首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies in our laboratory using the Zucker obese (ZO) and Zucker diabetic fatty (ZDF) rat models resulted in unexpectedly high mortality rates in all genotypes including healthy homozygous lean Zucker rats, possibly because of renal dysfunction. Therefore, we evaluated left ventricular (LV) and kidney morphology and function in young ZO, Zucker diabetic fatty obese (ZDFO), homozygous Zucker/ZDF lean (ZL), and Sprague-Dawley (SD) rats. Hydronephrosis was evident in ZL, ZO, and ZDFO but not SD kidneys. ZDFO rats exhibited impaired LV shortening and relaxation with increased arterial stiffness. LV wall thickness was lower and LV end-systolic wall stress was higher in ZDFO compared with SD rats. Plasma ANG II was lower in ZO and ZDFO rats, which may be a result of reduced renal parenchyma with hydronephrosis; norepinephrine was higher in ZDFO rats than SD controls. Covariate analysis indicated that LV end-systolic wall stress was associated with renal dysfunction. The presence of hydronephrosis and its association with LV dysfunction potentially limits the ZDF model for study of the effects of diabetes on renal and cardiovascular function.  相似文献   

2.
The obese Zucker (fa/fa) rat is characterized by hyperphagia, hyperinsulinemia, an increase in fat deposition, and a hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis in fa/fa rats is hypersensitive to stressful experimental conditions. Food deprivation even leads to a stress reaction in obese fa/fa rats. The present study was conducted to investigate the role of corticosterone in obese rats on the basal, fasting, and postprandial metabolic rate as well as on the central expression of the thyrotropin-releasing hormone (TRH) in these conditions. In addition, the study was aimed at clarifying whether the high levels of corticosterone in obese rats are responsible for the induction of the stress reaction to food deprivation in these animals. The present results demonstrate that whole body fat oxidation and postprandial metabolic responses in obese Zucker rats were improved by adrenalectomy (ADX). At the level of the central nervous system, ADX reversed a decrease in TRH mRNA expression in the paraventricular hypothalamus (PVH) detected in fasting animals. Considering all feeding conditions, the obese rats demonstrated lower TRH mRNA levels compared with lean animals. ADX resulted in an enhanced postprandial activation of the parvocellular PVH. In contrast, the magnocellular part of the PVH was less responsive to refeeding in ADX animals. Finally, ADX failed to prevent the stress response of obese rats to food deprivation. The present results provide evidence that the removal of adrenals resolve some of the metabolic defects encountered in obese Zucker rats. They also demonstrate that not all the abnormalities of the obese Zucker rats are attributable to the hyperactivity of the HPA axis.  相似文献   

3.
The purpose of this study was to test the hypothesis that exercise training improves microvascular function in obese Zucker rats, a model of obesity and type II diabetes. Animals were divided into four age-matched groups: lean sedentary (LS), lean exercise (LE), obese sedentary (OS), and obese exercise (OE). The exercise groups were treadmill-exercised from 5 to 11 wk of age, including a 2-wk acclimation period. Mean arterial pressure (MAP) was not significantly different between any of the groups. The OS had significantly higher mean body weight, blood glucose, insulin, IL-6, and leptin levels compared with the LS, whereas the OE had significantly lower blood glucose, insulin, and IL-6 levels compared with the OS. Functional hyperemia and endothelial-dependent vasodilation were tested in the spinotrapezius muscle using intravital microscopy. Functional hyperemia and acetylcholine (0.1 microM, 1 microM, and 10 microM) responses were significantly attenuated in OS compared with the LS, while the contraction and ACh-induced (1 microM and 10 microM) vasodilation were significantly increased in both LE and OE compared with the sedentary animals. These results suggest that exercise training can improve vascular function in this model of type II diabetes. Moreover, the impaired vasodilation observed in 11-wk-old OZR suggests that the microvascular dysfunction is not likely due to an elevated blood pressure.  相似文献   

