of more or less natural communities and synthetic‐assemblage experiments). We found that communities containing functionally similar resident species did reduce invader colonisation and performance of forb invaders, but did not reduce colonisation or performance of grass invaders. Evidence in support of limiting similarity was only detected in synthetic‐assemblage experiments and not when studies used functional group removal from ‘natural’ communities. Functional similarity is an important aspect of biotic resistance for forb invaders, but was only found in artificial communities. This has implications for restoration ecology especially when communities are built de novo. However, we suggest that limiting similarity plays a limited role in biotic resistance, because no evidence was detected in established communities.  相似文献   

11.
We examined data comprising 1,028 successful and 967 failed introduction records for 596 species of alien reptiles and amphibians around the world to test for factors influencing establishment success. We found significant variations between families and between genera. The number of jurisdictions where a species was introduced was a significant predictor of the probability the species had established in at least one jurisdiction. All species that had been introduced to more than 10 jurisdictions (34 species) had established at least one alien population. We also conducted more detailed quantitative comparisons for successful (69 species) and failed (116 species) introductions to three jurisdictions (Great Britain, California and Florida) to test for associations with climate match, geographic range size, and history of establishment success elsewhere. Relative to failed species, successful species had better climate matches between the jurisdiction where they were introduced and their geographic range elsewhere in the world. Successful species were also more likely to have high establishment success rates elsewhere in the world. Cross-validations indicated our full model correctly categorized establishment success with 78–80% accuracy. Our findings may guide risk assessments for the import of live alien reptiles and amphibians to reduce the rate new species establish in the wild.  相似文献   

12.

Aim

Darwin's naturalization hypothesis states that dissimilarity to native species may benefit alien species establishment due to empty niches and reduced competition. We here add a new dimension to large‐scale tests of community invasibility, investigating the role that previously established alien species play in facilitating or hindering new invasions in plant communities.

Location

Permanent grasslands across France (including mainland and Corsica), as a receding ecosystem of great conservation importance.

Methods

Focusing on 121 alien plant species occurring in 7,215 vegetation plots, we quantified biotic similarity between new invaders and resident alien species (i.e., alien species with longer residence times) based on phylogenetic and trait distances. Additionally, we calculated distances to native species for each alien species and plot. Using multispecies distribution models, we analysed the influence of these biotic similarity measures and additional covariates on establishment success (presence/absence) of new invaders.

Results

We found that biotic similarity to resident alien species consistently increased establishment success of more recently introduced species. Phylogenetic relatedness to previous invaders had an equally strong positive effect as relatedness to native species. Conversely, trait similarity to natives hindered alien establishment as predicted by Darwin's naturalization hypothesis. These results highlight that various mechanisms may act simultaneously to determine alien establishment success.

Main conclusions

Our results suggest that, with greater similarity among alien species, invasion success increases. Such a pattern may arise either due to actual facilitation among invaders or as a result of weaker competitive interactions among invaders than between native and alien species, leading to an indirect facilitative effect. Alternatively, recent environmental changes (e.g., eutrophication, climate change) may have added new environmental filters. Determining how initial invasions might pave the road for subsequent invasions is crucial for effective multispecies management decisions and contributes a new aspect to our understanding of community assembly.
  相似文献   

13.
Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.  相似文献   

14.
Montserrat Vilà  Jacob Weiner 《Oikos》2004,105(2):229-238
Invasive plants often appear to be more competitive than native species, but there have been few tests of this hypothesis. We reviewed published pair-wise experiments between invading and native plant species. Although the designs that have been used allow only limited inferences, the available data suggest that the effect of invasive species on native species is usually stronger than vice versa. Furthermore, mixtures of invasive and native species are generally less productive than monocultures of the native species, but not less than monocultures of the invasive species. However, the selection of invaders and natives for study has not been random, and the data could be biased towards highly competitive invaders and natives that are weaker than average competitors. We attempt to clarify confusion surrounding the concept of competitive superiority in the context of plant invasions, and we discuss the limitations of the methods that have been used to investigate competition between invasive and native species. To rigorously test the generality of the hypothesis that invaders are better competitors than natives we need to compare the effects of closely related native and invasive species on each other. We suggest that the influence of an invading species on total plant community biomass is an important clue in understanding the role of competition in a plant invasion. The role of competition in the establishment and naturalization stages of the invasion process may be very different from its role in the "outbreak" stage.  相似文献   

15.
Oceanic islands have long been considered to be particularly vulnerable to biotic invasions, and much research has focused on invasive plants on oceanic islands. However, findings from individual islands have rarely been compared between islands within or between biogeographic regions. We present in this study the most comprehensive, standardized dataset to date on the global distribution of invasive plant species in natural areas of oceanic islands. We compiled lists of moderate (5–25% cover) and dominant (>25% cover) invasive plant species for 30 island groups from four oceanic regions (Atlantic, Caribbean, Pacific, and Western Indian Ocean). To assess consistency of plant behaviour across island groups, we also recorded present but not invasive species in each island group.We tested the importance of different factors discussed in the literature in predicting the number of invasive plant species per island group, including island area and isolation, habitat diversity, native species diversity, and human development. Further we investigated whether particular invasive species are consistently and predictably invasive across island archipelagos or whether island-specific factors are more important than species traits in explaining the invasion success of particular species.We found in total 383 non-native spermatophyte plants that were invasive in natural areas on at least one of the 30 studied island groups, with between 3 and 74 invaders per island group. Of these invaders about 50% (181 species) were dominants or co-dominants of a habitat in at least one island group. An extrapolation from species accumulation curves across the 30 island groups indicates that the total current flora of invasive plants on oceanic islands at latitudes between c. 35°N and 35°S may eventually consist of 500–800 spermatophyte species, with 250–350 of these being dominant invaders in at least one island group. The number of invaders per island group was well predicted by a combination of human development (measured by the gross domestic product (GDP) per capita), habitat diversity (number of habitat types), island age, and oceanic region (87% of variation explained). Island area, latitude, isolation from continents, number of present, non-native species with a known invasion history, and native species richness were not retained as significant factors in the multivariate models.Among 259 invaders present in at least five island groups, only 9 species were dominant invaders in at least 50% of island groups where they were present. Most species were invasive only in one to a few island groups although they were typically present in many more island groups. Consequently, similarity between island groups was low for invader floras but considerably higher for introduced (but not necessarily invasive) species – especially in pairs of island groups that are spatially close or similar in latitude. Hence, for invasive plants of natural areas, biotic homogenization among oceanic islands may be driven by the recurrent deliberate human introduction of the same species to different islands, while post-introduction processes during establishment and spread in natural areas tend to reduce similarity in invader composition between oceanic islands. We discuss a number of possible mechanisms, including time lags, propagule pressure, local biotic and abiotic factors, invader community assembly history, and genotypic differences that may explain the inconsistent performance of particular invasive species in different island groups.  相似文献   