4.
The aim of this study was to analyze the effects of chronic administration of high doses of quercetin on metabolic syndrome abnormalities, including obesity, dyslipidemia, hypertension, and insulin resistance. For this purpose, obese Zucker rats and their lean littermates were used. The rats received a daily dose of quercetin (2 or 10 mg/kg of body weight) or vehicle for 10 weeks. Body weight and systolic blood pressure (SBP) were recorded weekly. At the end of the treatment, plasma concentrations of triglycerides, total cholesterol, free-fatty acids (FFAs), glucose, insulin, adiponectin, and nitrate plus nitrite (NOx) were determined. Tumor necrosis factor-alpha (TNF-alpha) production, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) protein expression were analyzed in visceral adipose tissue (VAT). The raised SBP and high plasma concentrations of triglycerides, total cholesterol, FFA, and insulin found in obese Zucker rats were reduced in obese rats that received either of the doses of quercetin assayed. The higher dose also improved the inflammatory status peculiar to this model, as it increased the plasma concentration of adiponectin, reduced NOx levels in plasma, and lowered VAT TNF-alpha production in obese Zucker rats. Furthermore, chronic intake of the higher dose of quercetin enhanced VAT eNOS expression among obese Zucker rats, whereas it downregulated VAT iNOS expression. In conclusion, both doses of quercetin improved dyslipidemia, hypertension, and hyperinsulinemia in obese Zucker rats, but only the high dose produced antiinflammatory effects in VAT together with a reduction in body weight gain.  相似文献   

5.
The release of somatostatin from the pancreas and stomach following the ingestion of a meal and its increase in the peripheral circulation elicits an attenuation of postprandial hormone secretion such as insulin, pancreatic polypeptide and gastrin and retards the rate at which nutrients enter the circulation. Reduced tissue somatostatin content and/or an attenuated somatostatin release is associated with hyperinsulinism and obesity in certain animal models. In the obese Zucker rat, however, tissue somatostatin levels are increased and therefore the present study was designed to determine the effect of synthetic somatostatin on basal and postprandial arterial insulin levels in obese and lean Zucker rats. Synthetic somatostatin was infused at doses of 0.25, 0.5, 1 and 5 ng/kg X min before and after the intragastric instillation of a liver extract/sucrose test meal. In the obese rats somatostatin at a dose of 5 ng/kg X min reduced basal plasma insulin levels significantly, whereas no effect of somatostatin was observed on basal insulin levels in the lean animals at all doses employed. The integrated postprandial insulin response was reduced during 0.25, 0.5, 1 and 5 ng/kg X min somatostatin in the obese animals, whereas only 0.5 ng/kg X min and higher doses had an inhibitory effect in the lean rats. The degree of inhibition in relation to the postprandial insulin response during saline infusions was 35-230% in the obese and 30-100% in the lean Zucker rats within the range of somatostatin infusions employed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Adipose triglyceride lipase (ATGL) hydrolyzes triacylglycerols to diacylglycerols in the first step of lipolysis, providing substrates for hormone-sensitive lipase (HSL). Here we studied whether ATGL messenger RNA (mRNA) and protein levels were affected by 24-h cold exposure in different white adipose tissue depots and in interscapular brown adipose tissue of lean and obese Zucker rats submitted to feeding and 14-h fasting conditions. HSL mRNA expression was also studied in selected depots. In both lean and obese rats, as a general trend, cold exposure increased ATGL mRNA and protein levels in the different adipose depots, except in the brown adipose tissue of lean animals, where a decrease was observed. In lean rats, cold exposure strongly improved fasting up-regulation of ATGL expression in all the adipose depots. Moreover, in response to fasting, in cold-exposed lean rats, there was a stronger positive correlation between circulating nonesterified fatty acids (NEFA) and ATGL mRNA levels in the adipose depots and a higher percentage increase of circulating NEFA in comparison with control animals not exposed to cold. In obese rats, fasting-induced up-regulation of ATGL was impaired and was not improved by cold. The effects of obesity and cold exposure on HSL mRNA expression were similar to those observed for ATGL, suggesting common regulatory mechanisms for both proteins. Thus, cold exposure increases ATGL expression and improves its fasting-up-regulation in adipose tissue of lean rats. In obese rats, cold exposure also increases ATGL expression but fails to improve its regulation by fasting, which could contribute to the increased difficulty for mobilizing lipids in these animals.  相似文献   

7.
In this study, gastrin release in the obese Zucker rat was investigated by in vivo and in vitro experiments. Obese rats exhibited normal plasma gastrin levels at 3 weeks (preobese), were moderately hypergastrinemic at 3 months and severely hypergastrinemic at 5 months, compared to lean littermates. Following oral peptone, plasma gastrin levels doubled in both lean and obese rats. Basal and vagally stimulated gastrin release from perfused stomachs was greater in obese compared to lean rats and atropine had no effect on basal gastrin release in either group. Basal somatostatin release from the perfused stomach was found not to differ in both groups of animals. Morphological studies revealed an increase in the number of gastrin-containing G-cells in adult obese rats compared to lean littermates, but not in 3-week-old pups compared to lean littermates, indicating a strong correlation between cell number and plasma gastrin levels. These data indicate that the obese Zucker rat exhibits fasting hypergastrinemia in vivo, a condition which appears after weaning and increases in severity with age. Gastrin hypersecretion persists from the vascularly perfused stomach preparation. The basal hypergastrinemia of the obese Zucker rat is independent of a hyperactive postganglionic cholinergic drive but is associated with and probably causally related to an increase in antral G-cell numbers.  相似文献   

8.
We utilized variations in caloric availability and ambient temperature (T(a)) to examine interrelationships between energy expenditure and cardiovascular function in mice. Male C57BL/6J mice (n = 6) were implanted with telemetry devices and housed in metabolic chambers for measurement of mean arterial pressure (MAP), heart rate (HR), O(2) consumption (VO(2)), and locomotor activity. Fasting (T(a) = 23 degrees C), initiated at the onset of the dark phase, resulted in large and transient depressions in MAP, HR, VO(2), and locomotor activity that occurred during hours 6-17, which suggests torporlike episodes. Food restriction (14 days, 60% of baseline intake) at T(a) = 23 degrees C resulted in progressive reductions in MAP and HR across days that were coupled with an increasing occurrence of episodic torporlike reductions in HR (<300 beats/min) and VO(2) (<1.0 ml/min). Exposure to thermoneutrality (T(a) = 30 degrees C, n = 6) reduced baseline light-period MAP (-14 +/- 2 mmHg) and HR (-184 +/- 12 beats/min). Caloric restriction at thermoneutrality produced further reductions in MAP and HR, but indications of torporlike episodes were absent. The results reveal that mice exhibit robust cardiovascular responses to both acute and chronic negative energy balance. Furthermore, we conclude that T(a) is a very important consideration when assessing cardiovascular function in mice.  相似文献   

9.
Obesity contributes to increased risk for several chronic diseases including cardiovascular disease and type 2 diabetes. Xanthohumol, a prenylated flavonoid from hops (Humulus lupulus), was tested for efficacy on biomarkers of metabolic syndrome in 4 week old Zucker fa/fa rats, a rodent model of obesity. Rats received daily oral doses of xanthohumol at 0, 1.86, 5.64, and 16.9 mg/kg BW for 6 weeks. All rats were maintained on a high fat (60% kcal) AIN-93G diet for 3 weeks to induce severe obesity followed by a normal AIN-93G (15% kcal fat) diet for the last 3 weeks of the study. Weekly food intake and body weight were recorded. Plasma cholesterol, glucose, insulin, triglyceride, and monocyte chemoattractant protein-1 (MCP-1) levels were assessed using commercial assay kits. Plasma and liver tissue levels of XN and its metabolites were determined by liquid–chromatography tandem mass spectrometry. Plasma and liver tissue levels of xanthohumol were similar between low and medium dose groups and significantly (p < 0.05) elevated in the highest dose group. There was a dose-dependent effect on body weight and plasma glucose levels. The highest dose group (n = 6) had significantly lower plasma glucose levels compared to the control group (n = 6) in male but not female rats. There was also a significant decrease in body weight for male rats in the highest dose group (16.9 mg/kg BW) compared to rats that received no xanthohumol, which was also not seen for female rats. Plasma cholesterol, insulin, triglycerides, and MCP-1 as well as food intake were not affected by treatment. The findings suggest that xanthohumol has beneficial effects on markers of metabolic syndrome.  相似文献   