16.
Aim  In this study, a dataset on world-wide squirrel introductions has been used to locate the relative pathways and to determine the factors correlated with species establishment.
Location  The world.
Methods  The analysis includes a chronological table of introductions, a biogeographical analysis and an assessment of the likelihood of establishment according to species, propagule pressure, area of origin and characteristics of the recipient area.
Results  The main vector of such introductions was the intentional importation of live animals. Introductions increased in developed countries and proportionately to the volume of imported mammals. Moreover, areas characterized by higher numbers of native squirrels were more invaded. Squirrels were often introduced deliberately and only to a smaller extent escaped from captivity. The likelihood of their establishment increased proportionately to the number of animals released and decreased proportionately to the increase of the latitudinal distance between the recipient area and the native range of the species. The likelihood that the release of one pair of either Sciurus or Callosciurus species would establish a new population was higher than 50%.
Main conclusion  Squirrels proved to be successful invaders and their importation should be restricted so as to prevent further introductions.  相似文献   

17.
To assess potential effects of seed limitation, characteristics of invader species and characteristics of established plant communities on recruitment success, we conducted a split-plot experiment factorially combining three weeding treatments corresponding to increasing successional age (regular weeding相似文献   

18.
The recent explosion of exotic reptiles in south Florida requires effective management strategies. The objective of this study is to bring knowledge of ecological correlates and quantitative modeling methods into management by providing the foundation for a screening procedure that will identify potentially invasive species and assess adverse impacts associated with these species. We considered 17 variables and, based on model selection procedures, we identified the following significant predictors of establishment success: taxonomic order, maximum temperature match between a species’ native range and Florida, animal sale price, and manageability (defined as a species’ maintenance cost, aggressiveness, proneness to escape, and venomousness). Applying the models to predict establishment success of 33 reptiles that were most frequently imported through Miami and St. Petersburg ports from 2000 to 2005 and two additional reptiles of concern in Florida, we identified eight lizards and four snakes as potentially successful invaders. We further assessed adverse impacts associated with potential invaders, should they become established, by identifying species that are (1) dangerous to humans, (2) dangerous to the ecosystem (upper trophic-level predators), and (3) rapidly spreading. Controlling exotic reptiles can be expensive and labor intensive once they are established. Information on which species are potential invaders based on screening procedures and what impacts these species might cause will be a valuable contribution to the development of proactive management strategies.  相似文献   

19.
The success of alien species on oceanic islands is considered to be one of the classic observed patterns in ecology. Explanations for this pattern are based on lower species richness on islands and the lower resistance of species‐poor communities to invaders, but this argument needs re‐examination. The important difference between islands and mainland is in the size of species pools, not in local species richness; invasibility of islands should therefore be addressed in terms of differences in species pools. Here I examine whether differences in species pools can affect invasibility in a lottery model with pools of identical native and exotic species. While in a neutral model with all species identical, invasibility does not depend on the species pool, a model with non‐zero variation in population growth rates predicts higher invasibility of communities of smaller pools. This is because of species sampling; drawing species from larger pools increases the probability that an assemblage will include fast growing species. Such assemblages are more likely to exclude random invaders. This constitutes a mechanism through which smaller species pools (such as those of isolated islands) can directly underlie differences in invasibility.  相似文献   

20.
Predictive tools for preventing introduction of new species with high probability of becoming invasive in the U.S. must effectively distinguish non-invasive from invasive species. The Australian Weed Risk Assessment system (WRA) has been demonstrated to meet this requirement for terrestrial vascular plants. However, this system weights aquatic plants heavily toward the conclusion of invasiveness. We evaluated the accuracy of the WRA for 149 non-native aquatic species in the U.S., of which 33 are major invaders, 32 are minor invaders and 84 are non-invaders. The WRA predicted that all of the major invaders would be invasive, but also predicted that 83% of the non-invaders would be invasive. Only 1% of the non-invaders were correctly identified and 16% needed further evaluation. The resulting overall accuracy was 33%, dominated by scores for invaders. While the overall accuracy increased to 57% when the points assigned to aquatic life forms were removed, 57% of the non-invaders required further evaluation rather than were identified as having low probability of naturalizing. Discrimination between non-invaders and invaders would require an increase in the threshold score from the standard of 6 for this system to 19. That higher threshold resulted in accurate identification of 89% of the non-invaders and over 75% of the major invaders. Either further testing for definition of the optimal threshold or a separate screening system will be necessary for accurately predicting which freshwater aquatic plants are high risks for becoming invasive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号