10.
11.
CCK-resistance in Zucker obese versus lean rats   总被引:4,自引:0,他引:4  
Obese Zucker rats are less sensitive to the satiety effect of CCK than lean litter mates. The present studies further characterised this CCK resistance. Subcutaneous injection of the CCK agonist caerulein dose-dependently decreased food intake in Zucker obese and lean rats whereas the CCK-B agonist gastrin-17 did not. Caerulein at 4 μg/kg, which resulted in CCK plasma bioactivity slightly above postprandial levels, decreased food intake in lean rats but not in obese rats. The decrease in food intake was also more marked at higher caerulein doses (20–100 μg/kg) in lean versus obese rats. In lean animals the satiety effects of the “near physiological” 4 μg/kg caerulein dose was abolished after blockade of vagal afferents with capsaicin, whereas the effects of higher caerulein doses were not. CCK-stimulated amylase secretion from pancreatic acini and binding capacity of 125I- labelled CCK-8 were decreased in obese versus lean rats. The CCK-A antagonist loxiglumide at 20 mg/kg, a dose which abolished the action of all caerulein doses on food intake, failed to alter the food intake either in obese or in lean rats when given without an agonist. The results suggest that the satiety effects of “near physiological” doses of caerulein in lean rats are mediated by vagal afferents whereas pharmacological doses act via non-vagal mechanisms. The differences in CCK's satiety effect between lean and obese rats may be due to differences in CCK-receptor binding and action at peripheral vagal sites. However, the failure of the CCK-A antagonist to increase food intake questions whether any of the effects of exogenous CCK are of physiological relevance.  相似文献   

12.
Glycogen stores (liver and carcass) have been studied in lean and obese Zucker rats. The animals were submitted to one of three feeding conditions: ad libitum, a 48-h fast, or a 48-h fast and food ad libitum for 24 h, and to two environmental conditions, either thermoneutrality or an acute cold exposure (2 days at 4-7 degrees C). After a 2-day fast at 25 degrees C, the liver glycogen store was reduced by 45 times in the lean rats, while it was decreased by only 3 times in the obese rats. Under these conditions, the liver glycogen store was 45 times higher in the obese than in the lean rats. After 2 days in the cold, liver glycogen store was 4.4 times higher in obese rats than in lean rats. After a 2-day fast in the cold, the liver glycogen store in the obese rats was 30 times higher than in the lean rats. In comparison to fasting at thermoneutrality, fasting in the cold did not lead to a further reduction in hepatic glycogen in obese Zucker rats. The differences observed in the mobilization of the hepatic glycogen store between obese and lean rats have not been found in the mobilization of the carcass glycogen store. Drastic conditions, such as a 2-day fast in the cold, did not exhaust the glycogen store in obese Zucker rats. The present observations point out that obese Zucker rats cannot mobilize the entire hepatic glycogen store, as seen in lean control rats. The role of this abnormality in the high hyperlipogenesis that maintains the obese state is still to be evaluated.  相似文献   

13.
The purposes of the present study were to characterize the histochemical and enzymatic profiles of various hindlimb skeletal muscles, as well as to determine maximal O2 consumption (VO2max) and respiratory exchange ratios (R) during steady-state exercise in the obese Zucker rat. The changes that occurred in these parameters in response to a 6-wk training program were then assessed. Obese rats were randomly assigned to a sedentary or training group. Lean littermates served as a second control. Training consisted of treadmill running at 18 m/min up an 8% grade, 1.5 h/day, 5 day/wk for 6 wk. During week 6, VO2max and R during a steady-state run (74% max) were determined. After 2 days of inactivity, hindlimb muscles were excised, stained for fiber type and capillaries, and assayed for hexokinase, citrate synthase, cytochrome oxidase, and beta-hydroxyacetyl-CoA dehydrogenase. The obese sedentary rats demonstrated greater oxidative enzyme activities per gram of muscle tissue than their lean littermates, greater R values during submaximal exercise of the same relative intensity, and greater absolute VO2max values. Training resulted in a 20-56% increase in oxidative enzymes, a 10% increase in VO2max, and an increase in capillary density in the soleus and plantaris. There was no alteration in R values during exercise at 74% VO2max or in fiber type composition in response to exercise training. Results suggest that the muscle of the obese Zucker rat manifests a greater oxidative capacity than the muscle of its lean littermates. The apparent inability of the obese rat to increase its use of fat during submaximal exercise of the same relative intensity in response to training remains to be elucidated.  相似文献   

14.
Static exercise causes activation of the sympathetic nervous system, which results in increased blood pressure (BP) and renal vascular resistance (RVR). The question arises as to whether renal vasoconstriction that occurs during static exercise is due to sympathetic activation and/or related to a pressure-dependent renal autoregulatory mechanism. To address this issue, we monitored renal blood flow velocity (RBV) responses to two different handgrip (HG) exercise paradigms in 7 kidney transplant recipients (RTX) and 11 age-matched healthy control subjects. Transplanted kidneys are functionally denervated. Beat-by-beat analyses of changes in RBV (observed via duplex ultrasound), BP, and heart rate were performed during HG exercise in all subjects. An index of RVR was calculated as BP/RBV. In protocol 1, fatiguing HG exercise (40% of maximum voluntary contraction) led to significant increases in RVR in both groups. However, at the end of exercise, RVR was more than fourfold higher in control subjects than in the RTX group (88 vs. 20% increase over baseline; interaction, P < 0.001). In protocol 2, short bouts of HG exercise (15 s) led to significant increases in RVR at higher workloads (50 and 70% of maximum voluntary contraction) in the control subjects (P < 0.001). RVR did not increase in the RTX group. In conclusion, we observed grossly attenuated renal vasoconstrictor responses to exercise in RTX subjects, in whom transplanted kidneys were considered functionally denervated. Our results suggest that renal vasoconstrictor responses to exercise in conscious humans are mainly dependent on activation of a neural mechanism.  相似文献   

15.
Skeletal muscle arterioles from obese Zucker rats (OZR) exhibit oxidant stress-based alterations in reactivity, enhanced alpha-adrenergic constriction, and reduced distensibility vs. microvessels of lean Zucker rats (LZR). The present study determined the impact of these alterations for perfusion and performance of in situ skeletal muscle during periods of elevated metabolic demand. During bouts of isometric tetanic contractions, fatigue of in situ gastrocnemius muscle of OZR was increased vs. LZR; this was associated with impaired active hyperemia. In OZR, vasoactive responses of skeletal muscle arterioles from the contralateral gracilis muscle were impaired, due in part to elevated oxidant tone; reactivity was improved after treatment with polyethylene glycol-superoxide dismutase (PEGSOD). Arterioles of OZR also exhibited increased alpha-adrenergic sensitivity, which was abolished by treatment with phentolamine (10-5 M). Intravenous infusion of phentolamine (10 mg/kg) or PEG-SOD (2,000 U/kg) in OZR altered neither fatigue rates nor active hyperemia from untreated levels; however, combined infusion improved performance and hyperemia, although not to levels in LZR. Microvessel density in the contralateral gastrocnemius muscle, determined via histological analyses, was reduced by approximately 25% in OZR vs. LZR, while individual arterioles from the contralateral gracilis muscle demonstrated reduced distensibility. These data suggest that altered arteriolar reactivity contributes to reduced muscle performance and active hyperemia in OZR. Further, despite pharmacological improvements in arteriolar reactivity, reduced skeletal muscle microvessel density and arteriolar distensibility also contribute substantially to reduced active hyperemia and potentially to impaired muscle performance.  相似文献   

16.
Increased hypothalamic neuropeptide Y levels have previously been demonstrated in several hypothalamic nuclei of the (fa/fa) Zucker rat. This study set out to characterise hypothalamic NPY receptors in both genotypres and to study the effect of exogenous NPY on feeding behavior in these rats. Spontaneous daytime food intake was raised in the obese rat (p less than 0.05). Total hypothalamic receptor density (Bmax) was reduced in the obese rat compared with the lean rat (by 56%, p less than 0.005), but affinity remained unaltered. The lowest dose of NPY tested (23.5 pmol) stimulated daytime feeding in lean rats after 1, 2 and 3 hours but was inaffective in the obese rat (p less than 0.05). At two higher doses (235 pmol and 2.35 nmol), NPY was equipotent in both genotypes over 1 and 2 hours but NPY-induced feeding was attenuated over 3 hours in the obese rat. These results suggest an overactive endogenous NPYergic system in the obese (fa/fa) rat which might contribute to hyperphagia and obesity in this strain.  相似文献   

17.
The in vitro conversion of thyroxine (T4) to triiodothyronine (T3) was studied in liver homogenates from fed and fasted lean and obese Zucker rats. T3 generation was decreased in fed young (2 month) obese rats as compared to values in fed lean controls. This was not corrected by the addition of dithiothreitol (DTT), suggesting a deficiency in 5'-deiodinase activity in young obese rats. Both lean and obese 2 month old rats responded to a 2 day fast by decreasing hepatic T3 generation as is always observed in other strains of rats. The hepatic conversion rate was not decreased in older (5 month) fed obese rats when compared to age-matched lean controls. Hepatic conversion of T4 to T3 was markedly decreased in 5 month old lean Zucker rats fasted for 4 days. In contrast, a 4 day fast had no effect on the hepatic conversion rate in the 5 month old obese rats. The hepatic conversion rate was assessed in 5 month old obese rats fasted for up to 28 days and hepatic conversion still did not decrease. This paradoxical response of the 5 month old obese rat may provide a new model to further evaluate the control of hepatic T3 generation from T4.  相似文献   

18.
The effect of fasting on hormonal and metabolic variables was evaluated in normal rats and in rats with obesity induced by neonatal treatment with monosodium glutamate (MSG). The hyperinsulinemia of the fed obese rats was reversed by fasting. Plasma corticosterone was also high in the fed obese and decreased to levels similar to fed controls, while it increased in the latter group during fasting. In contrast, thyroid hormone levels decreased in controls but increased in the obese rats in response to fasting. The fed obese group had lower carcass protein and higher carcass lipid contents than controls. In response to fasting, the decrements of the initial amount of both protein and fat were lower in MSG than in controls. Fasting induced a sustained increase in plasma free fatty acids only in the obese rats, although a single 100 μmol · l−1 dose of norepinephrine stimulated in vitro glycerol release more pronouncedly in epididymal adipocytes from control than obese rats. The results indicate that MSG-obese rats were able to mobilize fat stores during prolonged fasting. The high availability of lipid fuels and the sharp and sustained decrease in circulating corticosterone in the MSG group were probably important in diminishing body protein consumption during fasting. Accepted: 20 March 1997  相似文献   

19.
Ghrelin is a new orexigenic and adipogenic peptide primarily produced by the stomach and the hypothalamus. In the present experiment, we determined the circulating ghrelin levels in 60-week old fa/fa Zucker rats with a well-established obesity (n = 12) and in their lean (FA/FA) counterparts (n = 12). We also tested the feeding response of both groups to intra-peritoneal (I.P.) injection of ghrelin agonist and antagonist. Obese rats ate significantly more than the lean rats (21.7 +/- 1.1 vs. 18.3 +/- 0.3 g/day; p < 0.01). Their plasma ghrelin concentration was 35% higher than that in the lean homozygous rats (p < 0.025). GHRP-6 (1 mg/kg I.P, a GHS-R agonist) stimulated food intake in lean but not in obese rats (p < 0.01), whereas [D-Lys)]-GHRP-6 (12 mg/kg I.P., a GHS-R antagonist) decreased food intake in both groups (p < 0.0001). These results indicate that the obese Zucker rat is characterized by an increase in plasma ghrelin concentrations and by an attenuated response to a GHS-R agonist. They support a role for ghrelin in the development of obesity in the absence of leptin signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号